
A Implementation Details

The implementation of OCARL is available at https://anonymous.4open.science/r/
OCARL-51BF.
Hyper-parameters for SPACE In this paper, we use SPACE for object discovery. Most hyper-
parameters are the same as the default parameters for Atari in SPACE, except that (1) we use a
smaller network to deal with 64× 64 images; (2) For Hunter, we disable the background module
in SPACE because the observations in Hunter is quite simple. (3) We set the dimension of object
representations zwhatij to be 16, and (in Crafter) zfg to be 8. The training data for SPACE is obtained
via running a random policy on Hunter-Z4C4 and Crafter for 100000 environment steps.

Hyper-parameters for PPO Our PPO implementation is based on Tianshou [35] which is purely
based on PyTorch. We adopt the default hyper-parameters in Tianshou, which are shown in Table 3.

Hyper-parameters for OCARL OCARL only introduces 2 hyper-parameter λcat (the coefficient
for Lcat defined in Eq.(3.2)) and C (the number of object categories). We set λcat = 0.01 for all
experiments, C = 4, 8 for Hunter and Crafter respectively.

Network Architecture In OCAP, we use the convolution encoder from IMPALA [7], which
consists of 3 residual blocks with 16, 32, and 32 channels, respectively. By the encoder, the
3× 64× 64 image observation is encoded into 32× 8× 8. The category predictor fcat is a simple
2-layer MLP with hidden size 32. The object-category-specific networks f1, ..., fC+1 in the OCMR
module consists of C + 1 MLPs, each of which is of 2-layer with hidden size 64.

Implementation for RRL The main implementation differences between RRL and OCARL are
that (1) RRL does not use the supervision signals from the UOD model (i.e. λcat = 0 in Eq.(3));
(2) RRL adopts a different (although very similar) network architecture. In RRL, we use the same
convolution encoder as OCARL. The reasoning module in RRL is similar to OCARL, except that it
utilizes a non-linear universe transformation instead of multiple object-category-specific networks.
We also use only one relational block in RRL as OCARL does, because we found more blocks may
hinder the performance in our early experiments.

Implementation for SMORL We use SPACE [20] instead of SCALOR [16] (as suggested in the
SMORL paper) to obtain object representations for SMORL. Since SMORL is originally designed for
goal-based RL, it uses an attention model to gather information from the set of object representations,
in which the goal serves as a query vector. In our settings, we do not consider goal-based RL;
therefore, we use L learnable vectors as queries, which are also used in the original SMORL. We
search over L = [1, 2, 4, 8] and find that L = 4 works best in our experiments. We also find that it is
better to apply an MLP to the object representations before they are fed into the attention module. To
be more specific, we first run SPACE to get the object representations, sharing the same procedure
as OCARL. The information of these objects is first processed by a 2-layer MLP with hidden size
32 and then gathered through an attention module in which the query consists of L = 4 learnable
vectors. The resulting tensor (of shape L × 32) is flattened and then fed into a 2-layer MLP with
hidden size 64, which finally output the value function and action probabilities.

B Details of SPACE

OCARL utilizes SPACE to discovery objects from raw objects. In Section 3.1, we have introduced
the inference model of zfg. For completeness, we would like to introduce the remaining parts of
SPACE in this section: (1) inference model of zbg; (2) generative model of the image x; and (3) the
ELBO to train the model.

Inference model of zbg zbg consists of several components zbgk , and these components are inferred
from the image x in an iterative manner: q(zbgk |x) =

∏K
k=1 q(z

bg
k |z

bg
<k,x). Each component zbgk is

futher divided into two parts: zbgk = (zmk , z
c
k), where zmk models the mixing weight assigned to the

background component (see πk in the generative model of x), and zck models the RGB distribution
(p(x|zbgk)) of the background component.

14

Hyper-parameter Value
Discount factor 0.99

Lambda for GAE 0.95
Epsilon clip (clip range) 0.2

Coefficient for value function loss 0.5
Normalize Advantage True

Learning rate 5e-4
Optimizer Adam

Max gradient norm 0.5
Steps per collect 1024

Repeat per collect 3
Batch size 256

Table 3: PPO hyper-parameters.

Generative model of x The generative model consists of two parts: p(x|zfg) and p(x|zbg). For
p(x|zfg), each zfgij is passed through a decoder to reconstruct the image patch determined by zwhereij .
For p(x|zbg), each zbgk is decoded into a background component and all components are mixed
together to get the background. Foreground and background are combined with a pixel-wise mixture
model to reconstruct the original image x. The whole generative model of x is:

p(x) =

∫ ∫
p(x|zfg, zbg)p(zfg)p(zbg)dzfgdzbg

p(x|zfg, zbg) = αp(x|zfg) + (1− α)

K∑
k=1

πkp(x|zbgk), α = fα(zfg), πk = fπk
(zbg1:k)

p(zfg) =

H∏
i=1

W∏
j=1

p(zpresij)(p(zwhereij)p(zwhatij))z
pres
ij

p(zbg) =

K∏
k=1

p(zck|zmk)p(zmk |zm<k)

In above equations, zpresij , zwhereij , zwhatij have been discussed in Section 3.1, α is foreground mixing
probability, and πk is the mixing weight assigned to the background component zbgk .

The ELBO to train the model SPACE is trained using the following ELBO via reparameterization
tricks:

L(x) = Eq(zfg,zbg|x)
[
p
(
x | zfg, zbg

)]
−DKL

(
q
(
zfg | x

)
‖p
(
zfg
))
−DKL

(
q
(
zbg | x

)
‖p
(
zbg
))

15

Achievement OCARL(ours) SMORL RRL
Collect Coal 9.5% 0.7% 0.7%

Collect Diamond 0.0% 0.0% 0.0%
Collect Drink 49.0% 41.6% 42.3%
Collect Iron 0.0% 0.0% 0.0%

Collect Sapling 89.7% 93.4% 89.9%
Collect Stone 46.1% 2.9% 3.2%
Collect Wood 98.5% 85.7% 71.7%

Defeat Skeleton 3.5% 0.5% 0.6%
Defeat Zombie 51.4% 11.3% 3.8%

Eat Cow 67.2% 11.6% 7.6%
Eat Plant 0.0% 0.0% 0.0%

Make Iron Pickaxe 0.0% 0.0% 0.0%
Make Iron Sword 0.0% 0.0% 0.0%

Make Stone Pickaxe 0.4% 0.0% 0.1%
Make Stone Sword 0.6% 0.0% 0.0%

Make Wood Pickaxe 86.1% 15.2% 12.0%
Make Wood Sword 83.5% 17.8% 10.6%

Place Furnace 3.2% 0.0% 0.3%
Place Plant 86.9% 88.4% 83.0%
Place Stone 44.1% 1.2% 2.1%
Place Table 95.6% 67.5% 49.8%
Wake Up 88.1% 0.5% 70.2%

Score 12.3% 3.9% 4.2%
Table 4: Success rates on 22 achievements in Crafter.

C More Results on Crafter

Figure 8: The learning curves on Crafter. The
mean returns over 12 seeds are plotted with a 95%
confidence interval. Both RRL and SMORL fail
to make progress after the initial 5M environment
steps, while OCARL does.

In Figure 8, we plot the learning curves on the
Crafter domain. Only OCARL is able to make
progress continuously. Both RRL and SMORL
get stuck in local minimal after training for
about 1M environment steps.

In Table 4, we give the detailed success rates
for 22 achievements on Crafter, which is also
reported in Figure 4. As shown in Table 4,
OCARL presents more meaningful behaviours
such as collecting coal, defeating zombies, mak-
ing wood pickaxe and so on.

16

water grass stone path sand tree lava coal iron
2.76 46.5 1.09 0.36 0.94 2.24 0.018 0.094 0.0294

diamond table furnace player cow zombie skeleton arrow plant
0.0025 0.0108 0 1 0.495 0.14 0.0947 0.0973 0.165

Table 5: The average number of objects in a single image. These numbers are obtained on the training
dataset of SPACE via analysing the ground truth object category label provided by Crafter.

D Analysis of Unsupervised Object Discovery

In Figure 9, we plot the discovered object categories in Crafter and Hunter. Since Hunter is
quite simple, our algorithm can assign correct categories for all objects. In Crafter, there exist 18
kinds of objects in total, making it much harder than Hunter. Since we use only 8 categories, there
are some cases that multiple objects with different ground-truth categories are predicted into the
same category (such as Category 5 and 7 in Figure 9). Although there exist assignment mistakes in
Crafter, OCARL is still much better than other baselines.

Figure 9 also shows that some objects in Crafter is omitted by the UOD model, such as , ,

, , and . This is probably because the some objects almost does not appear in in
training dataset (Table 5) or are treated as background by SPACE.

In Figure 10, we report the object discovered by SPACE. The combination of SPACE and unsupervised
clustering on the discovered objects (i.e. Eq.(2)) can tell us not only where one object locates, but
also what category it is.

17

(a) The discovered object categories on Hunter.

(b) The discovered object categories on on Crafter

Figure 9: The objects discovered by Eq.(2). In Hunter, object categories are perfectly predicted,
whereas in Crafter there exist some mistakes.

18

(a) The objects discovered on Hunter.

(b) The objects discovered on Crafter
Figure 10: The objects discovered by SPACE. The objects are bound by boxes whose colour indicates
its corresponding category that is predicted by Eq.(2). In Crafter, the object centred in each image
is ignored by the SPACE because its location never changes and thus is distinguished as background.

19

