
A Appendix to Section 3431

We first show that a Nash equilibrium exists when agent payoff functions are separable, i.e., for432

every agent i there are functions gi : Si → R≥0 and hi :×j ̸=i
Sj → R≥0 s.t. for all s ∈ S,433

ai(s) = gi(si) + hi(s−i).434

Theorem A.1. In any federated learning problem where agent payoff functions are separable, a435

Nash equilibrium exists.436

Proof. When the payoff function of an agent i is separable, the best response to any contribution437

vector s−i is independent of s−i:438

fi(s−i) = argmax
x∈Si

ai(x, s−i)− ci(x) = argmax
x∈Si

gi(x) + hi(s−i)− ci(x)

= argmax
x∈Si

gi(x)− ci(x). (since hi(s−i) is independent of x)

Let Fi := argmaxx∈Si
gi(x) − ci(x). Clearly Fi ̸= ∅ since Si ̸= ∅. Then any s ∈×i

Fi satisfies439

s ∈ f(s) by definition. By Proposition 1 any such sample vector is a Nash equilibrium.440

Next, we present a negative result showing that there are federated learning settings where a Nash441

equilibrium is not guaranteed to exist.442

Theorem A.2. There exists a federated learning problem in which a Nash equilibrium does not443

exist. Moreover, the instance has three agents with continuous, non-decreasing, non-concave payoff444

functions and linear cost functions.445

Proof. Let ε ∈ (0, 1
16 ). Let e : [0, 1]→ [0, 1] be a function given by:446

e(x) =


0, if 0 ≤ x ≤ 1

2 − ε,
1
2 + 1

2ε (x−
1
2 ), if 1

2 − ε ≤ x ≤ 1
2 + ε,

1, if 1
2 + ε ≤ x ≤ 1.

(8)

Essentially the function e is a continuous, piece-wise linear function connecting (0, 0), ( 12−ε, 0), (
1
2+447

ε, 1) and (1, 1).448

Now consider the following federated learning instance with n = 3 agents, where S1 = S2 = S3 =449

[0, 1]. The payoff functions are given by:450

a1(s) = e(s1) + e(s3)− e(s1) · e(s3)
a2(s) = e(s2) + e(s1)− e(s2) · e(s1)
a3(s) = e(s3) + e(s2)− e(s3) · e(s2),

(9)

and the cost functions are ci(si) =
1
4si for all i ∈ [3]. Notice that the payoff functions are increasing451

in sj for every j ∈ [3] and are continuous since e is continuous.452

We now show that this instance does not admit a Nash equilibrium. Let us first evaluate the best453

response set f1(s2, s3). Note that u1(s) = e(s1) · (1 − e(s3)) + e(s3) − 1
4s1. Since u1(s) is454

independent of s2, f1(s2, s3) only depends on s3.455

• Case 1. s3 ≤ 1
2 − ε. Then u1(s) = e(s1)− 1

4s1, which is maximized at s1 = 1
2 + ε and results in456

a utility of 7
8 −

ε
4 .457

• Case 2. s3 ≥ 1
2 + ε. Then u1(s) = 1− 1

4s1, which is maximized at s1 = 0 and results in a utility458

of 1.459

• Case 3. 1
2 − ε ≤ s3 ≤ 1

2 + ε. We consider the intervals in which the best response s1 to such an s3460

can lie:461

– s1 ≤ 1
2 − ε. In this range, u1(s) = e(s3)− 1

4s1, which is maximized at s1 = 0 and results in462

a utility of e(s3).463
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– s1 ≥ 1
2 + ε. In this range, u1(s) = 1− 1

4s1, which is maximized at s1 = 1
2 + ε and results in464

a utility of 7
8 −

ε
4 .465

– 1
2 − ε ≤ s1 ≤ 1

2 + ε. In this range, using the definition of e(s1) (eq. 8) we obtain:466

u1(s) =

(
1− e(s3)

2ε
− 1

4

)
· s1 + (1− e(s3)) ·

(
1

2
− 1

4ε

)
+ e(s3).

Thus u1(s) is a linear function in s1 with slope 1−e(s3)
2ε − 1

4 . If the slope is positive, then the467

best response in the current interval is s1 = 1
2 + ε, and gives a utility of 7

8 −
ε
4 . If the slope468

is negative, then s1 = 1
2 − ε is the best response in the current interval and gives a utility of469

e(s3)− 1
4 (

1
2 − ε). However s1 = 0 gives a utility of e(s3) implying that s1 = 1

2 − ε cannot470

be a best response. Finally if the slope is zero, then it must mean that e(s3) = 1− ε
2 , and the471

utility is ε
2 (

1
2 −

1
4ε ) + 1 − ε

2 = 7
8 −

ε
4 . However responding with s1 = 0 gives a utility of472

e(s3) = 1− ε
2 , which exceeds 7

8 −
ε
4 , since ε < 1

16 . Thus, the best response does not lie in473

( 12 − ε, 1
2 + ε) and s1 = 0 is the overall best response.474

The above discussion shows that the best response f1(s2, s3) ⊆ {0, 1
2 + ε}. By symmetry, the same475

holds for f2 and f3. Suppose there exists a Nash equilibrium s∗ = (s∗1, s
∗
2, s

∗
3). By Proposition 1,476

s∗ ∈ f(s∗). Since the above discussion implies s∗3 ∈ {0, 1
2 + ε}, we consider two cases:477

• Suppose s∗3 = 0. Then478

s∗3 = 0 =⇒ s∗1 =
1

2
+ ε (Case 1 for agent 1)

=⇒ s∗2 = 0 (Case 2 for agent 2)

=⇒ s∗3 =
1

2
+ ε, (Case 1 for agent 3)

which is a contradiction.479

• Suppose s∗3 = 1
2 + ε. Then480

s∗3 =
1

2
+ ε =⇒ s∗1 = 0 (Case 2 for agent 1)

=⇒ s∗2 =
1

2
+ ε (Case 1 for agent 2)

=⇒ s∗3 = 0, (Case 2 for agent 3)

which is also a contradiction.481

This shows that there is no s∗ such that s∗ ∈ f(s∗), implying that the above instance does not admit482

a Nash equilibrium.483

We now prove the fast convergence of best response dynamics.484

Theorem 3.2. Let G(s) be the Jacobian of u : S → Rn, i.e., G(s)ij = ∂2ui(s)
∂sj∂si

. Assuming agent485

utility functions ui satisfy486

1. Strong concavity: (G+ λ · In×n) is negative semi-definite,487

2. Bounded derivatives: |Gij | ≤ L,488

for constants λ, L > 0, the best response dynamics (4) with step size δt = λ
n2L2 converges to an489

approximate Nash equilibrium sT where ∥g(sT ,µT )∥2 < ε in T iterations, where490

T =
2n2L2

λ2
log

(
∥g(s0,µ0)∥2

ε

)
.
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Proof. Observe that µt is chosen s.t. ∥g(st,µt)∥2 is minimized among all µ s.t. the updated sample491

vector st+1 remains in S. Thus:492

∥g(st+1,µt+1)∥2 ≤ ∥g(s
t+1,µt)∥2 (10)

Using Taylor’s expansion, we have:493

g(st+1,µt) = g(st,µt) +H(s′, µt) · (st+1 − st),

where Hij(s
′,µt) = ∂g(s′,µt)

∂sj
, and s′ = st + α(st+1 − st) for some α ∈ [0, 1].494

By definition, g(st, µt)i =
∂ui(s

t)
∂si

+µt
i. Thus Hij(s

′,µt) = ∂2ui(s
t)

∂sj∂si
= Gij(s

′), hence H(s′,µt) =495

G(s′). The BR dynamics update rule (4) implies st+1 − st = δt · g(st,µt). We therefore have496

g(st+1,µt) = (In×n + δt ·G(s′)) · g(st,µt). Taking the L2 norm, we get:497

∥g(st+1,µt)∥22 = ∥g(st,µt)∥22 + δ2t · ∥G(s′)g(st,µt)∥22 + 2δtg(s
t,µt)TG(s′)g(st,µt), (11)

By the strong concavity assumption, for a constant λ > 0, G+ λ · In×n is negative semi-definite,498

i.e., vT (G+ λ · In×n)v ≤ 0 for any v ∈ Rn. With v = g(st,µt), we have:499

g(st,µt)TG(s′)g(st,µt) ≤ −λ · ∥g(st,µt)∥22. (12)

Next we use the fact that the L2 norm ∥A∥2 of an n× n matrix A is bounded by its Frobenius norm500

∥A∥F :501

∥A∥2 := sup
x̸=0

∥Ax∥2
∥x∥2

≤ ∥A∥F :=

√∑
i

∑
j

|Aij |2

By the bounded derivatives assumption, we have |G(s′)ij | ≤ L, which implies that ∥G(s′)∥F =502 √∑
i

∑
j L

2 = nL. This gives:503

∥G(s′)g(st, µt)∥2 ≤ nL∥g(st, µt)∥2. (13)

Using (12) and (13) in (11), we get:504

∥g(st+1,µt)∥22 = (1 + δ2t · n2L2 − 2δtλ) · ∥g(st,µt)∥22,

Since δt = λ
n2L2 , the above equation together with (10) gives:505

∥g(st+1,µt+1)∥22 ≤
(
1− λ2

n2L2

)
· ∥g(st,µt)∥22.

Using (1− x)r ≤ e−xr repeatedly we obtain that:506

∥g(st,µt)∥2 ≤ e−
λ2

2n2L2 ·t · ∥g(s0,µ0)∥2.

Thus if we want the error ∥g(st,µt)∥2 ≤ ε, T = 2n2L2

λ2 log
(∥g(s0,µ0)∥2

ε

)
iterations suffice, as507

claimed.508

B Appendix to Section 4509

Lemma 1. The equation Cβ2 − (An(n − 2) + C)β + A(n − 1)2 = 0 of (6) has a real root β∗510

where 0 ≤ β∗ ≤ 1− 1/n.511

Proof. Using the quadratic formula, we see that β∗ given by:512

β∗ =
An(n− 2) + C −

√
(An(n− 2) + C)2 − 4AC(n− 1)2

2C
(14)

We first argue β∗ is real, by showing (An(n − 2) + C)2 − 4AC(n − 1)2 ≥ 0. This is equivalent513

to showing q(y) := (y + n(n − 2))2 − 4(n − 1)2y ≥ 0, where y = C/A. Expanding q, we have514

q(y) = y2 − 2(n2 − 2n+ 2)y + n2(n− 2)2. The roots of q are:515

y1, y2 =
2(n2 − 2n+ 2)±

√
4(n2 − 2n+ 2)2 − 4n2(n− 2)2

2
= (n2 − 2n+ 2)± 2(n− 1),
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i.e., y1 = (n− 2)2 and y2 = n2. Since q(y) has a positive leading coefficient, we have that q(y) ≥ 0516

for all y ≥ y2 = n2. Thus it remains to show that y = C/A ≥ n2. To see this, we use the AM-HM517

inequality:518

C

n
=

c1 + · · ·+ cn
n

≥ n
1
c1

+ · · ·+ 1
cn

=
n

A
, (15)

implying C/A ≥ n2 as desired. This shows that the root β∗ of equation (6) is real, hence well-defined.519

We now show 0 ≤ β∗ ≤ 1− 1/n. From (14), we see:520

β∗ =
An(n− 2) + C −

√
(An(n− 2) + C)2 − 4AC(n− 1)2

2C

≥
An(n− 2) + C −

√
(An(n− 2) + C)2

2C
= 0

Further, from (14) we also have:521

β∗ =
An(n− 2) + C −

√
(An(n− 2) + C)2 − 4AC(n− 1)2

2C

≤ An(n− 2) + C

2C
=

Cn(n− 2)/n2 + C

2C
= 1− 1

n
,

where we used A/C ≤ 1/n2 (15) in the last inequality. This concludes the proof of Lemma 1.522

Theorem 4.1. For each β ∈ [0, 1], the mechanismMβ admits a Nash equilibrium. For β = β∗523

(Definition 2), the NE ofMβ∗ also maximizes the p-mean welfare for any p ≤ 1. Additionally, any524

NE s∗ with s∗ > 0 maximizes the p-mean welfare.525

Proof. When 0 ≤ β ≤ 1, the program (5) is a convex program for general convex cost functions.526

Since ui(·) is concave, a proof similar to the proof of Theorem 3.1 shows the existence of a Nash527

equilibrium.528

We now show the welfare-maximizing property. For simplicity, we only consider feasible strategies529

where each agent participates in the mechanism, i.e., si > 0. Let ρi and λi as the dual variables to the530

first and second constraints respectively for each i, and let S = ∥s∥1. Writing the KKT conditions531

and eliminating all ρi, we get that a NE (b∗, s∗) together with dual variables λ∗ satisfies:532

∀i : ∂ui(b
∗
i , S

∗)

∂S
= (1− β) · ci ·

(
∂ui(b

∗
i , S

∗)

∂bi
+ λ∗

i

)
(from stationarity conditions) (16)

∀i : λ∗
i ≥ 0 (dual feasibility) (17)

∀i : λ∗
i · bi = 0 (complimentary slackness) (18)

Now we turn to the p-mean welfare maximizing solution which is an optimal solution to the following533

program.534

max Wp(b, s) := (
∑
i

ui(bi, ∥s∥1)
p)1/p

s.t. ∀i : bi + (1− β)ci(si) +
β

n− 1

∑
j ̸=i

cj(sj) = Bi

∀i : bi ≥ 0

(19)

The following lemma establishes that (19) is a convex program. For ease of readability we defer its535

proof to B.1.536

Lemma 2. For β ∈ [0, 1] and p ≤ 1, the program (19) is convex.537

We can now write the KKT conditions of program (19). By letting µi and γi denote the dual variables538

corresponding to the first and second constraints respectively for each i and S = ∥s∥1, the KKT539

conditions (considering only solutions with si > 0) are:540

∀i : (
∑
j

up
j )

1/p−1
∑
k

up−1
k

∂uk

∂S
= ci · [µi(1− β) +

β

n− 1

∑
k ̸=i

µk] (stationarity) (20)
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∀i : (
∑
j

up
j )

1/p−1up−1
i

∂ui

∂bi
= µi − γi (stationarity) (21)

∀i : γi ≥ 0 (dual feasibility) (22)
∀i : γi · bi = 0 (complimentary slackness)

(23)

Since KKT conditions are sufficient for optimality, to prove Theorem 4.1 it suffices to show that for541

an NE (b∗, s∗), there exist dual variables µ∗ and γ∗ which satisfy (20)-(23) for β = β∗.542

Let α := (
∑

j uj(b
∗
j , s

∗)p)1/p−1
∑

k uk(b
∗
j , s

∗)p−1 ∂uk(b
∗
k,s

∗)
∂S , i.e., the common value of the equality543

(20) at the NE (b∗, s∗). The equation (20) then becomes α · c−1
i = µi(1 − β) + β

n−1

∑
k ̸=i µk.544

Summing these over all i and letting T =
∑

j µj , we obtain:545

α · (
∑
i

c−1
i ) =

∑
i

[µi(1− β) +
β

n− 1

∑
k ̸=i

µk] = T.

Putting this back in (20), we obtain the following expression for µ∗
i , which can be computed from the546

NE (b∗, s∗) with T = α · (
∑

i c
−1
i ):547

µ∗
i =

Tc−1
i∑

i c
−1
i

− βT
n−1

1− βn
n−1

. (24)

Recall that the NE (b∗, s∗) satisfies (16)-(18) for some dual variables λ∗. We define γ∗
i as follows:548

γ∗
i = µ∗

i ·

(
λ∗
i

λ∗
i +

∂ui(b∗i ,s)

∂bi

)
(25)

The next lemma proves Theorem 4.1.549

Lemma 3. A NE (b∗, s∗) with µ∗ and γ∗ defined by (24) and (25) satisfy the KKT conditions550

(20)-(23) of program (19).551

Proof. First observe that at the NE, (1− β)ci ·
(

∂ui(b
∗
i ,S

∗)
∂bi

+ λ∗
i

)
=

∂ui(b
∗
i ,S

∗)
∂S > 0 by assumption.552

Since β ∈ (0, 1) and ci > 0, we have ∂ui(b
∗
i ,S

∗)
∂bi

+ λ∗
i > 0. Together with λ∗

i ≥ 0 (17), this shows553

γ∗
i ≥ 0 thus satisfying dual feasibility (22).554

Next we show complimentary slackness (23) holds. For any i, λ∗
i · bi = 0 due to (18). Then by the555

definition of γ∗
i , we have γ∗

i · bi = 0 for all i.556

Finally, we show that equations (20) and (21) are satisfied for a specific choice of β = β∗. Together,557

(20) and (21) imply that an optimal solution to program (19) satisfies:558

∀i :
∑
k

(µk − γk) ·
∂uk/∂S

∂uk/∂bk
= ci · [µi(1− β) +

β

n− 1

∑
k ̸=i

µk] (26)

The choice of γ∗
i from equation 25 implies that µ∗

i − γ∗
i = µ∗

i · (
∂ui(b

∗
i ,s)/∂bi

∂ui(b∗i ,s)/∂bi+λ∗
i
). Moreover at the559

NE, equation (16) implies that:560

(µ∗
i − γ∗

i ) ·
∂ui(b

∗
i , s)/∂S

∂ui(b∗i , s)/∂bi
= µ∗

i ·
(

∂ui(b
∗
i , s)/∂bi

∂ui(b∗i , s)/∂bi + λ∗
i

)
· (1− β)ci ·

(
1 +

λ∗
i

∂ui(b∗i , s)/∂bi

)
= µ∗

i · (1− β)ci.

Using the above in (26), it only remains to be argued that µ∗, b∗ and s∗ satisfy:561

∀i : (1− β) ·
∑
k

µ∗
k · ck = ci · [µ∗

i (1− β) +
β

n− 1

∑
k ̸=i

µ∗
k] = α,
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for β = β∗. By plugging in the value of µ∗
i from (24) and using α = T · (

∑
k c

−1
k )−1, we get:562

(1− β) ·
∑
k

{
Tc−1

k (
∑

i c
−1
i )−1 − βT

n−1

1− βn
n−1

}
· ck = T · (

∑
k

c−1
k )−1.

Let us define A := (
∑

i c
−1
i )−1 and C :=

∑
i ci. Manipulating the above expression, the above563

equation then becomes:564

Cβ2 − (An(n− 2) + C)β +A(n− 1)2 = 0,

which is true for β = β∗ since it is exactly the definition of β∗ (Definition 2).565

Thus for β = β∗, the NE (b∗, s∗) with dual variables µ and γ as defined in (24) and (25) respectively566

satisfy the KKT conditions of program (19).567

568

B.1 Proof of Lemma 2569

Lemma 2. For β ∈ [0, 1] and p ≤ 1, the program (19) is convex.570

Proof. For β ∈ [0, 1] the constraints of program 19 are convex since ci(·) are convex functions.571

It remains to be shown that the objective Wp(b, s) := (
∑

i ui(bi, ∥s∥1)p)1/p to be maximized is572

concave.573

We use the following standard fact about the concavity of composition of functions (see e.g. Boyd574

and Vandenberghe [2004], Page 86).575

Proposition 2. Let h : Rn → R and gi : Rk → R and let f : Rn → R be given by f(x) =576

h(g(x)) = h(g1(x), . . . , gn(x)). Then f is concave if h is concave, h is non-decreasing in each577

argument and gi are concave.578

Note that Wp(b, s) = h(g(b, s)), where h(x1, . . . , xn) = (
∑

i x
p
i )

1/p and gi(b, s) = ui(b, s).579

We now observe that:580

• h is non-decreasing in each argument. This is because:581

∂h

∂xi
= h1−pxp−1

i ≥ 0.

• h is concave. Using the above, we can compute the Hessian H given by:582

Hij =
∂2h

∂xj∂xi
=

{
(1− p)h1−2p(xixj)

p−1 (if i ̸= j)
(1− p)h1−2pxp−2

i · (xp
i − hp) (if i = j)

Thus for any v ∈ Rn, we have:583

vTHv =
∑
i

∑
j

viHijvj

= (1− p)h1−2p ·
(∑

i

vi
∑
j ̸=i

Hijvj +
∑
i

v2iHii

)

= (1− p)h1−2p ·
(∑

i

vix
p−1
i ·

((∑
j

vjx
p−1
j

)
− vix

p−1
i

)
+
∑
i

v2i (x
2p−2
i − hpxp−2

i )

)

= (1− p)h1−2p ·
((∑

i

vix
p−1
i

)2 −∑
i

(vix
p−1
i )2 +

∑
i

v2i x
2p−2
i −

∑
i

v2i h
pxp−2

i

)
= (1− p)h1−2p ·

((∑
i

vix
p−1
i

)2 − (∑
i

v2i x
p−2
i

)(∑
j

xp
j

))
≤ 0,
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Algorithm 1 FedBR-BG
1: Input: Number of iterations in game H , number of iterations of gradient descent T , learning

rate α, step size δ, data increasing interval ∆s
2: Output: Model weights θT , individual contributions s
3: for h = 1, 2, · · · , H do
4: Server sends θt to agents;
5: for t = 0, 1, · · · , T − 1 do
6: for i ∈ [n] in parallel do
7: i computes∇θtLi(θ

t) on its local dataset Di;
8: i sends ∇θtLi(θ

t) to server;
9: end for

10: Server aggregates the gradients following

∇θtL(θt)← 1∑
i∈[n] |Di|

∑
i∈[n]

|Di| · ∇θtLi(θ
t);

11: Server updates θt+1 following

θt+1 ← θt − α · ∇θtL(θt);

12: end for
13: for i ∈ [n] in parallel do
14: ∂ui

∂si
← a(

∑
i si+∆s)−a(

∑
i si)

∆s − (1− β)ci

15: if (si = 0 and ∂ui

∂si
< 0) or (si = τi and ∂ui

∂si
> 0) then

16: sh+1
i ← shi ;

17: else
18: sh+1

i = shi + δ · ∂ui

∂si
;

19: end if
20: end for
21: end for

since p ≤ 1, h ≥ 0, and by the Cauchy-Schwarz inequality (
∑

i ai · bi)2 ≤ (
∑

i a
2
i ) · (

∑
i b

2
i ) with584

ai = vix
p/2−1
i and bi = x

p/2−1
i . Thus H is negative semi-definite and hence h is concave.585

• For each i, gi(b, s) = ui(b, s) is concave.586

Using Proposition 2 and the fact that Wp(b, s) = h(g(b, s)) we conclude that Wp(b, s) is concave.587

588

C Distributed Algorithms589

In this section, we present the distributed algorithms of our two mechanisms, FedBR and FedBR-BG.590

D Additional Results591

We present the results of our method on CIFAR-10 in Table 2.592

Table 2: p-mean welfare of our budget-balanced mechanism FedBR-BG and baselines on CIFAR-10. We report
the results for different p. The cost for adding one data sample ci is 0.005 for every agent.

Method
p

0.2 0.4 0.6 0.8 1.0

FedAvg 42386.21 135.92 23.528 8.381 4.582
FedBR 58297.23 178.32 26.187 9.675 5.681

FedBR-BG 60385.32 183.23 27.958 9.981 5.891
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Algorithm 2 FedBR
Input: Number of iterations in game H , number of iterations of gradient descent T , learning rate
α, step size δ, data increasing interval ∆s
Output: Model weights θT , individual contributions s
for h = 1, 2, · · · , H do

Server sends θt to agents;
for t = 0, 1, · · · , T − 1 do

for i ∈ [n] in parallel do
i computes∇θtLi(θ

t) on its local dataset Di;
i sends ∇θtLi(θ

t) to server;
end for
Server aggregates the gradients following

∇θtL(θt)← 1∑
i∈[n] |Di|

∑
i∈[n]

|Di| · ∇θtLi(θ
t);

Server updates θt+1 following

θt+1 ← θt − α · ∇θtL(θt);

end for
for i ∈ [n] in parallel do

∂ui

∂si
← a(

∑
i si+∆s)−a(

∑
i si)

∆s − ci

if (si = 0 and ∂ui

∂si
< 0) or (si = τi and ∂ui

∂si
> 0) then

sh+1
i ← shi ;

else
sh+1
i = shi + δ · ∂ui

∂si
;

end if
end for

end for
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