
Appendix

A Extended Version and Proofs of Section 3

Within the main text, we covered two different types of witnesses for single players relations. In this
section, we show that whenever a relation between single players can be proven from observable duels
in our setting, there exists at least one type of witness for it. For the convince of the reader, we recall
the definitions mentioned in the main text in a comprehensive manner, provide more explanations
and some examples.

Possible witnesses For two players a and b we define Sa,b as the set of pairs of disjoint k − 1 sized
subsets of players from [n] \ {a, b}, i.e.,

Sa,b = {(S, S′) | S, S′ ⊆ [n] \ {a, b}, S ∩ S′ = ∅, |S| = |S′| = k − 1},

and Ta,b as the set of disjoint k − 1 sized subset S and a team T pair from [n] \ {a, b}, i.e.,

Ta,b = {(S, T ) | S, T ⊆ [n] \ {a, b}, S ∩ T = ∅, |S| = k − 1, |T | = k}.
Definition A.1 (Witnesses and witnesses sets). A witness for a ≻ b is one of the following types: (i)
Subsets: A pair of disjoint subsets (S, S′) ∈ Sa,b such that

P{a}∪S,{b}∪S′ > P{b}∪S≻{a}∪S′ .

We denote the set of all subsets witnesses for a ≻ b by S∗a,b.
(ii) Subset-Team: (S, T ) ∈ Ta,b, such that

P{a}∪S,T > P{b}∪S,T .

We denote the set of all subset-team witnesses for a ≻ b by T ∗
a,b.

In case we find a witness, we can use it to infer over players relations as follows.
Lemma A.2. If S∗a,b ∪ T ∗

a,b ̸= ∅, then a ≻ b.

Proof. First, consider the existence of (S, S′) ∈ S∗a,b.
Hence

(∗) PS∪{a},S′∪{b} > PS∪{b},S′∪{a}

Assume for contradiction that b ≻ a. Consistency implies S∪{b} ≻ S∪{a} and S′∪{b} ≻ S′∪{a}.
Adding up the two implications from the witness definition and SST, we have

PS∪{a},S′∪{b} >(∗) PS∪{b},S′∪{a} >b≻a PS∪{a},S′∪{a} >b≻a PS∪{a},S′∪{b},

Which is a contradiction.

Now, consider the existence of (S, T ) ∈ T ∗
a,b. We have that

(∗∗) PS∪{a},T > PS∪{b},T

Assume for contradiction that b ≻ a. Consistency implies S ∪ {b} ≻ S ∪ {a}.
PS∪{b},T >b≻a PS∪{a},T >(∗∗) PS∪{b},T ,

Which is a contradiction.

Note that while the above lemma implies a sufficient condition for a ≻ b, there is no guarantee
that for every a ≻ b there exists a witness that proves it, in the form of disjoint subsets. For
example, consider a lexicographical order among teams with n = 4, k = 2 (i.e., {1, 2} ≻ {1, 3} ≻
{1, 4} ≻ {2, 3} ≻ {2, 4} ≻ {3, 4}) with uniform noise, e.g. when PA,B = 0.6 for all teams
A ≻ B. It follows from consistency and {1, 2} ≻ {2, 3} that 1 ≻ 3, but there is no witness for
that. Moreover, even if we execute each of the three feasible duels enough to estimate correctly that
P12,34 = P13,24 = P14,23 = 0.6 there is no way to distinguish between the second and third best
players. In what follows we formalize this intuition, showing that if a players relation is provable
then one of the aforementioned witnesses types exists for it.

Next, we recall the Observable relation and the set Cobs.

13



Observable relation Let ≻obs denote the relation between every two disjoint teams, i.e.,

A ≻obs B ⇐⇒ A ≻ B, |A| = |B| = k, A ∩B = ∅, A,B ⊆ [n].

Namely the relation ≻obs is deducible from valid duels 8.

In what follows, we elaborate more on the definition of Cobs by defining first a set for Compatible
winning probabilities.

Compatible winning probabilities Let Pobs be the set of all tuples (P ′,≻′), where P ′ are the
winning probability matrices for teams, i.e., P ′ = (P ′

A,B)|A|=|B|=k,A,B∈[n] ∈ [0, 1](
n
k) × [0, 1](

n
k),

and ≻′ is a consistent total order on the teams such that:

1. For every pair of disjoint teams (A,B) the winning probability matrix P ′ has the same
winning probability as the ground truth P , i.e., A ∩B = ∅ implies P ′

A,B = PA,B .

2. It holds that P ′
A,B = 1/2 iff A = B.

3. P ′
A,B > 1/2 if and only if A ≻′ B.

4. P ′ satisfies SST w.r.t. ≻′.

Namely, Pobs contains all tuples (P ′,≻′) that are compatible to our assumptions and do not contradict
the winning probabilities the learner can observe.

Compatible relations Let Cobs be the set of all total orders ≻′ for which there exists (P ′,≻′) ∈
Pobs. Notice that by the definition of Pobs, we know that ≻′ satisfy consistency and in particular it
holds that A ≻′ B for every disjoint teams (A,B) with A ≻obs B. Namely, Cobs is the sets of all
possible total orders that could explain the results of the observable duels.

We remark that it follows directly from the definition of Pobs that (P,≻) ∈ Pobs, where P is the
ground truth winning probability matrix and ≻ the ground truth total order. Because of this, it also
holds that ≻ is in Cobs. To illustrate that ≻ is typically not the only total order in Cobs, we provide the
following example.
Example A.3. For n = 5, k = 2, consider the lexicographic order , i.e., {1, 2} ≻ {1, 3} ≻ {1, 4} ≻
{1, 5} ≻ {2, 3} ≻ {2, 4} ≻ {2, 5} ≻ {3, 4} ≻ {3, 5} ≻ {4, 5} and assume PA,B = 0.6 iff A ≻ B
(equivalently PA,B = 0.4 iff B ≻ A). Then, we have that

A ≻obs B ⇐⇒
{
1 ∈ A, or
1 /∈ A ∪B, 2 ∈ A.

While ≻∈ Cobs, there are other consistent total orders in Cobs, such as {1, 2} ≻′ {1, 5} ≻′ {1, 4} ≻′

{1, 3} ≻′ {2, 5} ≻′ {2, 4} ≻′ {2, 3} ≻′ {5, 4} ≻′ {5, 3} ≻′ {4, 3} (the order ≻′ is obtained by
swapping players 3 and 5 in ≻). Similarly, the probability matrices PA,B = 0.6 for all A ≻ B, (the
ground truth), but P 1

A,B = 0.7 ∀ A ≻ B and P 2
A,B = 0.6 ∀ A ≻′ B are also in P.

We now recall the definition of the deducible relation, ≻∗ for both teams and single players, where
the latter definition is a combination of the former and single players consistency.

The intuition behind these definitions is that a relation can be deducible (proven) by team duels if any
“reasonable” total order that could possibly be the ground order agree on this relation. We stress that
both Pobs and Cobs are strictly for analysis, as we do not need to explicitly calculate them.

In what follows, we formalize the notion of the deducible part of the ground truth ≻, i.e., the relations
of ≻ that can be deduced by the learner, if it were given infinite access to duels.
Definition A.4. Team A is deducibly better than a different team B, denoted by A ≻∗ B, if A ≻′ B
for all ≻′∈ Cobs.
Definition A.5. Player a is deducibly better than player b, denoted by a ≻∗ b, if there exists a subset
S ⊆ [n] \ {a, b}, |S| = k − 1 such that {a} ∪ S ≻′ {b} ∪ S for all ≻′∈ Cobs.

8Notice that technically, ≻obs is not defined on pairs of different teams which are not disjoint, and therefore
not even a partial order on teams (e.g., we have that {a, b} ≻obs {c, d} ≻obs {a, e} but {a, b} ⊁obs {a, e} as
they share a player and the duel ({a, b}, {a, e}) is not observable.).

14



We continue with an example for relations that ≻∗ must satisfy. Suppose the learner has observed
that {a, c} ≻obs {b, d} ≻obs {a, e} ≻obs {c, d}. Since all the relations ≻∈ Cobs satisfy transitivity, it
follows that {b, d} ≻∗ {c, d}, {a, c} ≻∗ {a, e}, and {a, c} ≻∗ {c, d}. As each ≻ Cobs also satisfies
single players consistency, we deduce b ≻∗ c, c ≻∗ e and a ≻∗ d, respectively. Applying single
players consistency again, we can get, for example, {a, b} ≻∗ {a, c} ≻∗ {a, e} ≻∗ {d, e} (using
b ≻∗ c, c ≻∗ e and a ≻∗ d, respectively). Intuitively, what we will show in Theorem 3.2 is that for
every pair of players that one is provably better than the another there exists a witness for it, thus there
is a short proof with which the learner can verify their relation with O(1) queries in the deterministic
case. Before we start proving the Theorem 3.2 we prove the following helpful lemma.
Lemma A.6. Let ≻∈ Cobs and P be a corresponding probability matrix satisfying SST.

Let a, b ∈ [n] with a ≻ b. Then, the following holds true:

1. Let (S, S′) ∈ Sa,b, then P{a}∪S,{b}∪S′ ≥ P{b}∪S,{a}∪S′ .

2. Let (S, T ) ∈ Ta,b, then P{a}∪S,T ≥ P{b}∪S,T .

Proof. 1. We start by proving that for every (S, S′) ∈ Sa,b it holds that

P{a}∪S,{b}∪S′ ≥ P{b}∪S,{a}∪S′

by exhaustion.

(a) If S ∪ {a} ≻ S′ ∪ {b} and S′ ∪ {a} ≻ S ∪ {b} then it follows that 1/2 <
P{a}∪S,{b}∪S′ , P{a}∪S′,{b}∪S and therefore

P{a}∪S,{b}∪S′ > 1/2 > 1− P{a}∪S′,{b}∪S = P{b}∪S,{a}∪S′ .

(b) If (a) does not hold, then it follows that either of the following holds true:

(i) {b} ∪ S ≻ {a} ∪ S′ (and {a} ∪ S ≻ {b} ∪ S′ as b ⊁ a).
From single players consistency of ≻ we have that

{a} ∪ S ≻ {b} ∪ S ≻ {a} ∪ S′ ≻ {b} ∪ S′

Applying SST, we have that

P{a}∪S,{b}∪S′ ≥ P{a}∪S,{a}∪S′ ≥ P{b}∪S,{a}∪S′ .

(ii) {b} ∪ S′ ≻ {a} ∪ S (and {a} ∪ S′ ≻ {b} ∪ S as b ⊁ a).
From consistency, we have that

{a} ∪ S′ ≻ {b} ∪ S′ ≻ {a} ∪ S ≻ {b} ∪ S

Applying SST, we have that

P{a}∪S′,{b}∪S ≥ P{a}∪S′,{a}∪S ≥ P{b}∪S′,{a}∪S .

Therefore
1− P{b}∪S′,{a}∪S ≥ 1− P{a}∪S′,{b}∪S .

Applying PA,B = 1− PB,A for every A,B ∈ [n],

P{a}∪S,{b}∪S′ ≥ P{b}∪S,{a}∪S′ .

(iii) The case that {b} ∪ S′ ≻ {a} ∪ S and {b} ∪ S′ ≻ {a} ∪ S cannot hold as it would
imply b ≻ a which is a contradiction to a ≻ b, as ≻ being a consistent total order
yields a total order on players.

2. Strict total order on teams together with consistency implies that either of the following holds: (a)
{a} ∪ S ≻ {b} ∪ S ≻ T , (b){a} ∪ S ≻ T ≻ {b} ∪ S, or (c) T ≻ {a} ∪ S ≻ {b} ∪ S. Applying
SST on (a) and (c) proves the claim, and if (b) holds we have

P{a}∪S,T > 1/2 > P{b}∪S,T .

15



We note that the left to right direction in the following sentence is very similar to Lemma A.2 and
their proofs are equivalent, however for completeness we provide a full proof here as well.

Theorem 3.2. Let a, b ∈ [n]. Then, a ≻∗ b if and only if S∗a,b ∪ T ∗
a,b ̸= ∅.

Proof. We start with the direction from right to left, i.e., S∗a,b ∪ T ∗
a,b ̸= ∅ implies a ≻∗ b.

First, consider (S, S′) ∈ S∗a,b and assume for contradiction that a ≻∗ b does not hold. That is, there
exists ≻′∈ Cobs and P ′ ∈ Pobs such that b ≻′ a, and P ′ is a corresponding winning probability
matrix.

By Lemma A.6 and the definition of Pobs it follows that

PS∪{b},S′∪{a} = P ′
S∪{b},S′∪{a} ≥ P ′

S∪{a},S′∪{b} = PS∪{a},S′∪{b}

holds, as the teams are disjoint. This is a contradiction to (S, S′) ∈ S∗a,b.

Similarly, let (S, T ) ∈ T ∗
a,b and assume for contradiction that a ≻∗ b does not hold. That is, there

exists ≻′∈ Cobs and P ′ ∈ Pobs such that b ≻′ a, and P ′ is a corresponding winning probability
matrix. By Lemma A.6 and the definition of Pobs it follows that

PS∪{b},T = P ′
S∪{b},T ≥ P ′

S∪{a},T = PS∪{a},T

holds, as the teams are disjoint. This is a contradiction to (S, T ) ∈ T ∗
a,b.

We turn to the direction from left to right, i.e. that a ≻∗ b yields S∗
a,b ∪T ∗

a,b ̸= ∅. We start by defining
Da as the set of observable duels (A,B) such that a ∈ A. Moreover, we define a permutation π on
the set of players, which simply exchanges the players a and b when present. More precisely,

π(S) =


S \ {a} ∪ {b} if a ∈ S, b ̸∈ S

S \ {b} ∪ {a} if b ∈ S, a ̸∈ S

S else.

We claim that a ≻∗ b implies

PA,B ≥ Pπ(A),π(B) for all (A,B) ∈ Da (2)

(P is the ground truth winning probability matrix). To see why, we first define

D1
a = {(A,B) ∈ Da | b ∈ A}
D2

a = {(A,B) ∈ Da | b ∈ B}
D3

a = {(A,B) ∈ Da | b /∈ A ∪B}.

Notice that

Da = D1
a ∪ D2

a ∪ D3
a (3)

When (A,B) ∈ D1
a, then (π(A), π(B)) = (A,B) and PA,B = Pπ(A),π(B).

When (A,B) ∈ D2
a, then (A \ {a}, B \ {b}) ∈ Sa,b, and PA,B ≥ PA\{a}∪{b},B\{b}∪{a} =

Pπ(A),π(B) follows from Lemma A.6.

Similarly, when (A,B) ∈ D3
a then (A \ {a}, B) ∈ Ta,b and PA,B ≥ PA\{a}∪{b},B = Pπ(A),π(B)

follows from Lemma A.6.

We will now show that a ≻∗ b implies the existence of (A,B) ∈ Da with PA,B > Pπ(A),π(B).

Assume not. Then in particular from (2) we have that PA,B = Pπ(A),π(B) holds for all (A,B) ∈ Da.

Claim. Let ≻′ be the relation defined by A ≻′ B iff π(A) ≻ π(B) with the corresponding winning
probabilities defined by P ′

A,B = Pπ(A),π(B). If PA,B = Pπ(A),π(B) for every (A,B) ∈ Da then
P ′ ∈ Pobs and thus ≻′∈ Cobs.

16



Proof. Observe that PA,B = P ′
A,B for all disjoint teams A and B follows by definition. In addition,

since π is invertible and involuntary, for every team A there exists a team Aπ such that π(Aπ) = A
hence PA,A = PAπ,Aπ

= 1/2. It remains to show that (1) Every pair of different teams A,B holds
P ′
A,B > 1/2 iff A ≻′ B, (2) that ≻′ is a total ordering satisfying single players consistency, and (3)

that P ′ satisfy SST w.r.t. ≻′.

(1) Let A,B be two different teams. It follows by the assumption over P that P ′
A,B = Pπ(A),π(B) >

1/2, iff π(A) ≻ π(B), which holds iff A ≻′ B by definition.

(2) We now show that ≻′ is a strict total order. From it’s definition we have that ≻′ is irreflexive. We
also have that ≻′ is connected (and therefore strict) as π is invertible and involutory, and every pair of
different teams A,B holds either A ≻′ B (if π−1(A) = π(A) ≻ π(B) = π−1(B)) or B ≻′ A (if
π−1(B) = π(B) ≻ π(A) = π−1(A)), but not both. For transitivity, Consider a triplet of different
teams, A,B,C such that A ≻′ B ≻′ C (and therefore π−1(A) = π(A) ≻ π−1(B) = π(B) ≻
π−1(C) = π(C)). From transitivity of ≻, we get π−1(A) = π(A) ≻ π(C) = π−1(C) which
implies A ≻′ C. Hence the relation ≻′ is a strict total order.

We continue by showing that ≻′ satisfies single players consistency.
Let x, y ∈ [n] be a pair of players and S ∈ [n] \ {x, y} be a set of players such that x ∪ S ≻′ y ∪ S.
We will show that {x} ∪ S′ ≻′ {y} ∪ S′ for all S′ ∈ [n] \ {x, y}.
Since π is invertible, we know that there exist players xπ = π(x) and yπ = π(y), and a set,
Sπ = π(S) ∈ [n] \ {xπ, yπ},such that

{x} ∪ S = π−1({xπ} ∪ Sπ)

and
{y} ∪ S = π−1({yπ} ∪ Sπ).

From the definition of ≻′, we get

{xπ} ∪ Sπ ≻ {yπ} ∪ Sπ.

Therefore from the consistency of ≻ every S′
π ∈ [n] \ {xπ, yπ} holds {xπ}∪S′

π ≻ {yπ}∪S′
π hence

by definition {x} ∪ S′ ≻′ {y} ∪ S′.

(3) We now show that P ′ satisfy SST w.r.t. ≻′. Let A ≻′ B ≻′ C. From the definition of ≻′ we have
that π−1(A) = π(A) ≻ π−1(B) = π(B) ≻ π−1(C) = π(C). As P satisfy SST w.r.t. ≻,

Pπ(A),π(C) ≥ max{Pπ(A),π(B), Pπ(B),π(C)}

Once again from the definition of ≻′,

P ′
A,C ≥ max{P ′

A,B , P
′
B,C},

Which means that P ′ satisfy SST w.r.t. ≻′ by definition.

Now, observe that, together with the above claim, a ≻∗ b imply that for any S ⊆ [n] \ {a, b} of
size k − 1 it holds that S ∪ {a} ≻∗ S ∪ {b} which implies (i) S ∪ {a} ≻ S ∪ {b} as well as
(ii) S∪{a} ≻′ S∪{b}, as both≻ and≻′ are in Cobs. Applying the definitions of≻′ and π, statement
(ii) implies π−1(S ∪ {a}) = π(S ∪ {a}) ≻ π(S ∪ {b}) = π−1(S ∪ {b}) which is equivalent to
S ∪ {b} ≻ S ∪ {a} and hence yields a contradiction to (i).

We therefore deduce the existence of (A,B) ∈ Da such that PA,B > Pπ(A),π(B). From (3),
either (A,B) ∈ D2

a, thus (A \ {a}, B \ {b}) ∈ Sa,b, and PA,B > PA\{a}∪{b},B\{b}∪{a} =

Pπ(A),π(B) yields (A \ {a}, B \ {b}) ∈ S∗a,b, or (A,B) ∈ D3
a, thus (A \ {a}, B) ∈ Ta,b and

PA,B > PA\{a}∪{b},B = Pπ(A),π(B) implies (A \ {a}, B) ∈ T ∗
a,b (As (A,B) ∈ D1

a, implies
Pπ(A),π(B) = PA,B > PA,B which is a contradiction.). Overall, S∗a,b ∪ T ∗

a,b ̸= ∅.

B Extended Version and Proofs of Section 4

We start by splitting the definition of Xa,b(S, S
′, T ) into two random variables, according to the two

types of witnesses we introduced in the previous section. This will simplify the proof of Lemma 4.2.

17



For (S, S′) ∈ Sa,b we introduce a random variable Za,b(S, S
′) that combines the outcomes of the

two duels obtained from the potential subsets witness (S, S′), namely (S ∪ {a}, S′ ∪ {b}) and
(S′ ∪ {a}, S ∪ {b}) and similarly, a random variable Ya,b(S, T ) that combines the outcomes of the
two duels obtained by subset-team witness, (S ∪ {a}, T ) and (T, S ∪ {b}).
Definition B.1. For a, b ∈ [n], a ̸= b, (S, S′) ∈ Sa,b and (S, T ) ∈ Ta,b,

Za,b(S, S
′) =

1[(S ∪ {a} > S′ ∪ {b})]
2

+
1[(S′ ∪ {a} > S ∪ {b})]

2
,

Ya,b(S, T ) =
1[{a} ∪ S > T ]

2
+
1[T > {b} ∪ S]

2
.

We note that both Za,b(S, S
′) and Ya,b(S, T ) can take values in {0, 1/2, 1}.

The random variables Za,b and Ya,b are the outcomes of picking random pairs, (S, S′) ∈ Ta,b or
(S, T ) ∈ Sa,b and returning Za,b(S, S

′) and Ya,b(S, T ), respectively. Observe that

E[Za,b] =
∑

(S,S′)∈Sa,b

E[Za,b(S, S
′)]

|Sa,b|
=

∑
(S,S′)∈Sa,b

P{a}∪S,{b}∪S′ + P{a}∪S,{b}∪S′

2|Sa,b|
,

E[Ya,b] =
∑

(S,T )∈Ta,b

E[Ya,b(S, T )]

|Ta,b|
=

∑
(S,T )∈Ta,b

P{a}∪S,T + PT,{b}∪S′

2|Ta,b|
,

Where the expectation E[Za,b] is taken over all elements of Sa,b and the expectation E[Ya,b] is taken
over all elements Ta,b.

The following lemma apply for every a ≻ b, even if a ⊁∗ b. We prove Lemma using SST and
consistency.
Lemma B.2. Let a, b ∈ [n] be any two players such that a ≻ b. Then,

(1) For every (S, S′) ∈ Sa,b it holds that E[Za,b(S, S
′)] ≥ 1/2.

(2) For every (S, T ) ∈ Ta,b it holds that E[Ya,b(S, T )] ≥ 1/2.

Proof. (1) Let (S, S′) ∈ Sa,b and a ≻ b. Then,

E[Za,b(S, S
′)] =

P{a}∪S,{b}∪S′ + P{a}∪S′,{b}∪S

2
≥ 1

2
⇐⇒ P{a}∪S,{b}∪S′ + P{a}∪S′,{b}∪S ≥ 1

⇐⇒ P{a}∪S,{b}∪S′ ≥ 1− P{a}∪S′,{b}∪S

⇐⇒ P{a}∪S,{b}∪S′ ≥ P{b}∪S,{a}∪S′ ,

which holds according to Lemma A.6.
(2) Let (S, T ) ∈ Ta,b and a ≻ b. From Lemma A.6 we have that

P{a}∪S,T ≥ P{b}∪S,T ,

which is equivalent to
P{a}∪S,T ≥ P{b}∪S,T = 1− PT,{b}∪S

and therefore
2E[Ya,b(S, T )] ≥ 1.

Hence, E[Ya,b(S, T )] ≥ 1/2.

Corollary B.3. For players a, b ∈ [n] such that a ≻ b then E[Za,b],E[Ya,b] ≥ 1/2.

For the definition of Xa,b(S, S
′, T ) we refer to the main part of our paper.

In similar fashion to the definitions of Sa,b, S∗a,b and Za,b w.r.t. Z(S, S′), we defined

Xa,b = {(S, S′, T )|(S, S′) ∈ Sa,b, (S, T ) ∈ Ta,b},

and the random variable Xa,b to be the outcome of picking a random triplet, (S, S′, T ) ∈ Xa,b and
returning Xa,b(S, S

′, T ).

18



The set X ∗
a,b contains all triplets (S, S′, T ) ∈ Xa,b such that either (S, S′) ∈ S∗a,b or (S, T ) ∈

T ∗
a,b. Note that the support of each Xa,b(S, S

′, T ) is included {−1/2,−1/4, 0, 1/4, 1/2} and that
E[Xa,b] ∈ [−1/2, 1/2].
In the following we show how Xa,b(S, S

′, T ) can be expressed by Za,b(S, S
′) and Ya,b(S, T ), namely

Observation B.4. For every two players a, b ∈ [n], we have that E[Xa,b] =
1
2 (E[Za,b]+E[Ya,b])− 1

2 .

Proof.

Xa,b(S, S
′, T ) =

1[S ∪ {a} > S′ ∪ {b}]− 1[S ∪ {b} > S′ ∪ {a}]
4

+
1[S ∪ {a} > T ]− 1[S ∪ {b} > T ]

4

=
1[S ∪ {a} > S′ ∪ {b}] + 1[S′ ∪ {a} > S ∪ {b}]− 1

4

+
1[S ∪ {a} > T ] + 1[T > S ∪ {b}]− 1

4

=
Za,b(S, S

′) + Ya,b(S, T )− 1

2
.

As a direct result of the linearity of expectation, we have that

E(S,S′,T )∼Xa,b
[Xa,b] =

1

|Xa,b|
∑

(S,S′,T )∈Xa,b

E[Xa,b(S, S
′, T )]

=
1

|Xa,b|
∑

(S,S′,T )∈Xa,b

E[Za,b(S, S
′)]

2
+

1

|Xa,b|
∑

(S,S′,T )∈Xa,b

E[Ya,b(S, T )]

2
− 1

2

=
1

|Xa,b|
∑

(S,S′)∈Sa,b

(
n− k − 1

k

)
E[Za,b(S, S

′)]

2

+
1

|Xa,b|
∑

(S,T )∈Ta,b

(
n− k − 1

k − 1

)
E[Ya,b(S, T )]

2
− 1

2

=
1

|Sa,b|
∑

(S,S′)∈Sa,b

E[Za,b(S, S
′)]

2
+

1

|Ta,b|
∑

(S,T )∈Ta,b

E[Ya,b(S, T )]

2
− 1

2

=
E(S,S′)∼Sa,b

[Za,b]

2
+

E(S,T )∼Ta,b
[Ya,b]

2
− 1

2
.

For the next Theorem’s proof we rely on Theorem 3.2, Corollary B.3 in one direction, and show the
other using the probabilistic method.
Theorem 4.1. For every two players a, b ∈ [n] it holds that a ≻∗ b if and only if E[Xa,b] > 0.

Proof. We will show that for players a, b ∈ [n] it holds that a ≻∗ b iff one of the following holds:
(1) E[Za,b] > 1/2, or
(2) E[Ya,b] > 1/2.
This is equivalent to E[Xa,b] > 0 according to the definition of Xa,b and Corollary B.3.
(⇒) If a ≻∗ b then from Theorem 3.2 we know that one of the following holds:

1. There exists a subsets, witness (S, S′) ∈ Sa,b for a ≻ b. So by definition E[Za,b(S, S
′)] >

1/2, and combined with Lemma B.2 we have E[Za,b] > 1/2.

2. There exists a subset-team witness (S, T ) ∈ Ta,b for a ≻ b. Thus E[Ya,b(S, T )] > 1/2,
hence Lemma B.2 implies that E[Ya,b] > 1/2.

19



(⇐) If (1) holds, the probabilistic method implies the existence of (S, S′) ∈ Sa,b such that
E[Za,b(S, S

′)] > 1/2 which means that (S, S′) is a witness for a ≻ b, hence, a ≻∗ b by Theo-
rem 3.2. If (2) holds, the probabilistic method implies that there exists (S, T ) ∈ Ta,b such that
E[Ya,b(S, T )] > 1/2 which means that (S, T ) is a witness for a ≻ b, hence, a ≻∗ b by Theorem 3.2.

Thus according to the definition of Xa,b the theorem holds.

Gap parameter Recall that we defined our gap parameter by ∆ = E[Xk,k+1]. In the following we
show that our gap parameter does not just help us to distinguish between the top k and the top k + 1
players, but also between other players in A∗

k and players from [n] \ A∗
k. To this end, we show in

Lemma 4.2 that strong stochastic transitivity holds for E[Xa,b]. For most elements (S, S′, T ) ∈ Xa,b

it holds that E[Xa,c(π(S), π(S
′), π(T ))] ≥ E[Xa,b(S, S

′, T )] (and analogously for Xb,c), where π
is a permutation exchanging b and c, but, surprisingly, this is not true in general. By constructing
a charging scheme, we can still show that this holds in expectation over all elements of Xa,b, and
derive a strong stochastic transitivity for distinguishabilities w.r.t. the total order ≻ on the players.

The proof of the following lemma also shows that from every a ≻ b witness (S, S′, T ) ∈ X ∗
a,b, and

for any player c such that b ≻ c we can create a a ≻ c- witness. Similarly, from every b ≻ c witness
(S, S′, T ) ∈ X ∗

b,c, and for any player a such that a ≻ b we can create a a ≻ c- witness.

Lemma 4.2. For a triplet of players a ≻ b ≻ c it holds that

E[Xa,c] ≥ max{E[Xa,b],E[Xb,c]}.

Proof. In the following we show that E[Xa,c] ≥ E[Xa,b]. The proof that E[Xa,c] ≥ E[Xb,c] works
completely analogously and is therefore omitted. Let π be the function exchanging b and c, i.e.

π(S) =


S \ {c} ∪ {b} if c ∈ S, b ̸∈ S

S \ {b} ∪ {c} if b ∈ S, c ̸∈ S

S else.

Then, we define the function f : Xa,b → Xa,c by f(S, S′, T ) = (π(S), π(S′), π(T )). Observe that,
for this application of π, the second case within the definition of π never occurs, as none of the sets
S, S′, T contains b when (S, S′, T ) ∈ Xa,b. It will we helpful to partition Xa,b in the following way.

X 1
a,b = {(S, S′, T ) ∈ Xa,b | c ̸∈ S ∪ S′ ∪ T}
X 2

a,b = {(S, S′, T ) ∈ Xa,b | c ∈ S}
X 3

a,b = {(S, S′, T ) ∈ Xa,b | c ∈ S′ \ T}
X 4

a,b = {(S, S′, T ) ∈ Xa,b | c ∈ T \ S′}
X 5

a,b = {(S, S′, T ) ∈ Xa,b | c ∈ T ∩ S′}.

Then we can also define X i
a,c = {f(S, S′, T ) | (S, S′, T ) ∈ X i

a,b} for all i ∈ {1, . . . , 5}. Observe
that {X i

a,c | i ∈ {1, . . . , 5}} is also a partition of Xa,c.

We will start by proving that for every (S, S′, T ) ∈ X 1
a,b ∪ X 2

a,b ∪ X 3
a,b ∪ X 4

a,b ∪ X 5
a,b

E[Za,c(f(S, S
′))] ≥ E[Za,b(S, S

′)] (4)

and for all (S, S′, T ) ∈ X 1
a,b ∪ X 2

a,b ∪ X 3
a,b

E[Ya,c(f(S, T ))] ≥ E[Ya,b(S, T )] (5)

by exhaustion.

(i) Let (S, S′, T ) ∈ X 1
a,b. We get that f(S, S′, T ) = (S, S′, T ) and both

E[Za,c(S, S
′)] =

P{a}∪S,{c}∪S′ + P{a}∪S′,{c}∪S

2

≥
P{a}∪S,{b}∪S′ + P{a}∪S′,{b}∪S

2
= E[Za,b(S, S

′)],

20



E[Ya,c(S, T )] =
P{a}∪S,T + PT,{c}∪S

2

≥
P{a}∪S,T + PT,{b}∪S

2
= E[Ya,b(S, T )]

follow from consistency and SST.

(ii) Let (S, S′, T ) ∈ X 2
a,b. Then, f(S, S′, T ) = (S \ {c} ∪ {b}, S, T ) and both

E[Za,c(S \ {c} ∪ {b}, S′)] =
P{a}∪S\{c}∪{b},{c}∪S′ + P{a}∪S′,{c}∪S\{c}∪{b}

2

≥
P{a}∪S,{b}∪S′ + P{a}∪S′,{b}∪S

2
= E[Za,b(S, S

′)]

E[Ya,c(S \ {c} ∪ {b}, T )]) =
P{a}∪S\{c}∪{b},T + PT,{c}∪S

2

≥
P{a}∪S,T + PT,{b}∪S

2
= E[Ya,b(S, T )]

follow as {c} ∪ S \ {c} ∪ {b} = S ∪ {b} and from consistency and SST yield the rest.

(iii) Let (S, S′, T ) ∈ X 3
a,b. Then, f(S, S′, T ) = (S, S′ \ {c} ∪ {b}, T ) and

E[Za,c(S, S
′ \ {c} ∪ {b}))] =

P{a}∪S,{c}∪S′\{c}∪{b} + P{a}∪S′\{c}∪{b},{c}∪S

2

≥
P{a}∪S,{b}∪S′ + P{a}∪S′,{b}∪S

2
= E[Za,b(S, S

′)]

follows as {c} ∪ S′ \ {c} ∪ {b} = S′ ∪ {b} and consistency and SST yield the rest. In
addition, we already showed that in this case thus E[Ya,c(S, T )] ≥ E[Ya,b(S, T )] (due to
the same reason as in (i)).

(iv) Let (S, S′, T ) ∈ X 4
a,b. Then, f(S, S′, T ) = (S, S′, T \ {c} ∪ {b}). Observe that we have

already shown that E[Za,c(S, S
′)] ≥ E[Za,b(S, S

′)] in this case (due to the same reason as
(i)).

(v) Let (S, S′, T ) ∈ X 5
a,b. Then, f(S, S′, T ) = (S, S′ \ {c} ∪ {b}, T \ {c} ∪ {b}). Observe

that we have already shown that E[Za,c(S, S
′ \ {c} ∪ {b})] ≥ E[Za,b(S, S

′)] in this case
(due to the same reason as (iii)).

This concludes the proof of equations (4) and (5). In particular, from (ii) and (iii) it directly follows
that ∑

(S,S′,T )∈X i
a,c

E[X(S, S′, T )] =
∑

(S,S′,T )∈X i
a,b

E[X(f(S, S′, T ))] ≥
∑

(S,S′,T )∈X i
a,b

E[X(S, S′, T )]

(6)
holds for i ∈ {2, 3}.
We will continue the proof by showing that, for every (S, T ) ∈ Sa,b with c ∈ T , it holds that

E[Za,c(S, T \ {c})] + E[Ya,c(S, T \ {c} ∪ {b})] ≥ E[Za,b(S, T \ {c})] + E[Ya,b(S, T )]. (7)

This will then be helpful to conclude the proof.

To this end, observe that

E[Za,c(S, T \ {c})] + E[Ya,c(S, T \ {c} ∪ {b})])
= PS∪{a},T + PT\{c}∪{a},S∪{c} + PS∪{a},T\{c}∪{b} + PT\{c}∪{b},S∪{c}

= PS∪{a},T\{c}∪{b} + PT\{c}∪{a},S∪{c} + PS∪{a},T + PT\{c}∪{b},S∪{c}

≥ PS∪{a},T\{c}∪{b} + PT\{c}∪{a},S∪{b} + PS∪{a},T + PT,S∪{b}

21



= E[Za,b(S, T \ {c})] + E[Ya,b(S, T )],

which follows by consistency and SST. This will now be helpful to establish a charging scheme.
Namely, we are first going to show that∑
(S,S′,T )∈X 4

a,c

E[Xa,c(S, S
′, T )] =

∑
(S,S′,T )∈X 4

a,b

E[Xa,c(f(S, S
′, T ))] ≥

∑
(S,S′,T )∈X 4

a,b

E[Xa,b(S, S
′, T )].

(8)

This is true since

∑
(S,S′,T )∈X 4

a,c

2E[Xa,c(S, S
′, T )] + |Xa,c|

∑
(S,S′,T )∈X 4

a,b

2E[Xa,c(S, S
′, T \ {c} ∪ {b})] + |Xa,c|

=
∑

(S,S′,T )∈X 4
a,b

(E[Za,c(S, S
′)] + E[Ya,c(S, T \ {c} ∪ {b})])

=

(
n− k − 2

k − 1

)( ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S
′)] +

∑
(S,T )∈Ta,b|c∈T

E[Ya,c(S, T \ {c} ∪ {b})]
)

=

(
n− k − 2

k − 1

)( ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S
′)] +

∑
(S,S′)∈Sa,b∩Sa,c

E[Ya,c(S, S
′ ∪ {b})]

)
=

(
n− k − 2

k − 1

)( ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S
′)] + E[Ya,c(S, S

′ ∪ {b})]
)

≥
(
n− k − 2

k − 1

)( ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S
′)] + E[Ya,b(S, S

′ ∪ {c})]
)

=

(
n− k − 2

k − 1

)( ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S
′)] +

∑
(S,S′)∈Sa,b∩Sa,c

E[Ya,b(S, S
′ ∪ {c})]

)
=

(
n− k − 2

k − 1

)( ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S
′)] +

∑
(S,T )∈Ta,b|c∈T

E[Ya,b(S, T )]
)

=
∑

(S,S′,T )∈X 4
a,b

(E[Za,b(S, S
′)] + E[Ya,b(S, T )])

∑
(S,S′,T )∈X 4

a,b

2E[Xa,b(S, S
′, T )] + |Xa,b|,

where the inequality follows by equation (7). This completes the proof of (8).

Next, we are going to show that a similar bound holds when we sum over elements in X 1
a,b ∪ X 5

a,b.
More precisely, we are going to show that∑

(S,S′,T )∈X 1
a,c∪X 5

a,c

E[Xa,c(S, S
′, T )] =

∑
(S,S′,T )∈X 1

a,b∪X 5
a,b

E[Xa,c(f(S, S
′, T ))]

≥
∑

(S,S′,T )∈X 1
a,b∪X 5

a,b

E[Xa,b(S, S
′, T )]. (9)

To this end, observe that

∑
(S,S′,T )∈X 1

a,c

2E[Xa,c(S, S
′, T )] +

∑
(S,S′,T )∈X 5

a,c

2E[Xa,c(S, S
′, T )] + |X 1

a,c|+ |X 5
a,c|

22



=
∑

(S,S′,T )∈X 1
a,b

2E[Xa,c(S, S
′, T )] +

∑
(S,S′,T )∈X 5

a,b

2E[Xa,c(S, S
′ \ {c} ∪ {b}, T \ {c} ∪ {b})]

+ |X 1
a,b|+ |X 5

a,b|

=

(
n− k − 2

k

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S
′)] +

(
n− k − 3

k − 1

) ∑
(S,T )∈Ta,b∩Ta,c

E[Ya,c(S, T )]

+

(
n− k − 2

k − 1

) ∑
(S,S′)∈Sa,b|c∈S′

E[Za,c(S, S
′ \ {c} ∪ {b})]

+

(
n− k − 2

k − 2

) ∑
(S,T )∈Ta,b|c∈T

E[Ya,c(S, T \ {c} ∪ {b})]

=

(
n− k − 2

k

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S
′)]

+ [. . . ] +

(
n− k − 2

k − 2

) ∑
(S,T )∈Ta,b|c∈T

E[Ya,c(S, T \ {c} ∪ {b})]

=
((n− k − 2

k

)
−
(
n− k − 2

k − 2

)) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S
′)] + [. . . ]

+

(
n− k − 2

k − 2

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,c(S, S
′)] + E[Ya,c(S, S

′ ∪ {b})]

≥
((n− k − 2

k

)
−
(
n− k − 2

k − 2

)) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S
′)] + [. . . ]

+

(
n− k − 2

k − 2

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S
′)] + E[Ya,b(S, S

′ ∪ {c})]

=

(
n− k − 2

k

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S
′)] + [. . . ]

+

(
n− k − 2

k − 2

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Ya,b(S, S
′ ∪ {c})]

=

(
n− k − 2

k

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S
′)] + [. . . ]

+

(
n− k − 2

k − 2

) ∑
(S,S′)Ta,b|c∈T

E[Ya,b(S, T )]

=

(
n− k − 2

k

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S
′)] +

(
n− k − 3

k − 1

) ∑
(S,T )∈Ta,b∩Ta,c

E[Ya,c(S, T )]

+

(
n− k − 2

k − 1

) ∑
(S,S′)∈Sa,b|c∈S′

E[Za,c(S, S
′ \ {c} ∪ {b})]

+

(
n− k − 2

k − 2

) ∑
(S,T )∈Ta,b|c∈T

E[Ya,b(S, T )]

≥
(
n− k − 2

k

) ∑
(S,S′)∈Sa,b∩Sa,c

E[Za,b(S, S
′)] +

(
n− k − 3

k − 1

) ∑
(S,T )∈Ta,b∩Ta,c

E[Ya,b(S, T )]

+

(
n− k − 2

k − 1

) ∑
(S,S′)∈Sa,b|c∈S′

E[Za,b(S, S
′)] +

(
n− k − 2

k − 2

) ∑
(S,T )∈Ta,b|c∈T

E[Ya,b(S, T )]

23



=
∑

(S,S′,T )∈X 1
a,b

2E[Xa,b(S, S
′, T )] +

∑
(S,S′,T )∈X 5

a,b

2E[Xa,b(S, S
′, T )] + |X 1

a,c|+ |X 5
a,c|,

where the first inequality follows by equation (7) and (4) and the second inequality follows from
equation (4) and (5). The dots ([. . . ]) stands for(
n− k − 3

k − 1

) ∑
(S,T )∈Ta,b∩Ta,c

E[Ya,c(S, T )]+

(
n− k − 2

k − 1

) ∑
(S,S′)∈Sa,b|c∈S′

E[Za,c(S, S
′\{c}∪{b})],

which is a part of the expression that it is omitted during the calculations for the sake of brevity.
Summarizing, we get that

E[Xa,c] =

∑
(S,S′,T )∈Xa,c

E[Xa,c(S, S
′, T )]

|Xa,c|
=

∑5
i=1

∑
(S,S′,T )∈X i

a,c
E[Xa,c(S, S

′, T )]

|Xa,c|

≥

∑5
i=1

∑
(S,S′,T )∈X i

a,b
E[Xa,b(S, S

′, T )]

|Xa,c|
= E[Xa,b],

where the inequality follows from equations (6), (8), and (9). The last inequality follows from
|Xa,b| = |Xa,c|.

Connection to the dueling bandit gap parameter In what follows, we will show that for k = 1,
our gap (∆) is at least of the same order as the usual gap parameter for dueling bandit setting (will be
denoted by ∆bandit), namely that ∆ = Ω(∆bandit).

Consider k = 1 (where each team contains a single player). In this case, an instance of our problem
becomes a dueling bandit instance. In addition, consider the goal of identifying the best arm (here the
best team is simply the best arm), and denote

∆bandit = P bandit
1,2 − 1/2,

Where ∆bandit is the common gap definition in dueling bandit.

The characterization for deducible relations from Section 3 applies in particular for k = 1, and we
have that S1,2 = {∅} and T1,2 = {(∅, i)}i/∈{1,2}.

Using the definition of ∆ and X1,2(S, S
′, T ), we get

∆ = E[X1,2] =
1

4
(E[P1,2]− E[P2,1] + Ei/∈1,2[P1,i]− Ei/∈1,2[P2,i]) =

=
1

4
(2P1,2 − 1 + Ei/∈1,2[P1,i − P2,i]) ≥

1

2
(P1,2 −

1

2
) =

1

2
∆bandit = Ω(∆bandit).

The inequality is due to SST as 1 ≻ 2 ≻ i for all i /∈ {1, 2} implies P1,i ≥ P2,i.

The reduction We close this section by giving the two subroutines mentioned within the reduction
to the classic dueling bandits setting.

Algorithm 1 singlesDuel: simulation of a duel between single players
Input: Players a, b ∈ [n]
Output: w ∈ {0, 1} such that w = 1 if a won and w = 0 if b won.
Pick (S, S′, T ) ∈ Xa,b randomly
z ← (1[{a} ∪ S > {b} ∪ S′] + 1[{a} ∪ S′ > {b} ∪ S])/2
y ← (1[{a} ∪ S > T ] + 1[T > {b} ∪ S])/2
x← (z + y − 1)/2
return sample of a biased coin with bias 1/2 + x

24



C Algorithms and Proofs of Section 5

Uncover Subroutine As sketched within the main part of our paper, we refine the idea of the
Uncover subroutine by a binary search approach. Moreover, we add the option to input a refinement
of A and B, namely A = A(1) ∪A(2), B = B(1) ∪B(2), guaranteeing that the uncovered relation is
between a pair of players from A(1) and B(1), while A(2) and B(2) are contained in one of the sets of
the witness each. For that to work, we require that

(a) |A(1)|+ |A(2)| = k,

(b) |A(i)| = |B(i)| for i ∈ {1, 2},

(c) A(1) ∪A(2) ≻ B(1) ∪B(2), and

(d) A(1) ∪B(2) ≻ B(1) ∪A(2).

Observe that for any four sets satisfying (a) and (b) one of the four sets wins in both duels. By
enforcing (c) and (d) we fix wlog that this set is A(1). Let us assume that the sets A(1) and B(1) are
ordered, meaning that A(1) = {a1, . . . , a|A(1)|} and B(1) = {b1, . . . , b|A(1)|}. We also introduce the
shorthand notation Aℓ:r for {aℓ, . . . , ar} and respectively Bℓ:r for {bℓ, . . . , br} for any ℓ, r ∈ [|A(1)|].
The subroutine is formalized in Algorithm 2.

Algorithm 2 Uncover Subroutine

Input: four disjoint sets, A(1), B(1), A(2), B(2) with |A(1)| = |B(1)|, |A(2)| = |B(2)|, |A(1)| +
|A(2)| = k, A(1) ∪A(2) ≻ B(1) ∪B(2), and A(1) ∪B(2) ≻ B(1) ∪A(2)

Output: a ∈ A(1), b ∈ B(1), (S, S′) ∈ S∗a,b with (C ⊆ S and D ⊆ S′) or (D ⊆ S and C ⊆ S′)

Set S ← A(1) ∪A(2), T ← B(1) ∪B(2), ℓ← 1, r ← |A(1)|
while ℓ < r do
i←

⌊
ℓ+r
2

⌋
S ← S −Ai+1:r ∪Bi+1:r

T ← T −Bi+1:r ∪Ai+1:r

if S ≻ T then
r ← i

else
ℓ← i+ 1
swap S and T

end if
end while
return (aℓ, bℓ), and (S \ {aℓ}, T \ {bℓ})

In order to show that the algorithm is well-defined and works correctly, the following Lemma will be
helpful.

Lemma C.1. In subroutine Uncover (Algorithm 2), at the end of every while loop, it holds that,
(i) ℓ, r ∈ N with ℓ ≤ r, (ii) Aℓ:r ⊆ S, Bℓ:r ⊆ T , (iii) S ≻ T , and (iv) T \ Bℓ:r ∪ Aℓ:r ≻
S \Aℓ:r ∪Bℓ:r, (v) exactly one of S and T contains A(2), the other set contains B(2).

Proof. We prove all statements via one joint induction over the iterations of the while loop. All
statements are clearly true at the beginning of the first while loop. Now, consider any iteration in
which the four statements are true at the beginning of the while loop. It suffices to show that they are
still true after resetting S, T , ℓ, and r. For clarity, we refer to the modified variables of the teams
just before the if condition as S′, T ′ and after the if condition as S′′, T ′′. Similarly, ℓ′, and r′ are the
values of the indices after the if condition. In the following, we show that the four conditions still
hold for S′′,T ′′,ℓ′, and r′.

Case 1: S′ ≻ T ′. Then, S′′ = S′, T ′′ = T ′, ℓ′ = ℓ, r′ = i. The condition of the while loop, ℓ < r,
clearly implies that ℓ′ = ℓ ≤ ⌊ ℓ+r

2 ⌋ = i = r′. Moreover, by construction Aℓ:i = Aℓ′:r′ ⊆ S′′ and

25



Bℓ:i = Bℓ′:r′ ⊆ T ′′ and hence condition (ii) is satisfied. Condition (iii), i.e., S′′ ≻ T ′′ is satisfied
by the case condition. For condition (iv) let us rewrite the induction hypothesis for condition (iv) as

T −Bℓ:r ∪ (Aℓ:i ∪Ai+1:r) ≻ S −Aℓ:r ∪ (Bℓ:i ∪Bi+1:r).

Observe that T −Bℓ:r ∪Ai+1:r = T ′ −Bℓ:i and S −Aℓ:r ∪Bi+1:r = S′ −Aℓ:i. Hence, the above
expression can be rewritten as

T ′ −Bℓ:i ∪Aℓ:i ≻ S′ −Aℓ:i ∪Bℓ:i.

Plugging in T ′ = T ′′, S′ = S′′, ℓ = ℓ′ and i = r′ yields condition (iv) for the updated variables.
Lastly, condition (v) is satisfied directly by applying the induction hypothesis.

Case 2: T ′ ≻ S′. Then, S′′ = T ′, T ′′ = S′, ℓ′ = i + 1, r′ = r. For condition (ii), observe that
ℓ, r ∈ N with ℓ < r clearly implies that ℓ′ = i+ 1 = ⌊ ℓ+r

2 ⌋+ 1 ≤ ⌊ 2r−1
2 ⌋+ 1 ≤ r = r′. Moreover,

by construction Ai+1:r ⊆ T ′ = S′′ and Bi+1:r ⊆ S′ = T ′′ and hence (ii) is satisfied. Condition
(iii), i.e., S′′ = T ′ ≻ S′ = T ′′, is satisfied by the case condition. For condition (iv), let us rewrite
the induction hypothesis for condition (iii) as

S −Aℓ:r ∪ (Aℓ:i ∪Ai+1:r) ≻ T −Bℓ:r ∪ (Bℓ:i ∪Bi+1:r).

Observe that S −Aℓ:r ∪Aℓ:i = S′ −Bi+1:r and T −Bℓ:r ∪Bℓ:i = T ′ −Ai+1:r. Hence, the above
expression can be rewritten to

S′ −Bi+1:r ∪Ai+1:r ≻ T ′ −Ai+1:r ∪Bi+1:r.

Inserting S′ = T ′′, T ′ = S′′, i+ 1 = ℓ′ and r = r′ yields condition (iv) for the updated variables.
Lastly, condition (v) is satisfied directly by applying the induction hypothesis.

With the help of Lemma C.1 it is easy to see that the algorithm is well-defined, more precisely, that
the constructed tuple (S, T ) forms a feasible duel within every iteration of the while loop. It remains
to show that the algorithm works correctly and its running time is bounded by O(log(|A(1)|)).

Lemma C.2. Let A(1), A(2), B(1), B(2) be sets satisfying conditions (a) to (d). After performing
O(log(|A(1)|)) duels, Uncover returns (a, b) with a ∈ A(1), b ∈ B(1) and (S, S′) ∈ S∗a,b with either
A(2) ⊆ S and B(2) ⊆ S′ or B(2) ⊆ S and A(2) ⊆ S′.

Proof. By Lemma C.1, the termination of the algorithm implies that ℓ = r. By statement (ii) from
Lemma C.1 we get that aℓ ∈ S and bℓ ∈ T holds. Moreover, conditions (iii) and (iv) can be
rewritten as

(S \ {aℓ}) ∪ {aℓ} ≻ (T \ {bℓ}) ∪ {bℓ} (10)

and
(T \ {bℓ}) ∪ {aℓ} ≻ (T \ {aℓ}) ∪ {bℓ}, (11)

respectively. Clearly, this implies that (S \ {aℓ}, T \ {bℓ}) ∈ S∗aℓ,bℓ
and hence aℓ ≻ bℓ.

It is easy to see that the number of iterations of the while loop is upper bounded by the height of a
balanced binary tree on |A(1)| elements, i.e., O(log(|A(1)|)). Since every iteration induces exactly
one query, this also bounds the total number of queries. Moreover, by condition (v) we have that one
of A(2) is included in S or T and B(2) in the other one. This concludes the proof.

Clearly, Lemma C.2 directly implies Lemma 5.3. For this, simply call Uncover with A(2) = B(2) = ∅.

Lemma 5.3. Let A and B be two disjoint teams with A ≻ B. After performing O(log(k)) duels,
Uncover returns (a, b) with a ∈ A, b ∈ B and (S, S′) ∈ S∗a,b, and thus a ≻ b.

26



Reducing the Number of Players to O(k) Before formalizing the pre-processing procedure
ReducePlayers in Algorithm 3, recall that algorithm maintains a dominance graph D = (V,E) on
the set of players. More precisely, the nodes of D are the players, i.e., V = [n], and there exists an
arc from node a to node b if the algorithm has proven that a ≻ b. The set V<2k is the subset of the
players having an indegree smaller than 2k in D.

Additionally, we define a second graph G<2k as follows: The set of nodes of G<2k equals V<2k and
there exists an (undirected) edge between two nodes a, b ∈ V<2k if and only if neither of the arcs
(a, b) or (b, a) is present within the graph D. The algorithm now searches for a matching of size k
within the graph G<2k by calling the subroutine GreedyMatching, formalized in Algorithm 4. Let
{(a1, b1), . . . , (ak, bk)} be such a matching. In particular, this implies that the algorithm has not
identified any of the relations between ai and bi yet. Hence, when calling uncover for the (ordered)
sets A = {a1, . . . , ak} and B = {b1, . . . , bk} (after possibly swapping A and B), the algorithm
learns about one additional pairwise relation, say ai ≻ bi and add the arc (ai, bi) to the graph D.
Then, the algorithm also updates D to its transitive closure. The algorithm ends when it cannot find a
matching of size k in G<2k anymore. We formalize the idea within Algorithm 3.

Algorithm 3 ReducePlayers
Input: a set of players [n]
Output: a set S with |S| ≤ 6k−2 s.t. A∗

2k ⊆ S
while |GreedyMatching(G<2k)| = k do

Let {{a1, b1}, . . . , {ak, bk}} be Greedy
Matching
Set A = {a1, . . . , ak}, B = {b1, . . . , bk}
(a, b)← uncover(A,B)
Add (a, b) to D, D ← transitiveClosure(D)
Update V<2k and G<2k

end while
return V<2k

Algorithm 4 Subroutine GreedyMatching
Input: an undirected Graph G = (V,E)
Output: a matching of size at most k
M ← ∅
while |M | < k and E ̸= ∅ do

Pick arbitrary edge (u, v) from E
Delete all edges incident to u and v from
E

end while
return M

Lemma 5.5. Given the set of players [n], ReducePlayers returns R ⊆ [n] with |R| ≤ 6k − 2 and
A∗

2k ⊆ R. ReducePlayers performs O(nk log(k)) duels and runs in time O(n2k2).

Proof. Let R be the set returned by ReducePlayers. We start by proving that A∗
2k ⊆ R. Every player

not included in R has at least 2k ingoing arcs in D. In other words, there exist 2k players which
dominate it. Hence, such a player is not included in A∗

2k.

We turn to prove that |R| ≤ 6k − 2: Any independent set within the graph G<2k contains less than
2k + 1 nodes. An independent set within G<2k is a subset of the nodes T ⊆ V<2k such that no two
nodes of T are connected by an edge. Now, assume for contradiction that there exists an independent
set T ⊆ V<2k within the graph G<2k with |T | = 2k + 1. Consider the subgraph of D induced by
the set T , i.e., D[T ] = (T, {(a, b) ∈ E | a, b ∈ T}). Since T is an independent set within G<2k, we
know that D[T ] is a tournament graph, i.e., a directed graph in which any two nodes are connected by
exactly one directed arc. Moreover, since D[T ] is transitive (since ≻ and hence D is transitive), there
exists exactly one node within T with an indegree of 2k within the graph D. This is a contradiction
to T ⊆ V<2k.

This observation is now helpful to conclude the first part of the proof. Assume for contradiction
that |V<2k| ≥ 6k − 1. Then the following greedy procedure lets us construct a matching of size 2k
within the graph G<2k. This yields a contradiction to the termination of the while loop, since every
maximal matching, and in particular, a matching of size smaller than k returned by GreedyMatching,
is a 1/2-approximation of a matching with maximum cardinality. Hence, the existence of a matching
with 2k edges yields a contradiction to the fact that GreedyMatching did not find a matching of size k.
We start by defining T = V<2k and M = ∅. Since |T | > 2k, T is not an independent set and there
exists an edge between some two nodes in T . Now, pick any such edge, say {a, b}, and add it to M
and remove a and b from T . After i rounds of this procedure, |M | = i and |T | = 2k+2(2k− i)− 1.
We can repeat this procedure for 2k rounds and have found a matching of size 2k, a contradiction.

We now turn to prove the number of duels performed by the algorithm. In every step of the while
loop, the algorithm adds one arc which was not existent before to the graph D. Moreover, since any

27



selected matching never includes an edge with one of its endpoints having an indegree larger than
2k − 1, no node has an indegree higher than 2k after the termination of the algorithm. We can then
upper bound the number of arcs within D by 2kn.

This is also a bound for the number of iterations of the while loop. Within each iteration of the while
loop the algorithm needs to make one query in order to identify the winning team and in addition
it calls the subroutine uncover. As argued within the proof of Lemma 5.5, the uncover subroutine
induces additional O(log(k)) queries per while loop. Summarizing, this implies that the algorithm
requires O(nk log(k)) queries in total.

As for the running time, we have already argued that the while loop does at most O(nk) iterations.
Within the while loop the algorithm needs to run GreedyMatching for finding a matching of size
k within G<2k and run the uncover subroutine. While the latter step requires a running time of
O(log(k)) as argued within Lemma 5.5, GreedyMatching for selecting a matching of size k can be
implemented in O(nk). In total, we get a running time of O(n2k2).

Subroutines NewCut and Compare In Algorithm 5 we formalize the subroutine NewCut, which
takes as input a subset of the players R ⊆ [n], a pair of players a, b ∈ X and a witness (S, T ′) ∈
S∗a,b ∪ T ∗

a,b and outputs a partition of R into U and L such that U ▷ L holds. We denote by πxy the
permutation on subsets that exchange players x and y. More precisely,

πxy(A) =


A \ {x} ∪ {y} if x ∈ A, y ̸∈ A

A \ {y} ∪ {x} if x ̸∈ A, y ∈ A

A else.

Before we prove the correctness of the algorithm, we introduce the following two lemmas. Strictly
speaking, these are special cases of statements shown within the proof of Lemma 4.2 for the
deterministic setting. For the sake of illustration, we state and prove them here for the deterministic
case again, independently of Lemma 4.2.

Algorithm 5 NewCut
Input: R ⊆ [n], a pair a, b ∈ R and (S, T ′) ∈ S∗a,b ∪ T ∗

a,b

Output: Partition of R into U ▷ L with a ∈ U and b ∈ L
InitializeW ← {(S, T ′, a)}, U ← {a}, R← R \ {a, b}
whileW non-empty do

Pick (S, T, y) ∈ W and remove it fromW
for x ∈ R do

if (πxy(S), πxy(T
′)) ∈ S∗xb ∪ T ∗

xb then
add x to U , remove x from R
add (πxy(S), πxy(T

′), x) toW
else if |T ′| = k and x ∈ T ′ and (S, T ′ \ {x}) ∈ S∗xb then

add x to U and remove it from R
add (S, T ′ \ {x}, x) toW

end if
end for

end while
return (U,R ∪ {b})

Lemma C.3. If a ≻ b ≻ c and (S, S′) ∈ S∗b,c, then (πab(S), πab(S
′)) ∈ S∗a,c.

Proof. We distinguish two cases. First assume a ̸∈ S ∪ S′. Then,

S ∪ {a} ≻ S ∪ {b} ≻ S′ ∪ {c},
where the first statement follows from single-player consistency and the second statement from
(S, S′) ∈ S∗bc. Moreover,

S′ ∪ {a} ≻ S′ ∪ {b} ≻ S ∪ {c},
where again the first statement follows from single-player consistency and the second one from
(S, S′) ∈ S∗bc.

28



If a ∈ S ∪ S′, assume wlog that a ∈ S. Then, πab(S) = S \ {a} ∪ {b} and πab(S
′) = S′. We get

πab(S) ∪ {a} = S ∪ {b} ≻ S′ ∪ {c}
and

S′ ∪ {a} ≻ S′ ∪ {b} ≻ S ∪ {c} = S \ {a} ∪ {a} ∪ {c} ≻ S \ {a} ∪ {b} ∪ {c} = πab(S) ∪ {c},
where the first and last statement follow from single player consistency and the second statement
from (S, S′) ∈ S∗bc. Summarizing, (πab(S), πab(S

′)) ∈ S∗ac.

Lemma C.4. If a ≻ b ≻ c and (S, T ) ∈ T ∗
b,c, then (πab(S), πab(T )) ∈ T ∗

a,c or (S, T \ {a}) ∈ S∗a,c.

Proof. We distinguish three cases. First, assume that a ̸∈ S ∪ T . Then,

S ∪ {a} ≻ S ∪ {b} ≻ T ≻ S ∪ {c},
where the first statement follows from single player consistency and the second and third from
(S, T ) ∈ T ∗

bc. Next, assume a ∈ S. Then, πab(S) = S \ {a} ∪ {b} and we get

πab(S)∪{a} = S∪{b} ≻ T ≻ S∪{c} = S\{a}∪{a}∪{c} ≻ S\{a}∪{b}∪{c} = πab(S)∪{c}.
Hence, (πab(S), πab(T )) ∈ T ∗

ab. Finally, assume a ∈ T . We get,

S ∪ {a} ≻ S ∪ {b} ≻ T \ {a} ∪ {a} ≻ T \ {a} ∪ {c},
where the first and last statement follow from single player consistency and the second statement
from (S, T ) ∈ T ∗

bc. Moreover,
T \ {a} ∪ {a} ≻ S ∪ {c},

which follows from (S, T ) ∈ T ∗
bc. Summarizing, (S, T \ {a}) ∈ S∗ac.

Having these two lemmas, we are ready to prove the correctness of the NewCut subroutine.
Lemma 5.6. Let R ⊆ [n], a, b ∈ R and (S, T ′) ∈ S∗a,b ∪ T ∗

a,b. Then, NewCut(R, (a, b), (S, T ′))
returns a partition of R into U and L such that U ▷ L, a ∈ U and b ∈ L. The number of duels
performed by NewCut and its running time can be bounded by O(|R|2).

Proof. Let R be the original set of players given as input to the algorithm, and U and L the returned
sets. We denote by R′ and U ′ the corresponding sets maintained and modified by the algorithm
during its execution. To see that U and L form a partition of V , observe that U ′ and R′ form a
partition of R \ {b} during the entire execution of the algorithm.

We turn to show that U ▷ L. Assume for contradiction that there exists c ∈ L and d ∈ U with c ≻ d.
Since d ∈ U we know that the algorithm found a witness for d ≻ b which we denote by (S, T ′) and
added (S, T ′, d) to the list W . Moreover, as c ∈ L, the algorithm selected x = c in the for loop
when (S, T ′, d) was picked fromW . Now, if |T ′| = k − 1, we know that (S, T ′) ∈ S∗d,b and can
apply Lemma C.3 which yields (πcd(S), πcd(T

′)) ∈ S∗
c,b. This is a contradiction, as otherwise c

would have been added to U ′ at this point. If |T ′| = k, we can apply Lemma C.4, yielding that either
(πcd(S), πcd(T

′)) ∈ T ∗
c,b or (S, T ′ \ {c}) ∈ S∗c,b, both of which cannot be as c ̸∈ U ′ at the end of the

algorithm. This completes the proof of correctness.

It remains to bound the number of duels performed. Since the number of duels performed in every
iteration of the for loop is constant, it suffices to bound the number of iterations of the for loop. As
the algorithm adds at most |R| − 1 elements toW and for each element the for loop runs at most
|R| − 2 times, the number of duels can be bounded by O(|R|2).

We now turn to formalize the subroutine Compare within Algorithm 6.

Algorithm 6 Compare
Input: tuple (a, b), witness (S, S′) ∈ S∗ab and C ⊆ S, D ⊆ S′ with |C| = |D|
if S \ C ∪D ∪ {a} ≻ S′ \D ∪ C ∪ {b} and S′ \D ∪ C ∪ {a} ≻ S \ C ∪D ∪ {b} then

return True
else

return False
end if

29



Lemma 5.7. Let a ≻ b be two players, (S, S′) ∈ S∗a,b and C ⊆ S,D ⊆ S′ with |C| = |D|. If
Compare((a, b), (S, S′), (C,D)) returns True, then v(a)− v(b) > |v(C)− v(D)|. Otherwise, one
call to Uncover returns c ∈ C and d ∈ D together with a witness for their relation.

Proof. For the sake of brevity we define S̄ = S \C and S̄′ = S \D. Recall that from (S, S′) ∈ Sa,b
we get that (i) S̄ ∪C ∪ {a} ≻ S̄′ ∪D ∪ {b} and (ii) S̄′ ∪D ∪ {a} ≻ S̄ ∪C ∪ {b} hold. Recall that
we are considering additive total orders. For any set A ⊆ [n] we define v(A) =

∑
a∈A v(a). Then,

we can rewrite (i) and (ii) to

(i) v(S̄) + v(C) + v(a) > v(S̄′) + v(D) + v(b)

and
(ii) v(S̄′) + v(D) + v(a) > v(S̄′) + v(C) + v(b).

Then, we distinguish two cases.

Case 1. (iii) S̄ ∪D ∪ {a} ≻ S̄′ ∪ C ∪ {b} and (iv) S̄′ ∪ C ∪ {a} ≻ S̄ ∪D ∪ {b}. Similarly to
before, we can rewrite (iii) and (iv) to

(iii) v(S̄) + v(D) + v(a) > v(S̄′) + v(C) + v(b)

and
(iv) v(S̄′) + v(C) + v(a) > v(S̄) + v(D) + v(b).

Then, from adding (ii) and (iii) we get that

v(a)− v(b) > v(C)− v(D)

and from adding (i) and (iv) we get that

v(a)− v(b) > v(D)− v(C).

Summarizing, this yields v(a)− v(b) > |v(C)| − |v(D)|.
Case 2. (v) S̄′ ∪ C ∪ {b} ≻ S̄ ∪D ∪ {a}
In that case, observe that the quartet (C,D, S̄ ∪ {a}, S̄′ ∪ {b}) satisfies the requirements for the
Uncover subroutine due to equation (i) and (v). Hence, Uncover will return a dominance of some
player in C towards some player in D together with a witness for this relationship.

Case 3. (vi) S̄ ∪D ∪ {b} ≻ S̄′ ∪ C ∪ {a}
In that case, observe that the quartet (D,C, S̄ ∪ {b}, S̄′ ∪ {a}) satisfies the requirements for the
Uncover subroutine due to equation (ii) and (vi). Hence, Uncover will return a dominance of some
player in D towards some player in C together with a witness for this relationship.

Algorithm CondorcetWinning Recall that the algorithm maintains a partition of the players into
a weak ordering, i.e., T = {T1, . . . , Tℓ} with T1 ▷ T2 ▷ · · · ▷ Tℓ. We introduce the short-hand
notation T≤j =

⋃
m∈[j] Tm and T<j =

⋃
m∈[j−1] Tm. After the application of the preprocessing

procedure ReducePlayers, this partition consists of one set, namely T = {T1}, where |T1| ∈ O(k)
and A∗

2k ⊆ T1. At any point in the execution of the algorithm, we are especially interested in
two indices, namely ik ∈ [ℓ] such that |T<ik | < k < |T≤ik | and similarly i2k ∈ [ℓ] such that
|T<i2k | < 2k < |T≤i2k |. In case one of these indices does not exist, this implies that we have either
identified the set A∗

k or A∗
2k. In the first case, we have found a Condorcet winning team and in the

second case Observation 5.4 implies that we can find one by performing one additional duel. For the
sake of brevity, we disregard this case from now on.

Assuming ik is defined, observe that all players from T<ik are guaranteed to be among the top-k
players. On the other hand, among the players from Tik some belong to A∗

k and others do not. The
main idea of the algorithm will then be to, at any given time, take some k-sized prefix of T , i.e.,
a subset including T<ik that is included in T≤ik and either proving that this prefix is a Condorcet
winning team, or showing that the partition T can be refined.

In the following we distinguish the cases that ik ̸= i2k and ik = i2k. For the first case we give the
algorithm CondorcetWinning1 and for the latter case the algorithm CondorcetWinning2. Observe
that, once the CondorcetWinning1 called CondorcetWinning2 (which implies ik ̸= i2k) this will be
true until the termination of the algorithm.

30



CondorcetWinning1 The algorithm starts by partitioning the set T<ik into two sets U1 and U2,
where U1 is a prefix of T<ik of size |T≤ik | − 2k. It partitions the set Tik into five sets X,Y,W1,W2,
and Z. In particular it is known that (U1 ∪ U2) ▷ (X ∪ Y ∪W1 ∪W2 ∪ Z) but no relation among
any pair in Tik is known. Regarding the sizes of the sets it holds that |Ui| = |Wi| for i ∈ {1, 2},
|X| = |Y | = k − |U1| − |U2| and |U1| = |Z|. The main aim of the algorithm will be to define
0 < ϵ1 < ϵ2 and prove that the following statements are true:

(i) |v(X)− v(Y )| < ϵ1

(ii) |v(a)− v(b)| < ϵ2 for all a ∈ Y ∪W1 ∪W2 and b ∈ Z, and
(iii) there exist u1, . . . , u|Z|+1 ∈ U1 ∪ U2 as well as w1, . . . , w|Z|+1 ∈W1 ∪W2 such that

(a) v(u1)− v(w1) ≥ ϵ1 and
(b) v(ui)− v(wi) ≥ ϵ2 for all i ∈ {2, . . . , |Z|+ 1}.

With these three statements we can show that U1∪U2∪X is a Condorcet winning team. More precisely,
one can show that v(U1∪U2∪X)−v(W1∪W2∪Y ) > |Z|·ϵ2 and v(W1∪W2∪Y )−v(B∗) > −|Z|·ϵ2,
where B∗ is the best response towards U1 ∪U2 ∪X , i.e., B∗ simply contains the best k players from
[n] \ (U1 ∪ U2 ∪X). See Figure 1 for an illustration of the argument.

It remains to sketch how the algorithm defines ϵ1, ϵ2 and proves (i)− (iii). The algorithm starts by
checking whether Uncover can be applied to the sets A(1) = U2, A

(2) = X ∪Z,B(1) = W2, B
(2) =

Y ∪W1. If this is not the case, a relation between a pair in A(2) and B(2) can be found and the
partition can be refined by applying NewCut. Otherwise, let ū ∈ U2 and w̄ ∈W2 be the returned pair
from Uncover. For the sake of brevity we assume for now that the entire indifference class of ū in T
is included in U2. Then, using Compare, the algorithm checks whether |v(X)−v(Y )| < v(ū)−v(w̄)
and whether |v(a) − v(b)| < v(ū) − v(w̄) for all a ∈ W1 ∪W2 ∪ Y and b ∈ Z. The algorithm
repeats the process by replacing w̄ by all w ∈W1. If any of the calls to Compare returned False, then
we show that the partition can be refined. Otherwise, we have shown that conditions (i)− (iii) are
satisfied for ϵ1 = v(ū)− v(w∗

1) and ϵ2 = v(ū)− v(w∗
2), where w∗

1 and w∗
2 are the best and second

best players from W1 ∪ {w̄}, respectively. For the case when not the entire indifference class of ū
is included in U2, we still have to exchange ū by other players from its indifferent class which are
included in U1.
Lemma C.5. After performing O(k5) many duels, CondorcetWinning1 has identified a Condorcet
winning team or called CondorcetWinning2.

Proof. In part I we show that the algorithm is well-defined and that, within line 13,21,24, 29, 35, and
40, a refined partition can indeed be found. In part II we show that, if the algorithm outputs a team,
this team is indeed Condorcet winning. Lastly, in part III we argue about the bound on the number of
duels performed.

Part I. We show the first two statements by going through the algorithm line by line.

We start by showing that in line 12, the two queries are feasible. First observe that by construction,
the sets U1, U2, X, Y,W1,W2, and Z are disjoint. Moreover, |U | = |W |, |U1| = |W1|, and hence
|U2| = |W2|. Also, |X| = |Y | and |W1| = |Z|. In total, we get that |W2| + |Y | + |W1| =
|U1|+ |X|+ |Z| = |U |+ |X| = k and the same holds for the other query as well.

Next, we show that in line 13, the partition T can indeed be refined. Consider wlog the case
when W2 ∪ (Y ∪W1) ≻ U2 ∪ (X ∪ Z). Then, since U2 ▷ W2 we know that U2 ∪ (Y ∪W1) ≻
W2 ∪ (X ∪ Z) needs to hold. Hence, Uncover(Y ∪W1, X ∪ Z,W2, U2) returns a pair (a, b) with
a ∈ Y ∪W1 and b ∈ X ∪ Z together with a witness (S, S′) ∈ Sa,b. Since a, b ∈ Tik , we can call
NewCut(T , (a, b), (S, S′)) which returns a refined partition. An analogous argument holds for the
case W2 ∪ (X ∪ Z) ≻ U2 ∪ (Y ∪W2).

We turn to show that the input for the Uncover subroutine is valid in line 15. Since the condition in line
12 is not satisfied, we know that U2∪(X∪Z) ≻W2∪(Y ∪W1) and U2∪(Y ∪W1) ≻W2∪(X∪Z).
This suffices to show that (U2,W2, (X ∪ Z), (Y ∪W1)) is a valid input for Uncover. Hence, for the
returned pair (ū, w̄) is holds that ū ∈ U2 and w̄ ∈ W2. Moreover, we can assume in the following
wlog that (X ∪ Z) ⊆ S and (Y ∪W1) ⊆ S′.

We continue with the situation in line 21 and show that a refined partition can be found. We distinguish
two cases.

31



Case 1 (S, S′′) ∈ Sū,w. This implies (i) S∪{ū} ≻ S′′∪{w} and (ii) S′′∪{ū} ≻ S∪{w}. Moreover,
from (S, S′′) ̸∈ Su,w we know that either (iii) S ∪ {w} ≻ S′′ ∪ {u} or (iv) S′′ ∪ {w} ≻ S ∪ {u}
is true. Assume without loss of generality that (iii) holds. Then, together with (ii) we get that
S′′ ∪ {ū} ≻ S ∪ {w} ≻ S′′ ∪ {u}, hence ū ≻ u and in particular (S ∪ {w}, S′′) ∈ Tū,u. Since
ū and u are from the same indifference class of T , calling NewCut2(T , (ū, u), (S ∪ {w}, S′′))
returns a refined partition. An analogous argument holds when (iv) is true.

Algorithm 7 CordorcetWinning1
1: Input: a partition of [n] into T1 ▷ T2 ▷ · · · ▷ Tℓ

2: Output: a CondorcetWinning Team
3: if ik ̸= i2k then
4: return CondorcetWinning2(T )
5: end if
6: Set U ← T<ik
7: Set X and Y to be two disjoint, (k − |U |)-sized subsets of Tik
8: Set W to be a |U |-sized subset of Tik \X \ Y
9: Set Z to be Tik \X \ Y \W

10: Set W1 to be a |Z|-sized subset of W and W2 ←W \W1

11: Set U1 to be a |Z|-sized prefix of U and U2 ← U \ U1

12: if W2 ∪ (Y ∪W1) ≻ U2 ∪ (X ∪ Z) or W2 ∪ (X ∪ Z) ≻ U2 ∪ (Y ∪W1) then
13: return CondorcetWinning(refinedPartition)
14: end if
15: (ū, w̄), (S, S′)← Uncover(U2,W2, (X ∪ Z), (Y ∪W1))
16: Let T̄ be indifference class of ū in T
17: for u ∈ T̄ ∩ U1 ∪ {ū} do
18: for w ∈W1 ∪ {w̄} do
19: S′′ ← fw̄,w(S

′)
20: if (S, S′′) ̸∈ Su,w then
21: return CondorcetWinning(refinedPartition)
22: end if
23: if Compare((u,w), (S, S′′), (X,Y )) not true then
24: return CondorcetWinning(refinedPartition)
25: end if
26: for z ∈ Z do
27: for q ∈ S′′ ∩ (W ∪ Y ) do
28: if Compare((u,w), (S, S′′), ({z}, {q})) not true then
29: return CondorcetWinning(refinedPartition)
30: end if
31: end for
32: end for
33: (Q,Q′)← (S \ Z ∪ πw∗,w(W1), S

′′ \ πw∗,w(W1) ∪ Z)
34: if (Q,Q′) ̸∈ Su,w then
35: return CondorcetWinning(refinedPartition)
36: end if
37: for z ∈ Z do
38: for w′ ∈ Q ∩W2 do
39: if Compare((u,w), (Q,Q′), ({w′}, {z})) not true then
40: return CondorcetWinning(refinedPartition)
41: end if
42: end for
43: end for
44: end for
45: end for
46: return U ∪X

Case 2 (S, S′′) ̸∈ Sū,w. Then, either (i) S ∪ {w} ≻ S′′ ∪ {ū} or (ii) S′′ ∪ {w} ≻ S ∪ {ū} holds
while both is not possible as ū ≻ w. First, assume (i) is true. Then, from (S, S′) ∈ Sū,w̄, we know

32



that (iii) S′ ∪ {ū} ≻ S ∪ {w̄}. Reformulating (i) to S ∪ {w} ≻ S′ \ {w} ∪ {ū} ∪ {w̄} and (iii) to
S′ \ {w} ∪ {ū} ∪ {w} ≻ S ∪ {w̄} shows that w ≻ w̄ and in particular (S, S′ \ {w} ∪ {ū}) ∈ Sw,w̄.
As w and w̄ are contained in the same indifference class of T , calling NewCut(T , (w, w̄), (S, S′ \
{w} ∪ {ū})) refines the partition. Second, assume that (ii) holds. However, from (S, S′) ∈ Sū,w̄ we
know that (iv) S ∪ {ū} ≻ S′ ∪ {w̄} is true. As S′′ ∪ {w} = S′ ∪ {w̄} this yields a contradiction to
(ii).

We prove that we can find a refined partition within line 24. When Compare((u,w), (S, S′′), (X,Y ))
is not true, then one call to Uncover(X,Y, S \ X,S′′ \ Y ) returns a pair (x, y) with x ≻ y (or
vice versa) and a witness (P, P ′) ∈ Sx,y (or (P, P ′) ∈ Sy,x) (as shown within Lemma 5.7).
Since x and y are from the same indifference class of T , namely Tik , the algorithm can call
NewCut(T , (x, y), (P, P ′)) and obtain a refined partition.

We continue with the situation in line 29. When Compare((u,w), (S, S′′), ({z}, {w′})) is not true,
then a call to Uncover({z}, {w′}, S \ {z}, S′′ \ {w′}) returns the pair (z, w′) (or (w′, z)) and a
witness (P, P ′) ∈ Sz,w′ (or (P, P ′) ∈ Sw′,z). Since z and w′ are from the same indifference class of
T , namely Tik , the algorithm can call NewCut(T , (z, w′), (P, P ′)) and obtain a refined partition.

We turn to prove that we can find a refined partition within line 35. From (Q,Q′) ̸∈ Su,w we
know that either (i) Q ∪ {w} ≻ Q′ ∪ {u} or (ii) Q′ ∪ {w} ≻ Q ∪ {u} while both are not
possible as u ≻ w. First, assume that (i) holds. From (S, S′′) ∈ Su,w we get in particular that
(iii) S′′∪{u} ≻ S∪{w} holds. Rewriting (i) as πw̄,w(W1)∪S\Z∪{w} ≻ Z∪S′′\πw̄,w(W1)∪{u}
and (iii) as πw̄,w(W1) ∪ S′′ \ πw̄,w(W1) ∪ {u} ≻ Z ∪ S \ Z ∪ {w} establishes that we can call
Uncover(πw̄,w(W1), Z, S

′′ \ πw̄,w(W1) ∪ {u}, S \ Z ∪ {w}) which returns a pair (ŵ, ẑ) with
ŵ ∈ πw̄,w(W1) and ẑ ∈ Z together with a witness for their relation. As ŵ and ẑ are from the same
indifference class of T we can call NewCut to refine the partition. The case when (ii) follows by an
analogous argument.

Lastly, we show that we can find a refined partition within line 40.
Compare((u,w), (Q,Q′), ({w′}, {z})) is a valid query as, for starters, w′ ∈ Q and z ∈ Q′. More-
over, (Q,Q′) ∈ Su,w. Hence, if Compare returns False, then Uncover({w′}, {z}, Q\{w′}, Q′\{z})
returns the pair (w′, z) (or (z, w′)) together with a witness from Sw′,z (or Sz,w′). As z and w′ are
from the same equivalence class of T , we can call the NewCut and obtain a refined partition.

Part II. We now show that the set returned by CondorcetWinning(T ) is indeed a Condorcet
winning team. If, at some point of the algorithm ik ̸= i2k, then the statement follows from Lemma C.6.
Otherwise, the algorithm returns U ∪X which implies that within the last call of CondorcetWinning
none of the if conditions was satisfied. We show in the following that this implies that U ∪X is a
Condorcet winning team.

We define

w∗
1 = argmax

w∈W1∪{w̄}
v(w),

w∗
2 = argmax

w∈W1∪{w̄}\{w∗
1}

v(w), and

u∗ = argmin
u∈T̄∩U1

v(u).

Moreover, ϵ1 = v(u∗)− v(w∗
1) and ϵ2 = v(u∗)− v(w∗

2).

We claim that

(i) |v(X)− v(Y )| < ϵ1, and

(ii) |v(a)− v(b)| < ϵ2 for all a ∈ Y ∪W and b ∈ Z.

For (i) observe that there was a point within the iteration of the algorithm when u = u∗ and w = w∗
1 .

Moreover, the algorithm called Compare((u,w), (S, S′′), (X,Y )) which returned true. As we have
argued for the subroutine Compare, this implies ϵ1 = v(u∗)− v(w∗

1) > |v(X)− v(Y )|.
To show (ii), we distinguish three cases. Let a ∈ Y ∪W and z ∈ Z.

Case 1. a = w∗
1 . Then, there was a point within the iteration of the algorithm when u = u∗, w =

w∗
2 , q = w∗

1 = a and z = b. As Compare((u,w), (S, S′), ({z}, {q})) returned true in line 28, we

33



know that
|v(a)− v(b)| < v(u∗)− v(w∗

2) = ϵ2.

Case 2. a ̸= w∗
1 , a ∈ S. Then, there was a point within the iteration of the algorithm when

u = u∗, w = w∗
1 , q = a and z = b. As Compare((u,w), (S, S′), ({z}, {q})) returned true in line

28, we know that
|v(a)− v(b)| < v(u∗)− v(w∗

1) = ϵ1 < ϵ2.

Case 3. a ̸= w∗
1 , a ∈ S′. Then, there was a point within the iteration of the algorithm when

u = u∗, w = w∗
1 , q = a and z = b. As Compare((u,w), (Q,Q′), ({z}, {q})) returned true in line

39, we know that
|v(a)− v(b)| < v(u∗)− v(w∗

1) = ϵ1 < ϵ2.

Lastly, we show that (i) and (ii) suffice to prove that U ∪X is a Condorcet winning team. To this end
let B∗ be the best response against U ∪X . Observe that B∗ ⊆ Y ∪W ∪ Z.

We start by showing

v(U ∪X)− v(W ∪ Y )

= v(U1 ∪ {ū} \ {u∗}) + v(u∗) + v(U2 \ {ū}) + v(X)

− v(w∗
1)− v(W1 ∪ {w̄} \ {w∗

1})− v(W2 \ {w̄})− v(Y )

= v(X)− v(Y ) + v(u∗)− v(w∗
1) + v(U1 ∪ {ū} \ {u∗})

− v(W1 ∪ {w̄} \ {w∗
1}) + v(U2 \ {ū})− v(W2 \ {w̄})

> −ϵ1 + v(u∗)− v(w∗
1) + v(U1 ∪ {ū} \ {u∗})

− v(W1 ∪ {w̄} \ {w∗
1}) + v(U2 \ {ū})− v(W2 \ {w̄})

> −ϵ1 + ϵ1 + v(U1 ∪ {ū} \ {u∗})− v(W1 ∪ {w̄} \ {w∗
1}) + v(U2 \ {ū})− v(W2 \ {w̄})

> −ϵ1 + ϵ1 + |Z| · ϵ2 + v(U2 \ {ū})− v(W2 \ {w̄})
> −ϵ1 + ϵ1 + |Z| · ϵ2 + 0

= |Z| · ϵ2.

The first inequality follows by (i), the second by the definition of ϵ1, the third by the definition of ϵ2
and the fact that |u(U1 ∪ {ū} \ {u∗})| = |v(W2 ∪ {w̄} \ {w∗

1})| = |Z|, and the last by the fact that
U2 ▷ W2.

In addition, we get

v(W ∪ Y )− v(B∗) = v(W ∪ Y \B∗)− v(B∗ ∩ Z)

> −|Z| · ϵ2,

where the inequality follows from the fact that |v(W ∪ Y )| = |v(B∗ ∩ Z)| < |Z| and (ii).

Summing up the two inequalities yields

v(U ∪X)− v(B∗) > 0,

which concludes this part of the proof.

Part III. It remains to argue about the number of duels performed by CondorcetWinning1 until it
calls CondorcetWinning2 or returns a team. We first observe that the partition T can be refined at
most O(k) times. Also, the number of calls to Uncover can be bounded by O(k), since, Uncover
is either called just before a refinement (hidden within any of the lines saying “refinedPartition”)
or within line 15. In the following, we will therefore bound the number of duels done within one
recursive call of CondorcetWinning1. To this end, observe that checking whether some tuple is a
subsets witness as well as calling Compare requires O(1) duels. Clearly, the number of times these
operations are performed within one recursive call (before the next call is initiated) can be bounded
by O(k4). Putting all of this together yields that the number of duels can be bounded by O(k5).

34



Algorithm 8 CordorcetWinning2
1: Input: a partition of [n] into T1 ▷ T2 ▷ · · · ▷ Tℓ with ik ̸= i2k
2: Output: a CondorcetWinning Team
3: j ← min{k − |T<ik |, |T≤ik | − k}
4: Set X and Y to be two disjoint, j-sized subsets of Tik
5: Set W ← Tik \X \ Y
6: Set L← ∅
7: (∗) Set Z to be a subset of Ti2k \ L of size 2k − |T<i2k |
8: while |L| < |T≤i2k | − 2k + 1 do
9: if |T≤ik | − k < k − |T<ik | then

10: U ← T<ik ∪W, V ← (T>ik ∩ T<i2k) ∪ Z
11: else
12: U ← T<ik , V ←W ∪ (T>ik ∩ T<i2k) ∪ Z
13: end if
14: if V ∪ Y ≻ U ∪X or V ∪X ≻ U ∪ Y then
15: return CondorcetWinning(refinedPartition)
16: end if
17: (u, v), (S, S′)← Uncover(U, V,X, Y )
18: if Compare((u, v), (S, S′), (X,Y )) not true then
19: return CondorcetWinning(refinedPartition)
20: end if
21: if v ∈ Z then
22: L← L ∪ {v}, go to (∗)
23: else
24: return U ∪X
25: end if
26: end while
27: return U ∪X

CondorcetWinning2 We continue by formalizing the second case of the algorithm, which is formal-
ized within Algorithm 7. Since the approach is significantly easier than the one of CondorcetWinning1,
we directly give the proof.

Lemma C.6. After performing O(k2 · log(k)) many duels, CondorcetWinning2 has output a Con-
dorcet winning team.

Proof. We start by showing that the two duels in line 14 are feasible. To this end observe that U, V,X
and Y are disjoint by construction. To argue about their cardinalities, we consider the two cases of
the if condition. First, assume |T≤ik | − k < k − |T<ik |. Then

|U | = |T<ik |+ |Tik | − 2j = |T≤ik | − (|T≤ik | − k)− j = k − j.

As |X| = |Y | = j, we get that |U |+ |X| = |U |+ |Y | = k. Similarly, for the other case, we have

|V | = |T<i2k | − |T≤ik |+ |Z| = |T<i2k | − |T≤ik |+ 2k = |T<ik | = k + k − |Tik | = k − j.

Hence, also |U |+ |X| = |U |+ |Y | = k.

Next, we show that we can find a refined partition in line 15. Assume wlog that V ∪ Y ≻ U ∪X
holds and observe that both statements cannot be true as U ▷ V by construction. Hence, we have
U ∪ Y ≻ V ∪X which implies that we can call Uncover(Y,X,U,V) which returns a pair (y, x)
as well as a witness from Sy,x (or Sx,y). Since x and y are from the same indifference class of T ,
namely Tik , we can call the NewCut subroutine and obtain a refined partition.

The call to Uncover in line 17 is feasible, as the non-satisfaction of the if condition implies that
U ∪X ≻ V ∪ Y and U ∪ Y ≻ V ∪X .

In line 19 we can refine the partition T , as, if Compare((u, v), (S, S′), (X,Y )) does not return true,
then Uncover(X,Y, S \X,S′ \ Y ) returns a pair (x, y) with x ∈ X and y ∈ Y (or (y, x)) together
with a witness from Sx,y (or Sy,x). Since x and y are both from the same indifference class of T ,
namely Tik , we can refine T by calling the NewCut subroutine.

35



Lastly, we show that U ∪X is a Condorcet winning team when the algorithm reaches line 24 or line
27. We first discuss line 24. First, observe that U ▷ V, u ∈ U , v ∈ V and (S, S′) is a witness for their
relation, that is, (S, S′) ∈ Suv. Moreover, since Compare((u, v), (S, S′), (X,Y )) is true, we know
that

v(u)− v(v) > |v(X)− v(Y )|. (12)
Additionally we know that v ∈ V \ Z, which implies that v ∈ T<i2k . Hence, v is in particular
contained in the best response against U ∪ X . Since Y is also guaranteed to be within the best
response, we can denote the best response by V ′ ∪ Y . Using eq. (12) and the fact that U ▷ V ′, we get

v(U ∪X)− v(V ′ ∪ Y ) = v(U \ {u}) + v(u) + v(X)− v(V ′ \ {v})− v(v)− v(Y )

> v(U \ {u})− v(V ′ \ {v}) > 0,

showing that U ∪X ≻ V ′ ∪ Y .

Now, consider the situation in line 27. This implies that the list L is of length |T≤i2k | − 2k + 1 and
for each v ∈ L there exists u ∈ U such that

v(u)− v(v) > |v(X)− v(Y )|. (13)

Again, the best response against U ∪X contains Y . Denote the best response by V ′ ∪ Y . By the
size of L we know that V ′ ∩ L ̸= ∅. Let v be a node in the intersection and u be the node for
which the algorithm has proven eq. (13). Due to the same argumentation as before, U ▷ V ′ and
v(u′)− v(v′) > v(X)− v(Y ) implies U ∪X ≻ V ′ ∪ Y .

It remains to argue about the number of duels performed by CondorcetWinning2. Again, it is clear
that the partition T can be refined at most O(k) times. Per refinement, the is one additional call to
Uncover which is bounded by O(log(k)) duels. Moreover, the iterations of the while loop can be
bounded by O(k). Within one iteration the algorithm performs Compare (requiring O(1) duels) and
Uncover (requiring O(log(k)) duels). Putting everything together, the number of duels can hence be
bounded by O(k2 log(k)).

Putting Lemma C.5 and Lemma C.6 together clearly yields the proof of Lemma 5.8.
Lemma 5.8. For every instance with O(k) players, after performing O(k5) many duels, Con-
dorcetWinning1 has identified a Condorcet winning team. CondorcetWinning2 identifies a Condorcet
winning team after O(k2 log(k)) duels.

Extension to a stochastic environment In the following we sketch how we can reduce any
stochastic instance satisfying |PA,B − 1/2| ∈ [1/2 + θ, 1] to our deterministic setting. To achieve
such a reduction, simulate each deterministic duel by O( lnm/δ

θ2 ) stochastic duels to determine the
duel’s winner with probability at least 1−δ/m, whereO(m) is the sample complexity of an algorithm
that finds a Condorcet winning team in the deterministic case. An invocation of Chernoff-Hoeffding
concentration bound yields that each duel’s winner is correctly determined by this simulation with
probability at least 1− δ/m, and applying union bound over the total number of duels results in an
algorithm that requiresO(m lnm/δ

θ2 ) team duels to identify a Condorcet winning team with probability
at least 1− δ.

D Algorithms and Proofs of Section 6

Regret Bound We will now show a regret bound of O(n(∆−2(log(T ) + log log∆−1)) for team
duels. Using the second part of Theorem 4.5, we can choose δ = 1/(Tn) and derive a regret bound
of

RT = (1−(Tn)−1) ·n(∆−2(log(T )+log log∆−1)+T
1

Tn
= O(n(∆−2(log(T )+log log∆−1)).

This follows from the SST of the distinguishabilities (Lemma 4.2) implies ∆i ≥ ∆ for all i ∈ [n].

Lower Bounds We show that in the deterministic setting with additive total orders, an algorithm
needs to perform at least n− 2k duels in order to identify a Condorcet winning team. Clearly, this
result carries over to the more general stochastic setting.

36



Theorem D.1. In the deterministic setting with additive total orders, any algorithm identifying a
Condorcet winning team performs at least n− 2k duels.

Proof. Consider an adversary that fixes, over time, a reverse lexicographical order, i.e., a duel is
decided against the worst player participating. When the algorithm performs its first duel, the adver-
sary picks an arbitrary player from the duel, makes him player n and answer the query accordingly.
Then, whenever the algorithm performs a duel containing a player which has already been fixed,
the adversary decides the duel against the worst fixed player participating. Otherwise, he picks an
arbitrary player from the duel and fixes him to become player n− t, where t is the number of so far
fixed players. As long as t < n− 2k, the algorithm cannot identify a Condorcet winning team.

Observe that the described order is additive total, as it can be realized by assigning strongly decreasing
values to the players.

Observe that, when k is small (i.e. constant), our upper and lower bounds match. Deriving stronger
lower bounds for our setting, especially in dependency on the team size, is an interesting question for
future work.

E Additive Total Orders

In the following we provide a sufficient condition for assigning values to players in a way that
complies with a total order on teams, assuming that each team has value of the cumulative values of
it’s players and that team A is better than team B if and only if the value of A is larger than the value
of B. Formally:

Given: A set of players [n] and a total order ≻ on the subsets of size k.

Question: Do there exist values for the players representing this order? Or more precisely, does the
following system of linear inequalities have a feasible solution?

We denote define D = {(A,B) | A,B are teams, A ≻ B}.

∑
b∈B

xb −
∑
a∈A

xa ≤ −1 for all (A,B) ∈ D

xa ≥ 0 for all a ∈ [n]

We remark that, alternatively to −1 on the right hand side, we could have chosen any other negative
number.

The following is a variant of Farkas Lemma:

Lemma E.1 (Farkas’ Lemma (Farkas, 1902)). Let n,m ∈ N, A ∈ Rn×m and b ∈ Rm. Then, exactly
one of the following is true.

1. ∃ x ∈ Rn, Ax ≤ b, x ≥ 0

2. ∃ y ∈ Rm, yTA ≥ 0, y ≥ 0 and yT b < 0.

Imagine the system above in matrix form Ax, then the system yTA ≥ 0, yT b < 0, y ≥ 0 looks as
follows:

∑
(A,B)∈D:i∈B

yAB −
∑

(A,B)∈D:i∈A

yAB ≥ 0 for all players i ∈ [n]

yAB ≥ 0 for all (A,B) ∈ D∑
(A,B)∈D

yAB > 0

37



Assume the second system does have a feasible solution y ≥ 0. In particular, there exists one pair
A ≻ B for which yAB > 0. We can assume wlog that this solution is rational and by scaling it up
that it is integer.

We define the following condition:

Condition (*) There exist A = {A1, . . . , Am} and B = {B1, . . . , Bm} satisfying the following two
conditions:

(i) Aj ≻ Bj for all j ∈ [m]

(ii) Let nA
i be the number of times that player i is included in some element of A. Define nB

i

analogously. Then, nA
i = nB

i for all players i ∈ [n].
Claim E.2. The second system of linear inequalities has a feasible solution if and only if (∗) is
satisfied.

Proof. “⇒ ” Assume the second system has a feasible (and wlog integral) solution y. We construct
A and B as follows: For each pair A ≻ B for which yAB > 0, add exactly yAB copies of A and B to
A and B, respectively. The first constraints for condition (∗) is clearly satisfied. Now, assume for
contradiction that there exists a player i ∈ [n] for which nA

i > nB
i holds. Then, we get∑

(A,B)∈D:i∈B

yAB −
∑

(A,B)∈D:i∈A

yAB = nB
i − nA

i < 0,

a contradiction to the feasibility of y. On the other hand, assume that there exists a player i ∈ [n] for
which nA

i < nB
i holds. Observe that∑

j∈[n]

nA
j =

∑
j∈[n]

nB
j = |A|k

and hence ∑
j∈[n]\{i}

nA
j >

∑
j∈[n]\{i}

nB
j ,

which implies that there exists some i′ ∈ [n] \ {i} with nA
i′ > nB

i′ , a contradiction.

“ ⇐ ” Assume that there exist A and B satisfying condition (∗). Then, set yAj ,Bj
= |{q ∈ [m] :

(Aq, Bq) = (Aj , Bj)}| for all j ∈ [m] and yA,B = 0 for all other duels. This is a feasible solution to
the second system of inequalities.

This directly yields the sufficient condition for a total order to be representable by values.
Corollary E.3. There exists a solution to the first system of inequalities if and only if condition (∗)
does not hold.

References
Farkas, J. (1902). Theorie der einfachen ungleichungen. Journal für die reine und angewandte

Mathematik, 1902(124), 1–27.

Yue, Y., Broder, J., Kleinberg, R., & Joachims, T. (2012). The k-armed dueling bandits problem.
Journal of Computer and System Sciences, 78(5), 1538 – 1556.

38


	Extended Version and Proofs of Section 3
	Extended Version and Proofs of Section 4
	Algorithms and Proofs of Section 5
	Algorithms and Proofs of Section 6
	Additive Total Orders

