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A Derivations

For the derivations we will use the notation
p(z) = 0,P(X < x)

for the density function of a random variable X . For the conditional density of a random variable X
and a realization y of a random variable Y, we write

pl|y) =0.P(X <z|Y =y).

For time-dependent densities with continuous random variables Y (¢) and discrete random variables
Z(t), we use the time-point marginal density

p(y, 2,t) == 9,P(Y (t) <y, Z(t) = 2),
time-point joint density
p(y,z, 6.y, 2" ') = 0,0,P(Y(t) <y, Z(t) =2, Y(') <y, Z({') =27
and time-point conditional density
Py, 2t |y, 2 ) = 0,P(Y(£) < 9, Z() = 2 | Y () = o/, Z() = 2.
The latter also applies to conditional densities with multiple time points in the conditioning set,

p(y’ Z7t | y/’ Z/7 t/, y//7 Z/l7 t//)
=0,PY() <y, Z(t)=2|Y({H) =y, Z{t) =2 Y{I")=y",Z{")=2").

If it is clear from the context, we will mostly use the favorable uncluttered notation.

A.1 Derivation of the Hybrid Master Equation

To derive the HME conditioned on an arbitrary set X', e.g., the set of initial conditions X = {Z(0) =
20, Y (0) = yo}, we assume for simplicity that Z(t) € Z C Nand Y (¢) € Y C R. The multivariate
case ) C R" is be derived analogously.

Following [34], we use the rule of total probability on the density p(y, z,t + h | X') for some h > 0:

ply,z,t+h|X)= Z/ py,z,t+h |y, 26, X)ply, 2t | X)dy
Z/ y

:Z/p(y,t—i—h|z,t+h,y’,z’7t,)()p(z,t+h|y’,z’,t,X)
—Jy

ply' 2t X)dy'.
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We expand, with limy, 0 +p(z,t + h | ¥/, 2/, t, X) := A@Z/:Z( t) and limj,_,o 2 (h) —0,

p(Z,t—i— h | ylvzlat7X) = 62'2 + Az:z(t)h—i_ O(h)

with the Kronecker delta d,., = 1 if 2’ = 2z and 0 otherwise. Since we aim to take the limit &~ — 0 at
the end, we omit terms of o (h). Inserting the expansion into the above expression, we obtain

p(y,z,t+h|X)
=3 [ bttty 22 (5ue 5 AL O) plo, 2 X) A
> Jy

:/p(yﬂerh|Z,t+h7y',z,t7?€)p(y’,z,t|X)dy’
Y , 1)

+ Z/ plyt+h |zt +hy 2 4, X)AY (Ohp(y', 2t | X) dy
RAY

The density function p(y,t + h | z,t + h,y’, 2’,t, X') can be written in terms of its characteristic
function ¢ (v,t + h |/, t, X) = E[e?YEHRM=YO) | Z(t 4 h) = 2,Y(t) =9/, Z(t) = 2/, X],

ply,t+h|zt+hy 2 tX)

1 ) /
=— [ e W)t +h |yt X)dy
2 R
1 ) /
_ 1 [ —aw-y)
2w €

(22)

S ) - V) 20 = Y () =y 200 = 2 X

n!
n=0

where we expressed the characteristic function via its Taylor series around v = 0. We insert this
representation into Eq. (21)) and make use of the identity (which only holds under the integral)

1 e
06t —o/) = (v [ e a,

with 81(,0)5(y —vy') :=06(y — '), yielding
p(y,zt+h|X)

:/p(y7t+h | z,t +h,y 2, t, X)p(y', 2,t | X)dy
y

+h.Z/p(y,t+h |z t+ by 2t X)AY (Dl 2t | X)dy

/ Z E oty — ) BN 4+ 1)~ Y (@) | 204+ h) ==,
Y(t) = y/vZ(t) = Z?'X]p(y/azvt | X) dy/

—y)E[Y(t+h) =Y ()" | Z(t+h) =2

n 0
Y(t) =y, Z(t) = 2, X]AY, ()p(y/, 2t | X) dy/

”) E[(Yt+h)=Y@)" | Z{t+h)=2YH)=y,Z(t) = 2, X]p(y, z,t | X)

R

i

OME(Y(t+h) —Y@)" | Z(t+h)=2Y(t)=y,Z(t) = 2, X]

A, ()p(y, 2t ] X).
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We again apply a Taylor expansion and omit part of the conditioning set for brevity,

E[(Y(t+h) =Y@)' V() =yl =) %35’”) EIY(t+7) - Y(©)"[Y(t) = yllr=0

m=0
=140(1). (23)
Inserting this and omitting terms o (h), we obtain
ply,z,t+h|X)

(oo}

=3 ED" o g [(Y(t+h) =Y |Z(t+h)=2Y(t) =y, Z(t) = 2z, X]p(y, 2, t | X)

Yy
n!
n=0

+h- ZAZ/Z(t)p(y,Z/,t ‘ X)
:p(y,Z7t|X)+

S C Lo e+ ) Y @) 1204 W) = 2, ¥ (1) = 9, 20) = 2, Klply, 2.t )

n=1

+h- ZAz’z(t)p(yvz/7t ‘ X)

Substracting p(y, z,t | X') from both sides, dividing by % and taking the limit 4 — 0 yields

4 p 7Zat+h X — P 7Z,t X
Owly. =t | X) = lim (y | })l (2.t | X)

oo _1)»
=> ( n!) O HTnyep(y, 2t | X)}+ D AL (Op(y, 2,1 X)) (24)

n=1

with

1
Ty = lim —E[(Y(t+h) =Y ()"|Z(t+h)=2,Y(t) =y, Z(t) = 2, X]
h—0 h (25)
1
Y — i — A _ 5.,
AZ/Zi}lli)I%)hp(Z7t+h|Zayat7X) 0zt

As Y (t) follows the SSDE
dY (t) = f(Y(¢), Z(¢),t)dt + Q(Y (t), Z(t),t) AW (2),

we can compute the conditional moments I',,, . in closed form. Conditioned on the discrete process
remaining constant in a small time interval, Z}; ;1) = z, the above SSDE can be treated as a
conventional, Z-independent Itd SDE. For small h, we can hence utilize the usual Euler-Maruyama
approximation [33],

Y(t+h)|Z(t+h)=22(t) =2Y )=y ~N(y+ fy,z,0)h, D(y, z,1)h).
Consequently,

E[(Y(t+h)— Y| Z(t+h) = 2,Y(t) =y, Z(t) = 2, X]
= /(y’ —y)"N(y+ fy, 2, t)h, D(y, z,t)h) dy/

and the first two conditional moments are the usual Gaussian moments

f(y,2,1) ifn=1
Fryz =31 T 1 :
§Q(y7zat)Q (y,z,t) = §D(y7zvt) ifn=2.
As shown in [34], if T',,,. = 0 for some even n, I'y,,, = 0Vn > 0. It is straightforward to show,
e.g., that I',,,, = 0 for n = 4, so all other conditional moments vanish. Hence, we can (for arbitrary

Y C R™) define the PDE
ap(y,z,t | X) = Ap(y, 2, t | X)
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using the operator A(-) = F(-) + T(+) as

./T"(y,Z,t|X Zayz{fz y7Zt) (y72t|X)}

i=1
1™
+ § ZZayLaUJ{DH(yazat)p(yazat | X)}v
i=1 j=1
Tp(y, 2t | X) = Y A, 20)py, 2t | X) = Az, t)p(y, 2, | X).
z'e€Z\z

In the same vein as the above derivation, using the Kolmogorov backward equation

P(X | .2t~ h) Z/ (22t | gyt — WD(X | o2, 0) Y

z'eZ

we can find another PDE for the density p(X | y, z, ). This yields the backward equation d;p(X’ |
y,2,t) = —Alp(X | y, z,t), with the adjoint operator AT(-) = FT(-) + TT1(-):

n 1 n n
Tp(X | y,z,t) = Zfi(y,Z,t)ay,p(X | y,z,t) + 5 ZZDl](yﬂz7t)aylay7p(X ‘ y,z,t),

i=1 i=1 j=1
Tp(X [y, 2,t) = Y Az 2 Op(X [y, 2,8) — Az, p(X |y, 2, ).
2/ €2\z

The operator A’ is adjoint to the operator A, with respect to the inner product (p,¢) :=
Zz fp(yv z,t)p(y, z,t) dy, i.e.
(Ap. ¢) = (p, ATo)

for an arbitrary test function ¢.

A.1.1 Exact Marginal Z-Process

We here show that integrating out the continuous variable y from the HME yields the traditional
master equation. The full HME reads

atp(yvz7t) = Ap(y7 z t)

:—Za% {fily, 2, )p(y, 2,0)} + = ZZ@ULayJ{DU(y,z p(y, 2, )}

zl_]l

+ Z A2z, )p(y, 2’ t) — Az, )p(y, 2, t).
z'€Z\z

Using Leibniz’ theorem, we have
/ oip(y, z,t)dy = @/ p(y, 2, t)dy
Yy Y
= Oip(z,t).

Accordingly, we have

8tp(zat) _/y - Zayz {fz(y,Z,t)p(y,Z,t)} + % ZZayma%{Dlj(:%th)p(y,zat)} dy

i=1 j=1

=0

n / ST AG 2 Op(, 2 1) — Al Doy 7, 1) dy
yz’EZ\z

:ZZIGZ\Z A(z",z,t)p(2',t)—A(z,t)p(z,t)
(26)
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and the first integral has to vanish because of the Gauss divergence theorem and p(y, z, t) =90,
Hence,

Oip(z,1) Z A 2, 0)p(2' t) — Az, t)p(z, t).

z'€Z\z

A.2 Exact Posterior Inference

Here, we show how to calculate the quantities related to the smoothing density p(y, z,t | z1,n7)
Oy -0y, P(Y(t) <y, Z(t) = 2| X1 = 21,..., XN = zn). Using k = max(k’ € N | tk <t)
we can be express the smoothing density as

ply,z,t, 21, .., Ty Thtly---, TN
p(y,z,t | x[l,N]) _ ( ) ) ) ) ) +1 ) )
p(l‘la"'axk7xk+1;-~-ax1\7)
:P($k+17---,37N|xlv-n733kay7zyt)p(y>z7t,$1a-~-75Uk)
(g1, TN | T1, ., TE) p(x1,...,zk)
P\ Tk4+1,---, TN 7Z7t
= ( + |y ) p(y’z7t|x17"'7xk)
P(Tkt1,-- TN | T1,- .-, Tk)
= C7 (t)aly, 2,t)B(y, 2, 1),
with the filtering density a(y, z,t) = p(y,2,t | x1,.. ) the backward density 5(y, z,t) =

p(Tgs1,---,TN | Y, 2,t) and a time-dependent normahzerC =Y., [aly,zt)B(y, z,t) dy.

A.2.1 Calculation of the Filtering Distribution
The filtering distribution is defined as
a(y, z,t) == ply, z,t | z1,...,xp),
with density p(y, z,t | 21,...,2k) =0y, -+ 0y, P(Y(t) <y, Z(t) =2 | X1 = 21,..., X = x1)
and k = max(k’ € N | ¢, <t).

The Filtering Distribution Between Observations. Consider the case where there is no observa-
tion in the interval [¢t,t + h], b > 0.

We compute

Oé(y,Z,t—Fh)_ (y72t+h‘xla~--; k)
—Z/ (y, 2zt +hy 2t 21, 2) dy
z'eZ
Z/ (y,z,t+h |y, 2t x)p(y, 2t | @y, k) dy
z'eZ

As there are no observations in the interval [t, ¢ + h], we have
Py, z b+ h |y 2t mk) = ply, 2t + by, 20).

This is true since the conditional process {Y (t + h), Z(t + h)} given {Y (¢), Z(t)} is independent of
{X1,..., X} Hence, we have

a(y,z,t+h) = Z/ p(y,z,t+h |y, 2 t)ay, 2 t)dy.

z'eZ

This is the (forward) Chapman-Kolmogorov equation [34] for the filtering process {Y (t), Z(¢) |
Z1,...,Tk} , with transition distribution p(y, z,t + h | ¢/, 2/, t), which is the transition distribution
of the prior dynamics. Hence, between observations «(y, z, t) follows the HME

ata(yv Z, t) = Aa(yv 2, t)a
as derived in Appendix [A.T]
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The Filtering Distribution at Observation Time Points. Here, we calculate the filtering distribu-
tion at the observation time points {t;};c1,. n-

aly, z,t;) =ply, z,t; | ©1, ..., ;)
_ ply, 2ty w0, ., 1)

p(z1,...,z;)
(@i |y, 2t 2, 2 1)p(Y, 2t T, L, )
N p(x1,...,3;)
Cop(s |y 2t )Py, 25t | 2y, 1) p(m, L )
B p(x1,...,z;)

_ pi|y)aly, 2, t7)
C

and C; = jpe=tis = 72 [ plei | yaly, 2, t) dy.
A.2.2 Calculation of the Backward Distribution

The backward distribution is defined as

5(y,z,t) = p(xk-i-l?"' y TN | y,z,t),

with density p(Try1,..., 2N | ¥, 2,1) 1= Oppyy = Ouy P(Xng1 < Zpg1, .., Xnv <y | Z(t) =

Y, Z(t) = z) and k = max(k’ € N |ty <t)

The Backward Distribution Between Observations. Consider again first the case where there is
no observation in the interval [t — h, ], h > 0.

ﬂ(yvzatfh) :p(xk-l-lv"wa | yvzatfh)

= Z /p(xk+17~~~7xvalvz/7t|yazut_h)dyl
z'eZ

- Z /p(y’,z’,t |y, 2,t — W)p(xpyt,. ., on | ¥, 2t y, 2t —h)dy'.
2IEZ
As there are no observations in the interval [t — h, t],
p(Traty--an | Y, 2y, 2t —h) = plagi1, ..., an |y, 25 t) = By, 2, 1)
as the process {xg+1,...,2zn | Y(t), Z(t)} is independent of {Y (¢t — h), Z(t — h)}. Hence,

B(yazvt - h) = Z /p(y/azlat | y,Z,t - h)ﬁ(y/azlvt) dy/

z'eZ

This is the (backward) Chapman-Kolmogorov equation [34] for the backward process
{Tkt1,...,2n | Y(t), Z(t)}, with transition distribution p(y’,z’,t | y,z,t — h), which corre-
sponds to the backward prior dynamics. Hence, between observation 3(y, z, t) follows the backward

HME
8tﬂ(y7 2, t) = _ATﬂ(ya 2, t)v
as derived in Appendix [A.T]

The Backward Distribution at Observation Time Points. Here, we calculate the backward dis-
tribution S3(y, z, t; ) right before the observation time points {t;};c1,...,v. We first note that

By, z,t; —h) =p(xsy ..., xN |y, 2, t; — h)
_ p(s, .. TN, Y, 2t — h)
B p(y,z,t; — h)
_p(i [T 2N,y 2t — h)p(Xig, - TN, Y, 2t — h)
B p(y,z,t; — h)
=p(x; | Tig1y- TN, Y, 25t — R)p(Xig1, .. TN | Y, 2,8 — h).
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Calculating h \, 0, we find

A.2.3 Calculation of the Smoothing Distribution

We define the smoothing distribution as (y, z,t) := p(y, 2, | x11,87) = C—1(t)a(y, z,t)B(y, 2, t).
We find the dynamics of the smoothing distribution by calculating its time derivative. For this, we
follow a proof analogous to [28]. By noting that C'~1(¢) is constant almost surely [A1]], we obtain by
differentiation

atp(ya z,t | m[l,N]) - at’)’(ya th) =0 {Cil(t)a(gﬁ Zat)ﬂ(yv Zat)}
= C7H (t)a(y, 2 )08y, 2,t) + O~ ()B(y, 2, )y, 2, 1). @7

The dynamics of the filtering distribution are

8ta(y’Z t Zayl {fl Y, 2, t) (ya Z’t)} + % Zzayiéyj {Dij(y7zvt)a(yazvt)}

i=1 j=1
+ Z Az, t)aly, 1),
z'eZ

where we define A(z, z,t) :== —A(z,t). The dynamics of the backward distribution are given as

OBy, 2, 1) Zﬂ (y,2,t)0y,B(y, 2, 1) ZZD” (y,2,1)0y,0,,B8(y, 2, 1)

7,1]1

— Az, 2/, t)B(y, 2, t).
Z )

Z'eZ

Inserting the dynamics in Eq. and using C~(t)a(y, z,t) = ggig we find

0yy(y, 2, t)

, 2,1
:gEZyJZt) Zfl y»Zt Yi y»Zt ZZD’LJ y»Zta 8y]ﬁ(y,2t)
’ i=1 j=1

_.§£:<A(z,zﬂt)ﬁ(y’zct)>

z'eZ

Bly, =) Zﬂ{ﬁy,ztﬁ( } Zzay,ayj{”y,zt)m}

vy, 2, 1)
+ZA2 z,t) By, t))

z'eZ
(28)
Next we differentiate the intermediate terms using the product rule as
(Y, 2 t)
0 i {f’b y,Z,t }
V2050 )
_ Oy fily, 2y, 2,t) + fily, 2,0)0y,7(y, 2, 1) By, 2,) — fily, 2, )y (Y, 2, )9y, By, 2, t)

By, z,t)?
:5(% Zat)_l {8U1fl(ya th)’y(ya Zat) + fl(y’ th)a’ljb’)/(ya th)}
- ﬂ(y7 z7t)_2fi<ya Z>t)7<ya zat)a’thﬁ(ya th)a
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and

Di (y7 2 t)’Y(y7 2 t)
8%‘83/]' { ’ 5(3/, Zﬂf) }

=0y, {7y, 2, t)B(y, 2,t) 10y, Dij (y, z,t) + Dij(y, z,t) By, 2,£) "0y, v(y, 2, 1)

—Dij(y, 2, t)y(y, 2, 1) By, 2,1) 20y, B(y, 2, 1) }

= (V(y, 2, )0y, 8y, Dy (y, 2,t) + 8y, Dij (y, 2, )0y, (y, 2,1)) By, z,1)

— (. 2, 6)B(y, 2,8) 20y, Dij(y, 2, 1)y, B(y, 2, t) + Oy, Dy (y, 2, )0y, v (y, 2, 1) By, 2, ) "

+ Dij(y, 2,t) (B(y, 2,t) 1 0y,0y,7(y, 2, t) — By, 2, 1) "20y,7(y, 2, )0y, B(y, 2, 1))

— 0y, Dij (y, 2, t)v(y, 2,10y, By, 2, 1) B(y, 2, 1)

— Dij(y, 2, t) (8y,7(y, 2,1)0y, By, 2, 1) B(y, 2, 1) >
(Y, 2, 6)[0y, 0y, By, 2, 1) B(y, 2,1) 7> = 20y, B(y, 2, 1) By, 2,8) >0y, B(y, 2,1)]) -

Collecting terms in 8(y, z,t) ™1, B(y, 2,t) "2 and B(y, z,t) 3, we find

D..
8%8%{ m(y7z7t)7(y,z7t)}

B(y, 2, 1)
=By, z,t) " {0y,0,, Di;(y, 2, t)7(y, z,t) + 8y, Dij(y, 2,1)0y, 1 (y, 2, 1)
+3 :Dij(y, 2,1)0y,7(y, 2,t) + Dij(y, 2,1)0y, 0y, 7(y, 2,1) }
— By, z,t) 72 {0y, Di;(y, 2, )7 (y, 2, )y, B(y, 2, 1)
+ 0y, Dij(y, 2, )7 (y, 2, 1)9y, B(y, 2, 1)
+ Dij(y, 2,0)0y,7(y, 2, )0y, B(y, 2, )
+ Dij(y, 2,0)0y,v(y, 2,1)0y,; B(y, 2, )
+Di;(y, 2, t)v(y, 2, )9y, 3@/] (y,2,1)}
t

+ By, 2,t) 7> {2Di5(y, 2, )7 (y, 2, )0y, By, 2, )0y, By, 2, 1) } -
Using the terms in Eq. (28) we have

0y(y, 2, t)

7Zfz Y,z )ﬂ(yv'z t) 815(y,2,t)

- 4 B(ZJ,Z t) {[awal(y7z t)’}/(y,Z,t) +fl(y7Zat)ayzq/(y7zat)]ﬁ(y’zvt)

1 n n
+ 522 [0y,0y, Dij (y, 2, t)y(y, 2, ) + 0y, Dy (y, 2, )0y, ¥ (y, 2, 1)

i=1 j=1

+ 0y, Dij(y, 2,t)0y,v(y, 2, 1) + Dij(y, 2,1)0y,0y,7(y, 2, 1)
By, 2,t) " {8y, Dij(y, 2. 6)7(y, 2, 1)y, B(y, 2, 1)

+ 0y, Di;(y, 2, t) (y,2,t)0y,B(y, 2,1)

+ Dij(y, 2,1)0y,7(y, 2, t)(?y Bly, z,t)

+ Dj; (Y, 2, ) (Y, 2, t)ay]ﬁ(y7z’t)

+ng(y ) (%Z t)ay 671] (y727 }

+ By, 2, 1)

t)
{2ng Y, z, t)V(ya 7t)8yi6(yaZ7t)8yj6(y>z7t)}]
t) (
)

/ ﬁ(yv ) / , ﬂ y,Z/,t)
+ Zgz <A(z ,z,t)mv(y,z ) — Az, 2 ’t)wv(y,Z,t)>
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== "0, fily, 2, )y, 2. 8) + fi(y, 2, 8)0y, 7 (y, 2, 1)

1 n on
+ 5 Z Z ayi 8?;_7' Dij (y7 Z, t)f}/(y’ Z, t) + a’yj Dij (y7 2, t)ayﬁ/(y, Z, t)
i=1 j=1
+ 9y Dij(y,z )0y, 1y, 2,t) + Dij(y, 2, 1)y, 0y,7(y, 2, 1)

2, t)”
y > ZZ{ayJDZ] y,z t (y,z t)a ﬁ(yazvt)

i=1 j=1
+ 0y, Dij(y, 2, )7(y, 2,t) 0y, B(y, 2, 1)
+2D;;(y, 2, t)v(y, 2, )0y, 0y, B(y, 2, 1)
+ Dij(y, 2, )0y, (Y, 2, )0y, B(y, 2, t)
+Dij(y, 2, 1)8y,7(y, 2, 1)y, By, 2, 1) }

5(% Zat>_2 Z Z ng(% Zat>7(y7 Z7t)ay16(y7z7t)ay]ﬁ(y7 Zat)

i=1j=1

/B(yvz;t) ’ , /B(y72,7t) )
TN —A PAH <Y
+ y e§z:\z < 2 20t) 5(y,z’,t)7(y’z ,1) (z,2')t) B(y,7,0) v(y, 2, t)

== {0y, iy, 207 (W, 2.t) + fily, 2,)0y,7(y, 2, 1)
i=1

—1 n

y,z t)
> [0y, Dij(y, 2. )v(y, 2,1)0,, By, 2, 1)
Jj=1

+ 0y, Dij(y, 2, t)v(y, 2, )0y, By, 2, 1)
+2Dij(y, 2, t)7(y, 2, )0y, 0y, B(y, 2, 1)
+ Dij(yv 2 t)ayj'Y(ya 2, t)ayiﬁ(y? z,t)
+Dij (y, 2, t)ayi’}’(yu 2, t)ayj B(y, z, t)]

By, 2 t) 2> Dij(y, 2, 07(y, 2,6)0y, By, 2, 1)y, By, 2, t)}
j=1

+
N | =
M:

Z A0y, Dij(y, 2, t)v(y, 2,t) + Dij(y, 2, )0y, v (y, 2, 1) }

i=1j
/ Bly, 2,t) ’
+ Z;ZA(Z ’Z’t)ﬁ(y,z’,t)’Y(y’ at)
= {0y {fi(y, 2, )7(y, 2, 1)}
=1
By, 2, t) " [0y, Dij(y, 2, )v(y, 2, 1)y, By, 2,t)
Jj=1
+ DZ](y7Zut)ly(y7Zat)aylayjﬁ(y7zvt)
+ Dlj(yaZat)ay77(yaZat)ayjﬂ(yvz,t)]
_/B<yﬂz7t)2ZDZj(yath)’y(y’Z7t)8yz18(y’Z7t)8ygﬂ(y7zat)}
j=1
1 t )
5;; i Oy, {Dij (Y, 2, ) (y, 2, 1)} + Z A2, 2 t)ﬂﬁ((gj/,,:’,t))wyﬂ ,t).

z'eZ
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Next, collecting terms by making use of the product rule, we have

04y, 2, t)

= - Za fz y,Z t)’y(yazvt) + ZDij(y,z7t)8yj6(y,z,t)6(y,z,t)_lv(y,z,t)

J=1

2 Zzay,awww(y,zw om )+ 3 A0 D

25 ez B(QZ’t)

n

= _281 fl(yﬂz7t)+ZDlj(y7Z7t)ayJ logﬂ(yazat) ’Y(%Zyt)
=1

Jj=1

2 ZZa%ayj{Dm(y,zt) om )+ 3 A 0l

i=1 j=1 ez 5(9’2 t)

Finally, we can write

atp(yvzat | x[l,N]) :Ap(yvzat | x[l,N])

== ZB i {fi(y,zi)p(y,,&t | CU[l,N])}
i=1

+ = 228%6% { i (Y, 2, t)p(y, 2, t | x[LN])}

1=1 j=1
+ Z A(Zlv Z, t)p(ya Z/a t | x[l,N])v
Z'eZ
with the posterior drift

n

ﬁ(y,z,t) = fl(yvz7t) + ZDlj(yaZ7t)8y] logﬁ(yvz7t)a

j=1
the posterior dispersion

Dlj(y7 Z, t) = D?J(y7 Z, t)v
and the posterior rate

A 20 = A 50 SLE0,

A.3 Approximate Inference

A.3.1 The Path-Wise Kullback-Leibler Divergence Between Hybrid Processes

To derive the KL divergence KL (Qy,z || Py,z) between two hybrid processes {YQ@#),Z Q(t)}tzo,
{YP(t),zF (t)}+>0 with the respective path measures Qy, z, Py, z, we consider discretized versions
of the continuous processes on a regular time grid, ¢t € {0, h, 2h, ..., K - h = T'} for some small h,
and aim to take the limit 4 — O of the resulting expressions.

For the discretized joint paths {Yy, Z; } ke{o,1,...,K}» We can explicitly write down the probability
density functions; we abbreviate y := {yx}rego,1,...k} and z := {2k }reqo,1,...,x} and write
K

q(y.2) = q(yo, 20) [ ] a(m 2k | yr—1, 26-1),
1

=~
Il

=

(y7 ) (yO,ZO) p(yk7zk ‘ yk—lvzk—l)'

~
Il

1
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Inserting both into the KL divergence yields

K
KL(Qy,z [| Py,z) = Z / 4(%o, 20 H q(Yks 2k | Yr—1, 2k-1)
o k=1

cRK

q(Yo, 20) Zl AWk 2k | Ye—15 2k—1) dyo - dyx
P(20,%0) Pk 2k | Yr—1, Zk—1)
J
KL (Qy,; || PV, 2) +Z Z / ( (o, 20) [ [ 2wk 2 | -1, 25-1)
7=1zo,. i=1

1 ks 2 | Yr—1, 20— 1))dyo-~dyx, 29)
(yk,zk|yk 15 Rk— 1)

where we introduced KL (QY. ; || PY. ) for the initial distributions: as detailed in the main paper,
we assume q(y, 2,0) = ¢(z,0)q(y,0 | z) and p(y, z,0) = p(z,0)p(y, 0 | z), which yields

_ q(2,0)q(y,0 | 2)
L@ 118 =3 [ (00400 )1n m iy
q(y,0] 2) 0)
fZ/ (2 0)q(y. 052) n 7 0 )derZ o0 T
:Zq z,0) KL ( |Z||]PY|Z)+KL( ZIIP%). (30)

Any of the K summands from the second term of Eq. (29) can be simplified as

, 2 _1,%
Z /( (Yo, 20) Q(yk72k|yk172k1)> In (v, 2 | Y1, 7 1;dyo - dyk
=1
)
)

p(ykazk | Yk—1,2k—1

cRK

k> 2k | Yk—1, 2k—
= Z /Q(yk,zk | k-1, 2k-1)q(Yr—1, 2k—1) In U 2 | W1, 241 dyk—1dys
z p(y Zk | Yh—1, 21
k—1:%k
— (k| yr—1,21-1) q(2x | 21-1)
= > | aWr 2 | Yr-1, 26-1)q(Ur-1, 26-1) In dyk—1dys
. P(Z/ |yk 15 Rk— 1) (Zk|2k—1)
k—15%k
A\Yk | Yk—1, Bk, Fk—1
= > /Q(ykyzk|yk—1yzk—1)Q(yk—172’k—1) (0 | )dyk—ldyk
- Y o [ 9h—1, 2 211)
k—1:%k
zZ Zle—
+ Z (2 Zl—1 nquk:zk 13. @31
Zk—1,2k k| k=1
Inspecting

Qr, 2 | ye—1, 21-1) = QW | 20, Yk—15 26—1)q(2k | 20-1),

and expanding (2 | zx—1), we find
q(yr | ze—1,Yr-1) if 2z, = 2.1
2y % —1,%k-1) = .
a=: 2 | Y-, 2-1) {q(y;C | 2k, 2k—1, Yk—1)Nz_, 2R +0(R), otherwise.
Recalling Egs. (22) and (23)), we furthermore have
a(Wk | 2k, 201, Yr—1) = 6(yx — yr—1) +0(1),

which can intuitively be understood as the process being continuous, thinking of §(yx — yx—1) as
point-masses located at y;, = yi_1, and hence, keeping only terms linear in h:

_ Q(yk ‘ Zk—l,yk—l) if 2k = Zk—1
Awer 20 | g1, 26-1) = {5(% - ylcfl)Azk,hzkh +o(h), otherwise.
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This yields

J
§ 9 Yk, 2k | Yo—1, Zk—1
/ q(yo, z0) I | A(Yk, 2k | Ye—1,26—1) | In (y |y )dyo e dyk
2K i=1 p(yk,zk | yk*lvzkfl)

q(Wk | Yr—1,2K-1)

= Z /Q(yk | 2e—1, Yk—1)q(Yr—1, 2k—1) In dyg—1dys
ol Pk | Yr—1, 2k-1)
+ Z / (k= Yr—1)Azy s 2 b+ 0(h)) a(yr—1, 2K—1)
Z: 113;5;1@

q(yk | Yk—1, %k, Zk—l)
Pk | Yk—1, 2k, 2k—1)

dyr—1dyx

Because of §(yr — yx—1), the integrand will only contribute for y;, = y_1; however, we also have

In (Y | Ye—1, 2k, 26-1) _ n 6(yr — yr—1) +o(1) 9
Pk | Yk—1, 2k, 21-1) 3(yk — yr—1) +o(1)

Inspecting the other log-fraction, we find

aCur | ye-1,26-1)  exp{—35% 11k — Ye—1 — 9(Yr—1, 2k—1, (k — 1)h) - h||%_,}

Pk | Y1, 2k-1) exp{— o= 1Yk — Yo-1 — f(We-1,26-1, (k — 1)h) - |2 .}
h
= exp {2 MNog(yr—1, 261, (k = D)h) = f(yr—1, 21—1, (k — 1)h)|zb—1}

and hence the ratio does not depend on the time step k but only k£ — 1. We hence can integrate out

2k, Y. Note that the normalizing prefactor (27)%|D|~2 is the same for both distributions and hence
cancels out; if the processes (Q and PP had different dispersions Dg and Dp, this cancellation would
not occur and the KL would diverge [67].

Taking the limit K’ — oo, h — 0 with K - h = T yields an integral expression:

T 1
|3 [ atwz03lltn.2.0 = s 0 aya

1

T
- 5/0 E [I(9(y: 2. t) = f(y, 2, t)l[-1] d.

The second term of Eq. (31)) does not depend on the Y -process and hence is simply the KL divergence
between two MJPs. Its derivation is completely analogous to the one presented above, which is why
we omit the details and refer the interested reader to, e.g., [29]. The KL divergence is found to be

/OTXZ:QZ(Z’t) 3 {A(z,z’,t) (mA(z,z’,t)—1nA(z,z',t))}—(A(z,t)—A(z,t)) at

z'€Z\z

T 3 3 _
:/O E| Y A0 (A2 ) A2 0) ) - Rt - A1) (32)

z'€Z\z

with the variational rates A and the prior rates A as defined in the main text. The full KL divergence
finally reads

1 T
L @z || Pria) = KL(@s | P2+ 5 [ E [Moo26) = £ 2,00

+ Y { 221 (mA(z,z/,t)_1nA(z,z’,t))}—(ix(z,t)—A(z,t)) at. (33)

2'€Z\z
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A.3.2 Derivation of the Constrained Variational Dynamics

The separate dynamic constraints on the variational factors qz(z,t), ¢y (y,t | z) do not in general
ensure the HME to be fulfilled. For meta-stable systems, however, this is a reasonable approximation;
to see this, consider the HME

n

8tQ(y7Z t Zayl {gl Y, z, t) (y,Z t)}

i=1
+35 ZZaULaUJ{DZ]q Y, z, t Z Z %2 t y,Z’,t)’
i=1 j=1 Z’eZ

and insert the structured mean-field approximation ¢(y, z,t) = qz(z,t)qy (y,t | 2):

0q(y, z,t) = O {az (2, t)ay (y,t | 2)}
=qy(y,t] 2)0:qz(2,t) + qz(2,t)0eqy (y, t | 2)

=qz(2,1) Zayl {9:(y. 2, )av (v, t | 2)} + 5 Zzayﬁy]{l%qy(y,t | 2)}

i=1 j=1
Z (2,2, 0)qz(2 gy (y, t | 2') — Az, t)qz (2, )y (y, t | 2). (34)
€2\
Collecting terms, we find
az(z,t) | deav (y,t | 2) + iayi {oi(y, 2, )ay (y,t | 2)} — %iiayﬁy,{myqﬂy,t | 2)}
i=1 i=1j=1
= —av(y,t | 2)0eqz(zt) + Y A2 6)qz(  ay (y,t | 2') — Az, t)qz (2, )ay (y,t | 2).

z'€Z\z
(33)

If we are almost certain to be in state z at time ¢, q(z,t) ~ 1, and the exit rate Az, t) from this state
is small, i.e., the remain time is large and the state is meta-stable, we have

—ay (Wt | 2)daz(z,t) + Y A 2 0)az(2 Oy (.t | 2) = Mz, gz (2, ay (v, t | 2)

z'€Z\z
~ —qy (Y.t | 2)02qz2(2,1) + Az, t)qz (2, t)ay (y, 1 | 2)
= av (4.1 2) (<002 (2, t) + Kz Dz (=), (36)
~0

since we know that the master equation holds (see above). Accordingly, both sides of Eq. have
to vanish, that is, ¢z (z,t) and gy (y,t | z) have to individually follow the master equation and the
FPE. The higher the uncertainty in the mode assignment ¢(z, ), the larger the approximation error;
we expect the approximation to be of high quality in regions where z does not change rapidly. This
is acceptable, since we are genuinely interested in meta-stable systems, which by definition only
sparingly transition between distinct, qualitatively different modes.

A.3.3 Computing the Optimal Variational Distribution

We restate the ELBO L Eq. (10) as well as the full Lagrangian L Eq. (16) utilizing the shorthand
notation g — f = g(y7 Zat) - f(y,z,t)i

T
L= / lo(t) dt, (37)
0
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with

fo(t) = { Ry { (27,01 W}—(Mz,t)—A(z,t))]

z'€Z\z

q(y,2,0) al
—E [m M} 5(t—0) + ; Eay, Inp(z; | )]0t —t,),

and

T
L= /0 () dt,

) = Lo+ Y [AT(20) (ilz, )= (Az, t)p(z, ) + bz, 1))

zZ€EZ
Ftr {\pT(Z,t) (z(z,t) — (A(2,5)5(2,t) + Sz, AT (2,8) + D))}

+ v(z, <(JZZL‘ ZA“ qz (7, t))

z'eZ

where

Stationarity with respect to the Variational MJP The EL equation for ¢ reads

ao o
dt 84z Oqz
With Eq. (@0), we therefore find the components
d ol d
71/(2:7 t)

dt 04z (z,t)  dt
and
o0 alg
0qz(z,t)  0qz(z,t) B

> Az 2 () + Az, v (z,1).

Z'€Z\z
Hence, the EL equation yields

Z Az, 2 (2, t) + Az, t)v(z,t).
2/ €Z\z

ety =
dt aqz (z,1)

Using the law of total expectation
E[o(Y(1), Z(t). )] = Y az (= t)E [$(Y (1), Z(1),t) | Z(t) = 2],

we calculate the gradient of Eq. with respect to gz (z,t) as
8qz(z,t)g(@ =-E [”g - fH2D*1‘Z}

-2
z'€Z\z
N

+ > E [Inp(a; | y:)| 2J6(t — 1)

i

zz!

For linear prior drift functions f(y, z,t) = Ap(2,t)y + bp(2,t), we can calculate E [||g — fHQD_
explicitly. We use A(z,t) := A(z,t) — A,(z,t) and b(2,t) := b(z,t) — b,(z,t) and obtain

E [llg = fllp-112] = tr {A(z, 1) D™ A(2,1)5(, 1)}

+ (A(z, )z, t) +b(2, 1)) "D7L(A(z, t)u(z, ) + b(z, 1)).
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Therefore, the gradient 9, (. +){q reads

Oz (zyla = —tr {A(z,) ' DT A(z, )%(2, )}

7(A(th):u( )+_( ,t))TD 1( (Z t) ( )+B(zjt))

_ Zlezz:\z Azz’(t) <1 AAZZ(/t) —1+v(t) —v(z, t)) + A
N

+ZE [np(w; | yi)| 2]0(t — ).

Due to the delta-contributions (¢ — ¢;), the evolution equation for the Lagrange multiplier v(z, t)
Eq. (17) is an impulsive differential equation [50] which can be solved piece-wise by integrating
the ODE between the discontinuities (starting at v(z, T") = 0) and applying reset conditions at the
integration boundaries, similar to exact posterior inference (c.f. Appendix [A.2.3):

v(z,t;) =E [Inp(z; | yi)| 2] +v(z,t;), (42)
with v(z,t;) = limp~ o v(z,t; — h).

For Gaussian observation noise, we have

1
E [lnp(x; | yi)|z] = ~5 {n1In(27) + In | Xops|

+(ml - :u( ))Tzobs( /J/( )) +tr {EobsZ 2 t }} (43)

Stationarity with respect to the Variational GPs In the same manner as for the variational MJP,
we straightforwardly arrive at

di)\(z,t) = au(z,t)gQ — AT(Z,t)/\(Z,t),
t (44)

%\P(z t) = Os(z0)lg — AT (2,0)U(z,t) — U(z,1)A(2,1).

We find the gradients as

N
Ouzyla = —0u= E [l = FIp ] + D Oty E Inpl(as | 4a)16(t — t3),

i=1

N
3z(z,t)£<@ = *32(“) E [Hg - f||21f)—1} + ZaE(z,t) E [hlp(xi | yi)}é(t - ti)'
i=1
We compute E [||g — f||%_.] for linear prior models as
E [llg = flI5-] = E [(A(z, t)y+b( t))T D™ Az, t)y + b(z,1)]
—Z 2,t) {tr {A(2,t) "D  A(2,1)%(2, 1)}
+ (A2, )u(z,1) + b(z, 1)) T DT (A(z, (=, ) +b(2, 1))} -
Using the Gaussian observation likelihoods we arrive at

Ouzylo = —qZ(z t) (A(z, )T D7 A(z, (2, t) + fl(z,t)TDfll_)(z,t))

+Zqzzt ons (@i = (2, 1)) 3 (E — 1),
N

1 _ -
aE(z,t)‘gQ = _iqZ(th)AT(Zvt)D_lA(th) - Zq( ) Eobi(s( )

i=1
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The solutions to these impulsive differential equations are found as for the Lagrange multiplier v(z, t),
with reset conditions

A(Z7ti) = qZ(Z’ti)E;t}s(xi - u(z, ti)) + )‘(Z’tz_)

1__
\IJ(Z,ti) = —qZ(z,ti)iilobls

+ (2 t7),

with A(z,¢; ) := limpn o A(2,t; — h) and ¥(z,t;) = limp~ o U(2,t; — h).

Note that the Lagrange multiplier equations scale as O (n2 |Z \) (as there have to be carried out
| Z| matrix-vector multiplications of size n) and O (% |2 \) (as due to the symmetry of ¥, only

the upper diagonal has to be propagated). The same holds for the forward equations Eq. (15), while
the master equation Eq. (4) scales quadratically in | Z|.

A.3.4 The Optimal Variational Parameters

To optimize the variational parameters, we employ a heuristic back-tracking line search algorithm, as
is standard in the field [55]: we choose as step size x; = 7", where the exponential decay factor is
chosen as v = 0.5. We therefore update the current parameter u(t) € {A,b, A} as

Unew () = u(t) + ki - Oy L.

If Llunew(t)] > L[u(t)], we accept the update. Otherwise, we iterate and re-compute using the new
step size K4 1.

Gradients for A(z,t),b(z,t), A We provide here the explicit gradients with respect to the varia-
tional parameters. We have

Oatel = =50 E [lg = FI%-] = XT (2 Oz, 0) = 20(2,08(z.1)
= —a2( 0D (A D)l O (218) + £(20) + Bz O (2,1)

45)
AT (z, )z, t) — 2U(2,)8(z, t).
Similarly, we find
1
Oy L = _abq(z,t)§ Ellg— flIp] — Az, t)
= —qz(z,) D7 (A(z,t)u(z, 1) +b(2, 1)) — A(2,1). (46)
Finally,
~ Az, 2/t ~
8/‘\“,@)[* = _8]\”/(15) Z {A(Z, Z/a t) In M} - (A(Z7 t) - A(Z7 t))
z'€Z\z T
+v(z,t)qz(z,t) — v(2' t)qz(2,t)
=qz(z,1) <— In A/Z\Zi/(t) +v(z,t) — 1/(2’,75)) . 47)

Variational Initial Conditions The gradients with respect to the initial conditions result from
Pontryagin’s maximum principle [49, 55] as

Op(z,00L = 02,00 KL (Q%)/,ZHP(}J’,Z) +A(z,0) =0,
ds 2,0/ L = O5(z,0) KL (QY. 4 |[PY. ) + ¥(2,0) = 0, (48)
aqz(z,O)L = 8qz(z,0) KL (QOKZHP?/,Z) +v(z, 0) =0.

While in principle, one could use these expressions to find closed-form solutions for the initial
parameters, this is not possible in practice for 3(z,0) and gz (z,0). Also, resetting the parameters
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may cause numerical instabilities in the forward-backward sweeping algorithm for the constraints
and the Lagrange multipliers, cf. Section 3. We hence utilize the same gradient ascent update scheme
as above.

We assume a Gaussian prior initial distribution, i.e. p(y,0 | z) = N(y | p9(z),%5(2)), and for

the presented variational ansatz we have an initial variational distribution q(y,0 | 2) = N (y |
1(z,0),%(z,0)), which is also Gaussian. This yields

KL (@Y7 l| PY12) = KL Wy | (2, 0), (= )|V (y | 13(2), 5(2)
L[] _
=5 {ln 502 0)] +tr (E9(2)7'%5(z,0))
+ (1D(2) = p(2,0)) Z0(2) 7" (b (2) = p(=,0)) "+

We readily compute

pu(=,0) KL (QY. £IPY, 2) = 4z (2, 0)Z5(2) " (u(2, 0) — i (2)),

49)
aqz(z,O) KL( (lJ/,ZHIP(l)/, ) qz(z 0) {KL QO |PO }+KL QY\Z||PY|Z)

For the covariance matrix ¥(z,0) and the initial distribution ¢z (z,0), we require additional con-
straints. The covariance 3(z,0) needs to be positive semi-definite, which can be enforced by a
reparameterization as Y(z,0) = CC'T. We calculate the gradient with respect to the objective

Lang(C) = (2,0) {KL (N (y | u(2,0), CCT)[IN(y | py(2), Zp(2))} + tr (¥(2,0)'CCT)
and the PyTorch package for automatic differentiation and optimization [A2].

The initial distribution ¢z (2, t) needs to fulfil >~ ¢z(z,0) = 1, so we optimize an augmented cost
function

Laug( %,€) = KL (Q%|P%) +Z‘JZ z,0) KL(QY|Z”PY|Z)
—I—Zl/ 2,0)qz(2,0) + ¢ 1—Zqz z,0))

where £(z) are Lagrange multipliers. We can again eliminate the constraints by enforcing a reparame-

terization [A3] as qz(z,0) = . forz € {1,...,k — 1}, with k = |Z| and ¢z (k,0) = 1 — X *_1 ¢.,
which yields the unconstrained problem

k-t Zk—l q
Long(q1s- -+ qr—1) ZZqzln Zqz kiz())lz
z=1 p
k—1 k—1

+

(]

q- KL (Q%Z:ZHP%Z:Z) +(1- Z‘Jz) KL (Q%\Z:kHPgﬂZ:k)

z=1 z=1
k-1 k—1
+ Z/(Z,O)qz JFV(kvO)(l *ZQZ)'
z=1 z=1
We find
qz - Z 1 q-
0,. L =1 1—-In—=2=4— 1
wboe =W LC0) T U p(k, 0)
+ KL (QY\Z z||]PY|Z .) — KL (Q())/|Z:k”P(})’\Z:k) +v(2,0) — v(k,0) (50)
q.p(k,0)

1= S g, 0)
+ KL (QY 7 [PV z2.) — KL QY 5 [Py ,—) + (2, 0) — v(k, 0).
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Ap prior slope

by _ prior intercept
A, prior transitions rates
Ylobs observation covariance

D Dispersion matrix

tp(2,0),X,(2,0),p(z,0) | Prior initial conditions
Table 1: Model parameters learned via VEM

A.3.5 Optimizing the Prior Parameters

The parameters of the original process p, see Table[T] can be learned straightforwardly by optimizing
the full Lagrangian Eq. (16) with respect to them.

Prior MJP transition rates With the usual shorthand A,/ (t) = A(z, 2/, ), we compute the prior
transition rates (Whlch we in all cases assume to be time-homogeneous, A,/ (t) = A,,/):

a i T / Zqz 2 3 {]\Zz'(t)lnAj\jz(/t)}—(A(Zat)—A(Z))dt (51)

' €Z\z
=3 A” Zqz () | 3 {Aer @A — Ao } | at (52)
z 2'€Z\z
T R T
= A qZ(i,t)Aij(t>dt—/ qZ(i,t)dt. (53)
ij 0

Setting this to zero yields
T R
Jo az(i,t)Ay;(t)dt

Ay = 54
I gz i, t)dt
Observation covariance To determine the observation covariance, we compute
OL
= Inp(x; | y; 55
82obls 82obls [Z p |y ‘| ( )
= == Tobs + Z > az(zt) (w0 — plz,t) (@ — p(z, )T +5(z,4)], - (56)
=1 ZGZ
yielding
Yobs = Z Z qz(z,t;) — (2, ) (@ — (2, t)) T+ (2, 8)] - (57)
i=1z2€Z

Dispersion We update the dispersion in the same way as the variational parameters (c.f. Ap-
pendix |A.3.4) and provide the gradient with respect to the dispersion D; note that the more general
mode-dependent dispersion D(z) are found in the same way by omitting the summation over z.

e ) T .
8DL=8D§/ E [||g—f\|D,1]dt+aDZ/ tr {¥' (2,t)D}dt

/8DE llg — fHD1dt+/ Z\IJzt

zZEZ
b ( / S 4z (2, ) EI(A(2, t>y+b><A<z,t>y+b>T|z]) DT 5®)
z€EZ
/Z\IJzt

zZEZ
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Note that the prior initial conditions i (z), £9(2), p(z, 0) trivially minimize their KL divergence to
the variational initial conditions by equality.

Prior drift parameters Also the prior parameters A, b, are learned utilizing VEM, see Ap-
pendix [A.3.4] The gradients are found as

1 T
aAP(z)LzaAp(z)if E [||g_fH2D*1] de 59)
0
1 (7 _ _
_ 5/ 4(2, )04, ) {tr {A(z,8) T DV A(z, )5 (2, 1)}
0

T
_ —/0 02(2,1) (D7 A(2,1) (S(2,1) + e O (2, 8)) + D Y0(z, ) (,1)) dt,

1 T
8bp(z)L = 8bp(z)§/0 E [Hg — f||2D*1} dt (60)

T
_ /0 (2 0D~ (A2, Dz, 1) + bz, )

B Experiments

B.1 Model Validation on Ground-Truth Data

A comprehensive overview over the ground-truth and learned parameters is given in Table 2] We
model the dispersion as constant, D(z,¢) = D and the underlying prior MJP as time-homogeneous,
A(z,2',t) = A(z,2’). The prior drift function reads f(y,z,t) = a,(8, — y). We will use this
parameterization in the following; to convert between this and the hitherto used f(y, z,t) = A, (2)y+
by(z), use

Ap(z) = —a,

61
by(2) = .. D)

We draw the observation times from a Poisson point process with intensity % = 0.35, meaning that
the average inter-observation interval is 0.35.

We initialize our model empirically by running a k-means algorithm with £ = 2 [10] on the observed
data. Note that we utilize this procedure for all experiments. The initial prior means and covariances,
tp(z,0) and X,(z,0), are then set as the cluster means and intra-cluster covariances. The prior
intercept by, (z) is set in the same way. The initial observation covariance ¥ as well as the dispersion
D are both set as the average of the intra-cluster covariances. We can not easily initialize the prior
rates A and the prior slope A, (z) empirically. We set

(14

and A,(z) = {—1,—1}. The initial prior p(z,0) is initialized uniformly. The corresponding
variational quantities such as A(z, t), are initialized as constant functions on the initial value, e.g.,

A(z,t) = A, (2) Vt.

We generate samples from the variational posterior to demonstrate the quality of the latent trajectory

reconstruction, see Fig. @ To sample from the posterior MJP with time-inhomogeneous rates A, we
utilize the thinning algorithm [A4].

We show the trajectory of the ELBO over VI iteration in Fig. [/} Furthermore, we demonstrate in
Fig.[7how the framework performs if the requirement of a separation of time-scales is not met. Here,
the relaxation of the continuous process is slow compared to the switching process; in other words,
a switch in the discrete process is not directly reflected in the continuous state. In this setting, an
accurate reconstruction of the latent process is not possible utilizing the variational approximation.
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Parameter

Ground truth value

Learned value

o
B
A

Eobs
D
tp(2,0)
EP(Za O)
p(2,0)

[1.5,1.5]
-0.2 0.2
(0.2 0.2)
0.1
0.25
[—1,+1]
[0.2,0.2]
0.1]

[1.04,0.97]
[—0.52,0.70]
~0.68 0.68
0.60 —0.60
0.21
0.15

[—0.52,1.23]
[0.26,0.03]

[0,1]

Table 2: Ground truth and learned parameters of the 1D, two-mode hybrid process.

NN

M

0.0 2.5 5.0 7.5

Time

Figure 6: 1D, two-mode hybrid process. Left: posterior samples from the variational distribution
(gray) and the latent ground-truth trajectory (blue). Right: Same plot as Fig. 2 A in the main paper,

10.0 1255 15.0 17.5 20.0

0.0

2.5 5‘0 7.5

Time

but with both individual modes (red and green) resolved over the complete time span.

1 2 3 4
Time

Figure 7: 1D, two-mode hybrid process. Left: value of the ELBO over iterations for the experiment
shown in the main paper. Right: Failure of the method when no separation of time scales between the

discrete and the continuous process is present.
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Parameter

Learned value

.
B

A

T

Hp 70)
Ep(2,0)
p(2,0)

[1.11,0.94, 0.99, 0.99]
[0.79, —0.27,0.25, —0.69]

-0.69 0.14 048 0.07
0.07 —-1.39 045 0.87
1.11 087 =233 0.35
0.04 144  0.50 —1.98

0.015,0.001,0.003, 0.01]

0.99, -0.24,0.25, —0.69)]

[0.002,0.009, 0.014, 0.025]
0.92,0,0.007, 0.073]

Table 3: Learned parameters of the 1D diffusion in a 4-well potential.

Parameter Learned value
0.91 —0.03 1.07 0.04\ [1.01 —0.04
e <0.05 1.02)’(0.09 0.99)’(0.02 1.05)
5 (1.08) (—0.78 (0.02)
z 0.28 )° \—-0.17/)> \1.10
—0.75 029 0.46
A (0.26 —0.75 0.49)
0.80 0.77 —1.57
D (0.048 —0.003) (0.088 —0.035) (0.077 —0.004)
—0.003  0.077 ) —0.035 0.092 )> \—0.004 0.040
1.18\ [/—0.41 —0.54
fip(2,0) 0.11)° \ =0.01)> \ 0.03
5 (2,0) <0.263 0.058> (0.029 0.002 (0.090 0.002)
pL<s 0.058 0.269/°10.002 0.030 /> \0.002 0.090
p(z,0) [0.021,0.173,0.81]

Table 4: Learned parameters of the 2D diffusion in a 3-well potential.

B.2 Diffusions in Multi-Well Potentials

The one-dimensional 4-well potential is given as

Vi(y) =4 (y8 + 36780 1 2 5780(y=0-5)%) 4 o 56—80(y+0.5)2)) ,

the two-dimensional 3-well potential reads

V(y1,yo) = 3e Vi~ (12=3)" _ 3, ¥i—(12-3)" _ 5o—(n1—-1)*~y3

(62)

4
1
_ 56—(y1+1)2—y§ + O.2y‘11 +0.2 (y2 — 3) . (63)

In the 1D example, we fix the observation covariance as Y5 = 0.0225. We provide the list of all

learned parameters in Table In the 2D example, we fix Yops = 0

parameters is given in Table[d] The initialization is done as in Appendix

B.3 Switching Ion Channel Data

0.2

0 .
02 the exhaustive list of

The experimental data have been obtained using a voltage of 140 mV and a sampling frequency of
5 kHz over a measurement period of 1s. We fix the observation noise to v/>ops = ops = 0.25 fA.
The full list of parameters is given in Table 5] Initialization is done as in Appendix [B.T] but with

A, . =100 for z # 2.
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Parameter Learned value
o [1,1,1]
B [6.2-10712,4.4-10714,3.8 - 10712
—13.01 286  10.15
A <11.58 —30.16 18.58)
44.33  23.35 —67.68
D [0.015,0.001,0.003, 0.01]
pp(2,0) | [6.2-1071%4.4-1071,3.8- 1071
¥p(2,0) | [2.9-10713,3.7-10713,6.1- 10713
p(2,0) [1,0,0]

Table 5: Learned parameters for ion channel data.

Parameter Ground truth value Learned value
0.6 —1.4 —0.1 14 0.41 —0.83 —0.45 1.49
@ <2.6 0.6>’(—2.6 O.6> <1.04 —0.01)’(—1.95 O.38>
5 (—5) (5) (—6.00) (5.85)
z 0 /)°\o -1.79 )\ =2.20
A (0.3 0.3 —0.17 0.17
0.3,-0.3 0.23,-0.23
D 049 0 0.87 0.06
0 0.49 0.06 1.46
-5\ (5 —5.38\ [5.67
f1p(2,0) 0 ) \o —0.42)° \ 1.40
$ (2,0) <0.49 0 > <0.49 0 ) (6.63 1.24> (0.001 0.0003)
P 0 049)°\ 0 0.49 1.24 16.00) > \0.0003 0.001
p(Z, O) [Ov 1] [07 1]

Table 6: Ground-truth and learned parameters of the complex structured 2D switching diffusion.

B.4 Learning Complex Latent Continuous Dynamics

Here, observations are drawn from a Poisson point process as in Appendix with intensity A = 14.
The ground-truth and learned parameters are summarized in Table [6] Initialization is done as in

Appendix [B.T]
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