
Under review as a conference paper at ICLR 2024

DIFUSCO-LNS: DIFFUSION-GUIDED LARGE
NEIGHBOURHOOD SEARCH FOR INTEGER LINEAR
PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

Integer Linear Programming (ILP) is a powerful and flexible framework for mod-
eling and solving a variety of combinatorial optimization problems. This pa-
per introduces a novel ILP solver, namely DIFUSCO-LNS, which combines the
strengths of carefully engineered traditional solvers in symbolic reasoning and
the generative power of a neural diffusion model in graph-based learning for the
Large Neighborhood Search (LNS) approach. Our diffusion model treats the de-
stroy policy in LNS as a generative problem in the discrete {0, 1}-vector space
and is trained to imitate the high-quality Local Branching (LB) destroy heuristic
through iterative denoising. Specifically, this addresses the unimodal limitation
of other neural LNS solvers with its capability to capture the multimodal nature
of optimal policies during variable selection. Our evaluations span four represen-
tative MIP problems: MIS, CA, SC, and MVC. Experimental results reveal that
DIFUSCO-LNS substantially surpasses prior neural LNS solvers.

1 INTRODUCTION

Combinatorial Optimization (CO) problems (including NP-complete or NP-hard ones) present a set
of fundamental challenges in computer science for decades (Papadimitriou & Steiglitz, 1998). Many
of those problems can be formulated in a generic Integer Linear Programming (ILP) framework,
including supply chain management, logistics optimization (Chopra & Meindl, 2001), workforce
scheduling (Ernst et al., 2004), financial portfolios (Rubinstein, 2002; Lobo et al., 2007), compiler
optimization (Trofin et al., 2021; Zheng et al., 2022), bioinformatic problems (Gusfield, 1997), and
more. Classic ILP solvers typically conduct a tree-style search with the Branch-and-Bound (BnB)
algorithm (Land & Doig, 2010), which finds the exact solution by gradually reducing and finally
closing the gap between the primal (upper) and dual (lower) bounds of the searched solutions. Many
state-of-the-art open-source and commercial ILP solvers are of this kind, including SCIP (Achter-
berg, 2009), CPLEX (Cplex, 2009), and Gurobi (Gurobi Optimization, 2021). However, when the
problems are very large, completely closing the primal-dual gap can be intractable. Hence, solvers
for large ILP problems have been shifted efforts towards primal heuristics (Berthold, 2006b), which
are designed for finding the best possible solutions within a limited time window. That is, those are
primal ILP solvers, which do not guarantee to find the optimal solutions. Our work in this paper
belongs to the category of primal solvers.

Large Neighborhood Search (LNS) is a heuristic-driven strategy that can find high-quality solutions
much faster than pure BnB for large ILP problems (Ahuja et al., 2002). The process starts from an
initial feasible solution, which is typically obtained using BnB with a limited time budget. Then
the system iteratively revises the current solution by selecting a subset of the variables as the unas-
signed (or destroyed) ones in the next cycle of optimization while keeping the remaining variables
unchanged. Heuristics used in such a neighborhood selection are called the destroy heuristics. How
to obtain good heuristics for effective neighborhood selection has been a central focus of LNS-based
ILP solvers.

Hand-crafted destroy heuristics include randomized (Ahuja et al., 2002), Local Branching (LB)
(Fischetti & Lodi, 2003b), and LB-RELAX (Huang et al., 2023b). The common limitation of those
methods is their heavy dependencies on the availability of domain-expert knowledge, which is costly

1

Under review as a conference paper at ICLR 2024

Figure 1: Overview of DIFUSCO-LNS’s model framework.

to obtain, difficult to generalize across problems/domains, and unavoidably subjective sometimes.
A better alternative, obviously, is to have a data-driven approach that can automatically learn the
effective destroy heuristics from a training set of massive problem instances accompanied with high-
quality (but not necessarily optimal) solutions. The recent development of neural network-based
LNS methods has shown significant potential because they can learn from vast amounts of data.
This ability allows them to identify complex patterns and relationships in combinatorial optimization
problems, leading to the generation of more nuanced and effective destroy heuristics, surpassing the
capabilities of traditional static methods.

Representative neural LNS methods include those based on Imitation Learning (IL-LNS) (Song
et al., 2020b; Sonnerat et al., 2021), Reinforcement Learning (RL-LNS) (Nair et al., 2020a; Wu et al.,
2021), and Contrastive Learning (CL-LNS) (Huang et al., 2023c). These methods essentially try to
discover a good destroy policy for each instance ILP problem by predicting a discrete vector d ∈
{0, 1}∥V∥ with a conditional independence assumption among the variables. Here, V is the full set of
candidate variables,

∑
di = k is the pre-defined size of the selected (or destroyed) neighborhood,

and di ∈ {0, 1} indicates whether or not the ith variable is included in the neighborhood. The
goal of prediction is to guide the search for optimal solutions being focused on the most promising
sub-spaces of the feasible candidates. A fundamental limitation of the aforementioned neural LNS
methods is in their implicit unimodal assumption in formulating the destroy policies. That is, it
ignores the fact that multiple (near)-optimal destroy policies can co-exist with different subsets of
destroyed variables (Li et al., 2018). In other words, those methods cannot properly handle the
multimodal nature of the destroy heuristics in LNS. While this limitation is partially alleviated by
reinforcement learning (Wu et al., 2021) and contrastive learning (Huang et al., 2023c), the current
solutions still suffer severely from poor utilization of powerful neural networks due to the ineffective
unimodal training.

In this paper, we address the above challenge/limitation from a new angle. We introduce DIFUSCO-
LNS, as a pioneering effort to adapt the highly successful neural diffusion models from computer
vision (Ho et al., 2020b; Song et al., 2020c; Song & Ermon, 2020) to the generation of effective
destroy heuristics for LNS. Notably, neural diffusion models have also demonstrated proficiency in
solving some other CO problems (Graikos et al., 2022; Sun & Yang, 2023; Huang et al., 2023a),
but for using a probabilistic diffusion approach to solve generic Integer Linear Programming (ILP)
problems, DIFUSCO-LNS is the first attempt, to our knowledge. It overcomes the limitation of pre-
vious neural LNS solvers with the power of handling the multimodal nature of high-quality destroy
policies, in particular. Our diffusion model treats the destroy policy in LNS as a generative problem
in the discrete {0, 1}-vector space and is trained to imitate the high-quality Local Branching (LB)
destroy heuristic through iterative denoising.

Our empirical evaluation demonstrates that DIFUSCO-LNS achieves a better or comparable perfor-
mance against both neural baselines and traditional heuristics over four different CO benchmarks on
multiple metrics. It also shows even stronger transfer performance (trained on small instances and
tested on larger ones) than the state-of-the-art neural LNS method.

2

Under review as a conference paper at ICLR 2024

2 METHOD

2.1 PRELIMINARIES

Let us start with a brief outline of the related background of ILP and the techniques of LNS.

Integer Linear Program ILP is a type of discrete optimization problem whose variables are sub-
ject to integrality constraints. The general form of an ILP problem could be expressed as

min c⊤x

s.t. Ax ≤ b, x ∈ Zn,
(1)

where x = (x1, · · · ,xn)
⊤ is the vector of decision variables, c ∈ Rn is the vector of objective

coefficients, A ∈ Rm×n and b ∈ Rn represent the constraint coefficients . The size of an ILP
problem is typically measured by its number of variables (n) and constraints (m).

Neural Large Neighborhood Search LNS is a process for iteratively improving the solution
found by the system currently. It starts with an initial feasible solution x0, which is typically ob-
tained by running a traditional symbolic solver with a limited time budget. In its ith iteration for
i = 0, 1, 2, . . . , I , the system heuristically chooses a subset of the decision variables in the current
solution xi as the destroyed (or unassigned) subset, and re-optimizes the next solution xi+1 over the
destroyed variables while keeping the values of other variables unchanged. The re-optimization step
is typically carried out by an off-the-shelf solver, and most research efforts in LNS have been fo-
cused on how to obtain good heuristics for the destroying part. Most neural LNS methods, including
our proposed new approach in this paper, are focused on automated learning of such heuristics in a
data-driven manner. As for the re-optimization part, we use the open-source SCIP solver (Achter-
berg, 2009) as the default symbolic solver. We denote the intermediate iteration state of LNS as
si =

(
A,b, c,xi

)
.

Local Branching Local branching (LB) is proposed by Fischetti & Lodi (2003a) as a destroy
policy heuristic (not a neural approach) for Large Neighborhood Search. It formulates the optimal
neighborhood selection for LNS as another ILP problem, and searches for the next optimal solution
xi+1 inside a Hamming ball with the radius of ki from the current incumbent solution xi. If all the
decision variables are binary, solving LB is equivalent to solving the original ILP with additional
constraint

∑n
i=1(1−xi

j)xj+
∑n

j=1 x
i(1−xj) ≤ ki. That is, LB itself is computationally expensive

and could be practically intractable for finding optimal solutions in large-scale ILP. Therefore, it is
essential to train a neural network to approximate the decisions made by LB with a much lower
computational cost , thereby achieving real-world acceleration.

2.2 DIFUSCO-LNS

The goal of the neural destroy heuristic is to predict the destroy policy such that the new objective
after the neighborhood search is maximized. In this paper, we adopt the supervised learning (i.e.,
imitation learning) scheme of neural LNS solvers. Following previous work (Sonnerat et al., 2021;
Huang et al., 2023c), we use Local Branching (LB) as the expert heuristic to collect optimal (or
high-quality) destroy policies.

We describe our approach in four parts: 1) probabilistic formulation of the LNS destroy policies,
2) diffusion-based modeling of destroy policies, 3) architecture of the policy neural network, and 4)
automated generation of training data with time-constrained Local Branching.

Problem Definition We formulate the destroy policy of choosing the subset Vi = {xi
j1
, · · · ,xi

jk
}

as a discrete vector di ∈ {0, 1}∥V∥, where V is the full set of variables,
∑

dij = ki is the neigh-
borhood size, and dji denotes the inclusion of the jth variable in the destroyed neighborhood at
the ith LNS iteration. This allows us to formulate the destroy heuristic as a generative modeling
problem, where we aim to maximize the likelihood of high-quality solutions. Let Di

hq be the set of
high-quality solutions in the binary vector form, our loss function L is defined as:

L(si,θ) = Edhq∈Di
hq(s

i)

[
− log pθ(dhq|si)

]
(2)

3

Under review as a conference paper at ICLR 2024

For brevity, we omit the conditional notations of si and denote dhq as d0 as a convention for all
formulas in the context of diffusion models.

Generative Policy Modeling Following previous work on learning diffusion models that directly
generate solutions for combinatorial optimization problems (Sun & Yang, 2023), we formulate the
generation of the high-quality solution d0 as a discrete diffusion process (Austin et al., 2021; Hooge-
boom et al., 2021).

The diffusion models first define a forward process q that gradually corrupts1 the data into noised
latent variables d1, . . . ,dT : q(d1:T |d0) =

∏T
t=1 q(dt|dt−1). In discrete diffusion models with

multinomial noises (Austin et al., 2021; Hoogeboom et al., 2021), the forward process is defined

as: q(dt|dt−1) = Cat
(
dt;p = d̃t−1Qt

)
, where Qt =

[
(1− βt

dm) βt
dm

βt
dm (1− βt

dm)

]
is the transition

probability matrix; d̃ ∈ {0, 1}N×2 is converted from the original vector d ∈ {0, 1}N with a one-
hot vector per row; and d̃Q computes a row-wise vector-matrix product. Here, βt

dm denotes the
corruption ratio. Also, we want

∏T
t=1(1− βt

dm) ≈ 0 such that dT ∼ Uniform(·).
Next, a reverse (denoising) process is learned to gradually denoise the latent variables toward the
data distribution, such that the distribution of d0 is formed as a joint distribution with latent variables:

pθ(d0:T) = pT (dT)

T∏
t=1

pθ(dt−1|dt) (3)

where pθ denotes a single reverse step parameterized by a neural network. According to Austin et al.
(2021), the denoising neural network is trained to predict the clean data pθ(d̃0|dt), and the reverse
process is obtained by as an expectation over the posterior q(dt−1|dt,d0):

pθ(dt−1|dt) =
∑
d̃

q(dt−1|dt, d̃0)pθ(d̃0|dt) (4)

By calculating the t-step marginal as: q(dt|d0) = Cat
(
dt;p = d̃0Qt

)
, where Qt =

Q1Q2 . . .Qt, the posterior we need at time t− 1 can be obtained by Bayes’ theorem:

q(dt−1|dt,d0) =
q(dt|dt−1,d0)q(dt−1|d0)

q(dt|d0)
= Cat

(
dt−1;p =

d̃tQ
⊤
t ⊙ d̃0Qt−1

d̃0Qtd̃
⊤
t

)
, (5)

where ⊙ denotes the element-wise multiplication, and d0 will be substituted by the predicted d̃0 in
the reverse process.

Policy Network Recall that the general form of an ILP problem is represented by

min c⊤x s.t. Ax ≤ b, x ∈ Zn. (6)

In DIFUSCO-LNS, the learned denoising neural network needs to encode the information of the last
LNS iteration state si =

(
A,b, c,xi

)
and the diffusion hidden states di

t, and predict the high-quality
destroy policy d0 as the output.

Expanding on recent advancements in learning for ILPs (Gasse et al., 2019; Sonnerat et al., 2021;
Wu et al., 2021; Huang et al., 2023c), we adopt a bipartite graph representation to encode LNS
state st. This graph, composed of n + m nodes, delineates the n variables and m constraints,
with edges indicating non-zero coefficients in constraints. Node and edge features are inspired by
Gasse et al. (2019). Moreover, a fixed-size window (size 3 in our experiments) of recent incumbent
values enriches variable node features. Building upon previous work (Sonnerat et al., 2021; Huang
et al., 2023c), we incorporate additional features from Khalil et al. (2017a) calculated at the BnB
root node. The binary diffusion hidden state di

t is integrated as variable features with a positional
encoding scheme (Vaswani et al., 2017; Sun & Yang, 2023).

1In the context of this work, we adopt specific terminologies for clarity: the destructive and reconstructive
processes in LNS are termed as destroy and repair respectively, while the processes in diffusion models are
designated as corrupt and denoise.

4

Under review as a conference paper at ICLR 2024

Figure 2: Architecture of the policy network

Following previous work (Huang et al., 2023c), the neural architecture of pθ is a graph attention
network (GAT; Brody et al. (2021)). The detailed architecture design and hyper-parameters are
described in the appendix.

High-Quality Destroy Policy Collection When collecting the training data of high-quality de-
stroy policies, given an intermediate iteration state si, we use LB to find the (near)-optimal destroy
policy Vi with a neighborhood size ki and a given time limit. If LB does not find Vi that leads to im-
proved incumbent solution xi+1, we increase the neighborhood size in an adaptive manner (Huang
et al., 2023b;c): At iteration t, when a better incumbent solution is found by LNS, the neighborhood
size will be kept the same ki+1 = ki, otherwise, it will be enlarged as ki+1 = min{γlns ·ki, βlns ·n},
where γlns > 1 is the size growing rate and βlns ∈ (0, 1] controls the upper bound of the neighbor-
hood size as a fraction of the total number of variables.

Upon solving the LB ILP, SCIP not only yields the (near)-optimal solution but also dumps the
intermediate solutions encountered throughout the solving process. We target those intermediate
solutions, denoted as x′, that yield an enhancement in the objective value no less than a fraction αp

of the maximum observed improvement, formalized as:

cT(xi − x′) ≥ αhq · cT(xi − xi+1). (7)

Such solutions are earmarked as high-quality expert policies. We impose an upper limit on the
cardinality of the high-quality solution set |St

hq| to uhq. In scenarios where the set exceeds this size,
only the leading uhq samples are retained, mitigating the potential solution degeneration. Following
Huang et al. (2023c), the parameters were chosen as αhq = 0.5 and uhq = 10.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Benchmark Datasets Following the previous evaluations in the literature (Sonnerat et al., 2021;
Huang et al., 2023c), our evaluation used 4 benchmark datasets for a variety of synthetic CO prob-
lems, as listed in Table 1. Those problems include Maximum Vertex Covering (MVC), Maximum
Independent Set (MIS), Combinatorial Auction (CA), and Set Covering (SC). We generate 1,000
small instances on each problem to collect the LB demonstrations for training. An additional 40
small instances and 40 large instances are used for evaluation, where the large instances contain
twice as many variables as the small instances. To distinguish between evaluations on instances of
varying sizes, we employ the ’-S’ and ’-L’ suffixes to indicate small and large instances respectively,
as illustrated in Table 1.

We use the same procedure in (Huang et al., 2023c) to generate the training/testing instances and
local branching demonstrations. We fix k0 as 50, 500, 200, and 50 for MVC, MIS, CA and SC
respectively. γ is fixed as 1 on all datasets for LB. We use SCIP (version 8.0.1) to resolve ILP

5

Under review as a conference paper at ICLR 2024

Table 1: Statistics for the problem instances in each dataset. The number of variables and constraints
are reported for instances in each dataset.

Small Instances Large Instances

Dataset MVC-S MIS-S CA-S SC-S MVC-L MIS-L CA-L SC-L

Variables 1,000 6,000 4,000 4,000 2,000 12,000 8,000 8,000 1
Constraints 65,100 23,977 2,675 5,000 135,100 48,027 5,353 5,000

formulated in LB and restrict the run-time limit for LB to 1 hour per iteration on each problem.
An early stopping strategy is applied if there is no better incumbent solution found in three straight
iterations.

Baselines We compare our methods to three non-neural baselines and two neural baselines fea-
tured by learning from LB, which include (1) BnB: the standard branch-and-bound algorithm used
in SCIP (version 8.0.1), (2) Random-LNS: an LNS algorithm selecting the neighborhood with uni-
form sampling without replacement (3) LB-relax: an LNS algorithm which selects the neighborhood
with LB-relax heuristic (Huang et al., 2023b) (4) IL-LNS: a neural LNS algorithm which learns LB
heuristic through imitation learning (Sonnerat et al., 2021) and (5) CL-LNS: the state-of-the-art neu-
ral LNS baseline which learns LB heuristic via contrastive learning on both positive and negative
samples (Huang et al., 2023c). We train all neural methods on the demonstration generated by LB on
small instances and evaluate them on both small and large instances in the testing set. This amounts
to in total 8 testing datasets, .

Metrics We use the common metrics2 in previous evaluations for LNS methods and related base-
lines (Sonnerat et al., 2021; Nair et al., 2020a; Huang et al., 2023c), which include

1. Primal bound c⊤x: the objective value for the feasible solution x.

2. Primal gap (Berthold (2006a)) γp(x): the normalized difference between the primal bound
and a pre-computed optimal (or best known) objective value c⊤x, defined as

γp(x) =

0, c⊤x∗ = c⊤x = 0

1, c⊤x∗ · c⊤x < 0,
|c⊤x∗−c⊤x|

max{|c⊤x∗|,|c⊤x|} , otherwise.

3. Primal integral (Berthold, 2006a): the integral of the primal gap function p(t) on the time
range [0, T]. The primal gap function p(t) is defined as the primal gap γp(xt) for the best
feasible solution xt found until time t, and 1 if no feasible solution has been found yet.

3.2 MAIN RESULTS

We evaluate all methods on the synthetic datasets for MVC, MIS, CA, and SC problems. We ba-
sically follow the hyperparameter settings in (Huang et al., 2023c). For LB-relax, IL-LNS, CL-
LNS, and DIFUSCO-LNS, we set k0 as 100, 3000, 1000, and 100 for MVC, MIS, CA, and SC
respectively. For IL-LNS, we compare the initial neighborhood size of 100 and 150 on SC and find
k0 = 150 works better in our experiment. For Random-LNS, k0 is set as 200, 3000, 1500 and 200
for MVC, MIS, CA, and SC separately. We fix γ = 1.02 and β = 0.5 in the adaptive neighborhood
size for LNS-based methods across all datasets. During the inference time, we first use SCIP to pre-
solve a feasible solution x0 prior to the formal neighborhood search. The time budget for presolving
is set as 10 seconds on all datasets except for SC-L, where we find a short-time presolving cannot
find a decent initial solution so we extend its presolving time to 30 seconds. In our final results, we
also filter out some instances that still suffer from bad initial solutions on SC-L and report the results
on the remaining 30 instances. For each LNS iteration, we restrict the run-time limit of SCIP for the
sub-ILP to 2 minutes.

2The optimal bound is calculated by the best method on each instance.

6

Under review as a conference paper at ICLR 2024

Table 2: Comparative result of all methods in the primal gap (PG) (in %) at 30-minute cutoff. We
compare the average rank in the instance level for each method across both small and large datasets
in the rightmost column. The best result is bolded on each dataset.

PG (%) ↓ PG (%) ↓ PG (%) ↓ PG (%) ↓ Avg.
Rank

Dataset MVC-S MIS-S CA-S SC-S

BnB 2.64 ± 0.36 8.09 ± 0.86 3.02 ± 0.74 2.68 ± 1.55 5.36
Random 1.02 ± 1.37 0.20 ± 0.18 6.12 ± 0.81 3.13 ± 1.50 4.50

LB-Relax 1.21 ± 1.4 1.08 ± 0.23 6.61 ± 0.98 0.93 ± 0.86 4.31
IL-LNS 0.06 ± 0.07 0.22 ± 0.15 0.34 ± 0.36 0.73 ± 0.74 2.64
CL-LNS 0.09 ± 0.13 0.24 ± 0.15 0.59 ± 0.55 0.86 ± 0.99 2.35

DIFUSCO-LNS 0.06 ± 0.08 0.05 ± 0.09 0.28 ± 0.48 0.36 ± 0.87 1.88

Dataset MVC-L MIS-L CA-L SC-L

BnB 4.15 ± 0.34 8.04 ± 0.34 15.75 ± 6.31 3.11 ± 1.78 5.54
Random 0.48 ± 0.22 0.17 ± 0.12 6.44 ± 0.78 3.61 ± 1.81 4.31

LB-Relax 0.68 ± 0.22 5.43 ± 0.26 16.94 ± 0.86 0.46 ± 0.82 4.02
IL-LNS 0.13 ± 0.13 0.13 ± 0.11 0.26 ± 0.39 1.99 ± 1.21 2.59
CL-LNS 0.10 ± 0.12 0.27 ± 0.16 0.84 ± 0.68 1.11 ± 1.22 2.46

DIFUSCO-LNS 0.09 ± 0.10 0.04 ± 0.08 0.36 ±0.43 0.77 ± 0.78 2.08

Table 3: Comparative result of all methods in the primal integral (PI) at 30-minute cutoff. We
compare the average rank in the instance level for each method across both small and large datasets
in the rightmost column. The best result is bolded on each dataset.

PI ↓ PI ↓ PI ↓ PI ↓ Avg.
Rank

Dataset MVC-S MIS-S CA-S SC-S

BnB 58.69 ± 5.64 151.27 ± 8.24 142.46 ± 31.86 89.09 ± 25.8 5.39
Random 31.07 ± 23.7 19.01 ± 3.01 131.23 ± 13.39 86.96 ± 25.5 4.64

Relax 37.61 ± 23.26 46.42 ± 4.57 164.16 ± 17.6 43.18 ± 15.26 4.23
IL-LNS 12.40 ± 1.50 17.80 ± 2.55 39.03 ± 9.48 37.21 ± 12.99 2.49
CL-LNS 13.02 ± 2.74 18.53 ± 2.61 45.60 ± 10.69 40.93 ± 15.91 2.28

DIFUSCO-LNS 12.45 ± 1.74 15.83 ± 1.86 42.81 ± 8.46 30.76 ± 14.51 1.99

Dataset MVC-L MIS-L CA-L SC-L

BnB 76.05 ± 6.05 151.05 ± 6.1 331.37 ± 34.81 125.15 ± 23.89 5.44
Random 27.45 ± 3.68 29.99 ± 2.65 147.39 ± 12.26 153.33 ± 210.22 4.19

Relax 53.62 ± 3.72 131.6 ± 4.44 330.67 ± 16.28 64.18 ± 17.60 4.10
IL-LNS 16.76 ± 2.56 35.49 ± 3.26 31.09 ± 7.19 120.07 ± 21.69 2.36
CL-LNS 16.65 ± 2.30 39.42 ± 4.07 42.64 ± 10.85 66.54 ± 23.14 2.29

DIFUSCO-LNS 16.96 ± 2.11 32.06 ± 2.94 25.64 ± 6.98 57.47 ± 15.98 2.62

We compare the primal gap (PG) and primal integral (PI) at the 30-minute cutoff of all methods in
Table 2 and Table 3, and visualize the change of the primal gap on each dataset in Figure 3. Please
refer to the Appendix for additional results in the primal bound. We find the reproduced results for
some baseline methods contradictory to the conclusion in (Huang et al., 2023c) due to the difference
in computational resources, but we ensure a fair comparison among all methods under the same
computational environment.

It can be seen that DIFUSCO-LNS achieves a better or comparable performance against all previous
baselines in both the primal gap and primal integral. We compute the average rank for each method
across either the small or large datasets, and DIFUSCO-LNS always owns the lowest average rank
in either metric. In our experiment, we notice that a higher AUC-ROC in predicting LB’s neigh-
borhood selection does not necessarily translate into an improved primal gap or primal integral.
A neighborhood selection closer to LB’s choice typically leads to a larger improvement in the pri-
mal bound in a single step, nonetheless, the induced sub-ILP from this neighborhood selection could
also take a longer time to solve. In comparison, the neighborhood selection leading to a small primal

7

Under review as a conference paper at ICLR 2024

Figure 3: The plot of the primal gap (the lower is better) as a function of runtime on all datasets.
For a more straightforward comparison between LNS-based methods and BnB, we clip the initial
presolving stage (30 seconds for SC-L and 10 seconds for others) for all methods in the plot.

Figure 4: Primal Gap for DIFUSCO-LNS with
a different number of inference diffusion steps
and inference schedulers on MIS-S.

Figure 5: Primal Gap for DIFUSCO-LNS with
a different number of inference diffusion steps
and inference schedulers on CA-S.

bound improvement may instead create a simple sub-ILP solvable in a short time. Solving multiple
such simple sub-ILPs can lead to a larger primal bound improvement in total and also a smaller
primal integral than solving a single hard sub-ILP within the same solving time. A typical exam-
ple is MIS-L where Random-LNS owns the best primal integral against all other neural methods,
although DIFUSCO-LNS achieves the better primal gap at the end of the solving. Such observation
is also consistent with the results from previous works like (Huang et al., 2023c). This explains
why DIFUSCO-LNS sometimes shows an inferior performance to some weak baselines on certain
datasets. But in most cases, DIFUSCO-LNS still makes a better prediction of the neighborhood
selection from LB and translates it into the lower primal gap and primal integral.

3.3 ABLATION STUDY

Since DIFUSCO-LNS involves more parameters than previous neural baselines, we analyze the
effect of these hyperparameters on DIFUSCO-LNS’s performance in our ablation study. We choose
its number of inference diffusion steps from the set {1, 2, 5, 10, 20, 50, 100} and compare the linear
and cosine inference schedulers on MIS-S and CA-S datasets. The primal gaps are visualized in
Figure 3.3 and 3.3.

On both datasets, the optimal performance is achieved at the number of steps less than 100. Con-
sidering that 100 steps are still affordable, DIFUSCO-LNS actually does not suffer from the addi-

8

Under review as a conference paper at ICLR 2024

tional inference time from the sampling. In fact, we have observed that 1-step inference has already
achieved a descent result on MVC, CA, and SC datasets. Besides, the performance differences
caused by different inference schedulers or different numbers of inference steps are actually well-
bounded, all inference hyperparameters can lead to a final primal gap around 10−2. This justifies
that DIFUSCO-LNS is easy to tune and insensitive to the hyperparameter choices.

4 RELATED WORK

4.1 LEARNING PRIMAL HEURISTIC FOR MILP

The primal heuristics in combinatorial optimization aim to efficiently find high-quality feasible so-
lutions. Diving and LNS are two main classes of primal heuristics and traditional solvers typically
adopt a mixture of different variants of diving and LNS. Existing neural methods for primal heuris-
tics mainly focus on the heuristics selection (Khalil et al., 2017b; Hendel et al., 2019; Chmiela et al.,
2021), neural diving (Nair et al., 2020b; Yoon, 2022; Han et al., 2023a; Paulus & Krause, 2023) and
neural LNS (Song et al., 2020a; Addanki et al., 2020; Sonnerat et al., 2021; Wu et al., 2021; Huang
et al., 2023c).

LNS iteratively refines the solution by selecting a subset of variables, the neighborhood, to optimize
at each time. Recent neural LNS methods mainly focus on the learning of neighborhood selection
and leave the optimization for an off-the-shelf solver. (Song et al., 2020a) learn to partition the vari-
ables into subsets which then sequentially serve as the neighborhood to search in LNS. Later, (Wu
et al., 2021) and (Addanki et al., 2020) propose more general RL frameworks directly predicting
the variables to optimize at each iteration. Although Song et al. (2020a) also experiment with the
imitation learning method, the training instances are obtained from random sampling which suf-
fers from poor qualities. (Sonnerat et al., 2021) thus propose to utilize a strong expert heuristic
local branching to generate high-quality demonstrations. Recently, CL-LNS (Huang et al., 2023c)
adopted contrastive learning to learn from both positive and negative samples collected by local
branching. In this work, we also aim to learn neighborhood selection from the local branching
heuristics but instead rely on more powerful diffusion models.

4.2 DISCRETE DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020a; Song &
Ermon, 2020; Nichol & Dhariwal, 2021; Karras et al., 2022) are widely used as the generative
model for continuous data, which progressively adds the Gaussian noise to the real samples and
learns the conditional denoising step in the reverse process.

Discrete diffusion models follow the same diffusion process but work on the discrete domain, such
as text (Johnson et al., 2021; He et al., 2023), sound (Yang et al., 2023), protein (Luo et al., 2022)
or molecule (Vignac et al., 2023). There are typically two ways to realize the discrete diffusion
models. One type of method keeps the discrete structure by adding binomial (Sohl-Dickstein et al.,
2015) or multinomial/categorical noise (Austin et al., 2021; Hoogeboom et al., 2021) directly to
the discrete input. The other approach instead transforms the discrete data to the continuous space
(Gong et al., 2023; Li et al., 2022; Dieleman et al., 2022; Chen et al., 2022; Han et al., 2023b) and
then applies the standard diffusion models. Recently, Sun & Yang (2023) applied a graph diffusion
model, DIFUSXO, on NP-hard problems and achieved remarkable improvement. In this work, we
extend DIFUSCO to LNS which allows a more general application on CO problems.

5 CONCLUSION

In this paper, we propose DIFUSCO-LNS, a novel ILP solver that synergistically leverages the
symbolic solving capabilities of carefully engineered traditional solvers with the generative power of
diffusion models within the Large Neighborhood Search (LNS) framework. We evaluated our model
on four representative MIP problems and found it is competitive, or outperforms the strong IL-LNS,
CL-LNS, and LB-relax baselines. In the future, we are interested in accelerating the inference
speed of diffusion models with more advanced diffusion solvers (Campbell et al., 2022; Sun et al.,

9

Under review as a conference paper at ICLR 2024

2022; Huang et al., 2023a). We are also interested in combining our LNS solver with neural diving
approaches to accelerate or improve the pre-solving quality.

REFERENCES

Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming Compu-
tation, 1:1–41, 2009.

Ravichandra Addanki, Vinod Nair, and Mohammad Alizadeh. Neural large neighborhood
search. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020. URL https:
//openreview.net/forum?id=xEQhKANoVW.

Ravindra K Ahuja, Özlem Ergun, James B Orlin, and Abraham P Punnen. A survey of very large-
scale neighborhood search techniques. Discrete Applied Mathematics, 123(1-3):75–102, 2002.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured denoising diffusion models in discrete state-spaces. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 17981–17993. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/958c530554f78bcd8e97125b70e6973d-Paper.pdf.

Timo Berthold. Primal Heuristics for Mixed Integer Programs. PhD thesis, 01 2006a.

Timo Berthold. Primal heuristics for mixed integer programs. PhD thesis, Zuse Institute Berlin
(ZIB), 2006b.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2021.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Ting Chen, Ruixiang Zhang, and Geoffrey E. Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning. ArXiv, abs/2208.04202, 2022.

Antonia Chmiela, Elias Boutros Khalil, Ambros M. Gleixner, Andrea Lodi, and Sebastian Pokutta.
Learning to schedule heuristics in branch-and-bound. In Neural Information Processing Systems,
2021. URL https://api.semanticscholar.org/CorpusID:232270119.

Sunil Chopra and Peter Meindl. Strategy, planning, and operation. Supply Chain Management, 15
(5):71–85, 2001.

IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation,
46(53):157, 2009.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data, 2022.

Andreas T Ernst, Houyuan Jiang, Mohan Krishnamoorthy, and David Sier. Staff scheduling and ros-
tering: A review of applications, methods and models. European journal of operational research,
153(1):3–27, 2004.

Matteo Fischetti and Andrea Lodi. Local branching. Mathematical Programming, 98:23–47, 2003a.
URL https://api.semanticscholar.org/CorpusID:207053937.

Matteo Fischetti and Andrea Lodi. Local branching. Mathematical programming, 98:23–47, 2003b.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. In Advances in Neural Information
Processing Systems 32, 2019.

10

https://openreview.net/forum?id=xEQhKANoVW
https://openreview.net/forum?id=xEQhKANoVW
https://proceedings.neurips.cc/paper_files/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf
https://api.semanticscholar.org/CorpusID:232270119
https://api.semanticscholar.org/CorpusID:207053937

Under review as a conference paper at ICLR 2024

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence
to sequence text generation with diffusion models. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=jQj-_
rLVXsj.

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as
plug-and-play priors. Advances in Neural Information Processing Systems, 35:14715–14728,
2022.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.

Dan Gusfield. Algorithms on stings, trees, and sequences: Computer science and computational
biology. Acm Sigact News, 28(4):41–60, 1997.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
Xiaodong Luo. A GNN-guided predict-and-search framework for mixed-integer linear program-
ming. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=pHMpgT5xWaE.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. SSD-LM: Semi-autoregressive simplex-
based diffusion language model for text generation and modular control. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 11575–11596, Toronto, Canada, July 2023b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.647. URL https://aclanthology.org/2023.
acl-long.647.

Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Dif-
fusionBERT: Improving generative masked language models with diffusion models. In Proceed-
ings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 4521–4534, Toronto, Canada, July 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.acl-long.248. URL https://aclanthology.org/2023.
acl-long.248.

Gregor Hendel, Matthias Miltenberger, and Jakob Witzig. Adaptive algorithmic behavior for solv-
ing mixed integer programs using bandit algorithms. In Bernard Fortz and Martine Labbé (eds.),
Operations Research Proceedings 2018, pp. 513–519, Cham, 2019. Springer International Pub-
lishing. ISBN 978-3-030-18500-8.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020b.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=6nbpPqUCIi7.

Junwei Huang, Zhiqing Sun, and Yiming Yang. Accelerating diffusion-based combinatorial opti-
mization solvers by progressive distillation. arXiv preprint arXiv:2308.06644, 2023a.

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Local branching
relaxation heuristics for integer linear programs. In International Conference on Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, pp. 96–113. Springer,
2023b.

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International conference
on machine learning. PMLR, 2023c.

11

https://openreview.net/forum?id=jQj-_rLVXsj
https://openreview.net/forum?id=jQj-_rLVXsj
https://openreview.net/forum?id=pHMpgT5xWaE
https://aclanthology.org/2023.acl-long.647
https://aclanthology.org/2023.acl-long.647
https://aclanthology.org/2023.acl-long.248
https://aclanthology.org/2023.acl-long.248
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://openreview.net/forum?id=6nbpPqUCIi7

Under review as a conference paper at ICLR 2024

Daniel D. Johnson, Jacob Austin, Rianne van den Berg, and Daniel Tarlow. Beyond in-place cor-
ruption: Insertion and deletion in denoising probabilistic models, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=k7FuTOWMOc7.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017a.

Elias B. Khalil, Bistra Dilkina, George L. Nemhauser, Shabbir Ahmed, and Yufen Shao. Learning
to run heuristics in tree search. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, pp. 659–666, 2017b. doi: 10.24963/ijcai.2017/92. URL
https://doi.org/10.24963/ijcai.2017/92.

Ailsa H Land and Alison G Doig. An automatic method for solving discrete programming problems.
Springer, 2010.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
LM improves controllable text generation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=3s9IrEsjLyk.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in neural information processing systems, 31, 2018.

Miguel Sousa Lobo, Maryam Fazel, and Stephen Boyd. Portfolio optimization with linear and fixed
transaction costs. Annals of Operations Research, 152:341–365, 2007.

Shitong Luo, Yufeng Su, Xingang Peng, Sheng Wang, Jian Peng, and Jianzhu Ma. Antigen-specific
antibody design and optimization with diffusion-based generative models for protein structures.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=jSorGn2Tjg.

Vinod Nair, Mohammad Alizadeh, et al. Neural large neighborhood search. In Learning Meets
Combinatorial Algorithms at NeurIPS2020, 2020a.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra
Addanki, Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena,
Yujia Li, Oriol Vinyals, and Yori Zwols. Solving mixed integer programs using neural net-
works. ArXiv, abs/2012.13349, 2020b. URL https://api.semanticscholar.org/
CorpusID:229371527.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic mod-
els. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
8162–8171. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
nichol21a.html.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and com-
plexity. Courier Corporation, 1998.

Max B. Paulus and Andreas Krause. Learning to dive in branch and bound, 2023.

Mark Rubinstein. Markowitz’s” portfolio selection”: A fifty-year retrospective. The Journal of
finance, 57(3):1041–1045, 2002.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL
https://proceedings.mlr.press/v37/sohl-dickstein15.html.

12

https://openreview.net/forum?id=k7FuTOWMOc7
https://doi.org/10.24963/ijcai.2017/92
https://openreview.net/forum?id=3s9IrEsjLyk
https://openreview.net/forum?id=jSorGn2Tjg
https://openreview.net/forum?id=jSorGn2Tjg
https://api.semanticscholar.org/CorpusID:229371527
https://api.semanticscholar.org/CorpusID:229371527
https://proceedings.mlr.press/v139/nichol21a.html
https://proceedings.mlr.press/v139/nichol21a.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html

Under review as a conference paper at ICLR 2024

Jialin Song, ravi lanka, Yisong Yue, and Bistra Dilkina. A general large neigh-
borhood search framework for solving integer linear programs. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 20012–20023. Curran Associates, Inc.,
2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf.

Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework
for solving integer linear programs. Advances in Neural Information Processing Systems, 33:
20012–20023, 2020b.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2020c.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, pp. 11895–11907, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. ArXiv, abs/2107.10201, 2021. URL
https://api.semanticscholar.org/CorpusID:236154746.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. In The Eleventh International Conference on Learning Representa-
tions, 2022.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=JV8Ff0lgVV.

Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski, and David
Li. Mlgo: a machine learning guided compiler optimizations framework. arXiv preprint
arXiv:2101.04808, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=UaAD-Nu86WX.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
for integer programming. In Advances in Neural Information Processing Systems, 2021.

Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu. Diff-
sound: Discrete diffusion model for text-to-sound generation. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 31:1720–1733, 2023. doi: 10.1109/TASLP.2023.3268730.

Taehyun Yoon. Confidence threshold neural diving, 2022.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida
Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa: Automating inter-and {Intra-
Operator} parallelism for distributed deep learning. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pp. 559–578, 2022.

13

https://proceedings.neurips.cc/paper_files/paper/2020/file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf
https://api.semanticscholar.org/CorpusID:236154746
https://openreview.net/forum?id=JV8Ff0lgVV
https://openreview.net/forum?id=UaAD-Nu86WX
https://openreview.net/forum?id=UaAD-Nu86WX

Under review as a conference paper at ICLR 2024

A PRIMAL BOUND

We plot the primal bounds in Figure 6. The comparison is not as straightforward as for the primal
gap since the primal bound does not change much on some of the datasets. But overall, we can
still observe that DIFUSCO-LNS achieves the near-optimal primal bound on most datasets and its
primal bound converges much faster.

Figure 6: The plot of the primal bound as a function of runtime on all datasets. For a more straight-
forward comparison between LNS-based methods and BnB, we clip the initial presolving stage (30
seconds for SC-L and 10 seconds for others) for all methods in the plot. Also, we remove some
results from BnB on SC-L whose primal bound found by 1 minute is much larger than the final
primal bound. This is only for visualization purposes and not conducted in the calculation of the
primal gap and primal integral.

Table 4: Comparative result of all methods in the primal bound (PB) at 30-minute cutoff. The best
result is bolded on each dataset.

PB ↓ PB ↓ PB ↓ PB ↓
Dataset MVC-S MIS-S CA-S SC-S

BnB 455.40 ± 5.64 -1953.42 ± 8.24 -112205.71 ± 31.86 173.60 ± 25.80
Random-LNS 448.04 ± 23.70 -2121.00 ± 3.01 -108626.00 ± 13.39 174.42 ± 25.50

LB-Relax 448.91 ± 23.26 -2102.22 ± 4.57 -108049.11 ± 17.60 170.55 ± 15.26
IL-LNS 443.63 ± 1.50 -2120.70 ± 2.55 -115308.56 ± 9.48 170.20 ± 12.99
CL-LNS 443.81 ± 2.74 -2120.20 ± 2.61 -115020.58 ± 10.69 170.40 ± 15.91

DIFUSCO-LNS 443.65 ± 1.74 -2124.12 ± 1.86 -115375.66 ± 8.46 169.55 ± 14.51

Dataset MVC-L MIS-L CA-L SC-L

BnB 917.87 ± 6.05 -3893.15 ± 6.10 -194586.48 ± 34.81 111.38 ± 24.62
Random-LNS 884.06 ± 3.68 -4226.42 ± 2.65 -216093.9 ± 12.26 110.94 ± 31.43

LB-Relax 885.85 ± 3.72 -4003.72 ± 4.44 -191858.19 ± 16.28 107.77 ± 17.61
IL-LNS 880.95 ± 2.56 -4228.15 ± 3.26 -230391.48 ± 7.19 109.55 ± 25.31
CL-LNS 880.74 ± 2.30 -4222.02 ± 4.07 -229031.93 ± 10.85 108.55 ± 23.70

DIFUSCO-LNS 880.65 ± 2.11 -4231.80 ± 2.94 -230142.35 ± 6.98 108.37 ± 15.98

B ABALATION ON THE SOURCE OF IMPROVEMENT

Diffusion models are generally more expressive but also suffer from a long generation time. We
attribute the success of DIFUSCO-LNS to its inherent compatibility with LNS heuristic. The sup-
plementary computational load introduced by its iterative generation is negligible when compared

14

Under review as a conference paper at ICLR 2024

to the sub-ILP solving time and the time required for preparing the input graph. We first compare
the per-iteration running time of CL-LNS and DIFUSCO-LNS in Table 5. It can be seen that except
on MIS-S, DIFUSCO-LNS does not show a clear increment in its total running time or the model
inference time, where we also consider the time for preparing the input graph a part of the model
inference time.

MVC-S MIS-S CA-S SC-S
Total ML Total ML Total ML Total ML

CL-LNS 24.98 0.18 1.97 1.02 42.02 0.49 120.81 0.69
DIFUSCO-LNS 23.01 0.18 2.83 1.90 51.29 0.50 116.36 0.71

Table 5: Per-iteration LNS running time of CL-LNS and DIFUSCO-LNS on four small datasets.
Both the total running time (Total) and the model inference time (ML) for each iteration are pre-
sented.

Based on this observation, we further verify that DIFUSCO-LNS learns a better destroy policy
than CL-LNS so it brings a larger per-iteration improvement in the primal bound on average. We
visualize the comparison in Figure 7. We plot the 10-iteration improvement on MVC-S, CA-S,
and SC-S and the 100-iteration improvement on MIS-S since the LNS typically has a much larger
number of iterations on MIS-S (greater than 500) than that on other datasets (less than 100). We
can also clearly observe that given the same number of iterations, DIFUSCO-LNS achieves a better
primal bound, which verifies our assumption that DIFUSCO-LNS learns a better destroy policy.

Figure 7: The plot of the primal bound as a function of the number of iterations, averaged over 40
instances. 100 steps are plotted for MIS-S dataset due to its large number of total steps (greater than
500) while 10 steps are plotted for others (total number of steps less than 100).

15

	Introduction
	Method
	Preliminaries
	DIFUSCO-LNS

	Experiments
	Experimental Setup
	Main Results
	Ablation Study

	Related Work
	Learning Primal Heuristic for MILP
	Discrete Diffusion Models

	Conclusion
	Primal Bound
	Abalation on the Source of Improvement

