478

479
480
481

482

484
485
486
487
488
489

491
492
493
494
495
496

497
498
499
500
501
502
503
504

505

506
507
508
509
510

511
512
513
514
515
516

517
518
519
520
521
522
523
524
525
526
527

A Implementation Details

We provide more implementation details of OTOv3 library and experiments. For review purpose, we
provide a library snapshot at https://tinyurl.com/otov3—-review. The official version
along with documentations and tutorials will be released to the public after the review process .

A.1 Library Implementations

Overview. OTOV3 is built upon the OTOv2 library® that enables automatic general sup-network
training and searching sub-networks in the one-shot manner. Up to the present, the implementation of
OTOv3 depends on PyTorch and ONNX (https://onnx.ai). ONNX is used to obtain the trace
graph and the sub-network by modifying the super-network in ONNX format. H2SPG is developed
as an instance of the PyTorch optimizer class. As a fundamental Al infrastructure, OTOv3 makes a
significant breakthrough in AutoML to first enable the search of sub-networks from training general
super-networks. Further progress and contributions from both our team and the wider open-source
community are necessary to sustain its continued success.

Limitations. The current version of the library relies on ONNX, which means that the super-
networks need to be convertible into the ONNX format. Meanwhile, if the super-network contains
unsupported operators, the library may not function normally. To address this, we are committed to
maintaining and adding new operators to the library, and leverage contributions from the open-source
community in this regard. Additionally, we are actively working on reducing the dependency on
ONNX to broaden the library’s coverage and compatibility.

Furthermore, to prioritize generality, we avoid requiring users to manually introduce auxiliary archi-
tecture variables, as seen in the existing gradient-based NAS methods. To search without architecture
variables, the current OTOV3 library formulates a hierarchical structured sparsity optimization to
identify redundant minimal removal structures based on sparse optimization. We currently require
the minimal removal structures to have trainable variables. Consequently, the operations without
trainable variables such as skip connection are not removal for the current version of OTOv3
yet. Identifying and removing operations without trainable variables is an aspect that we consider as
future work and plan to address in subsequent updates.

A.2 Experiment Implementations

All experiments were conducted on an NVIDIA A100 GPU. The search cost of OTOv3 was calculated
as the runtime of the warm-up phase in Algorithm 3, since it is during this phase that the redundant
group candidates are constructed. In our experiments, H2SPG follows the existing NAS works (

,) by performing 50 epochs for architecture search during the warm-up phase and evolving
the learning rate using a cosine annealing scheduler.

For the SuperResNet experiments, we adopt the data augmentation technique of MixUp, following
the training settings of ZenNAS (,), and employ a multiple-period cosine annealing
scheduler. The maximum number of epochs for the DemoSupNet and StackedUnets is set to 300
following (,). In the case of DARTS on ImageNet, we expedite the training process by
constructing a sub-network once the desired redundant group sparsity level is reached. We then train
this sub-network until convergence. All other experiments are carried out in the one-shot manner.

The initial learning rate is set to 0.1 for most experiments, except for the DARTS experiments
where it is set to 0.01. The lower initial learning rate in DARTS is due to the absence of auxiliary
architecture variables in our super-network, which compute a weighted sum of outputs. Additionally,
operations without trainable variables, such as skip connections, are preserved (refer to the
limitations). Consequently, the cosine annealing period is repeated twice for the DARTS experiments
to account for the smaller initial learning rate. The mini-batch sizes are selected as 64 for all tested
datasets, except for ImageNet, where it is set to 128. The target group sparsities are estimated in
order to achieve a comparable number of parameters to other benchmarks. This is accomplished by
randomly selecting a subset of GeZIGs to be zero and then calculating the parameter quantities in the
constructed sub-networks. The remaining hyper-parameter settings of H2SPG adhere to the default
settings of DHSPG in OTOv2.

Shttps://tinyurl.com/only-train-once

13

https://tinyurl.com/otov3-review
https://onnx.ai
https://tinyurl.com/only-train-once

528

529
530
531

533
534
535
536
537

538
539
540
541
542
543

544
545

(Convl \ (Conv2 D (Convl \ (Conv2)

KleRm x32x3x3 Iy € ROAXI2x3x x rc,e]R“ x28x3x3 ICy € RO1X28x3x ; Convl
b] € R6 by € RO b] € RS! by € R3! Ky € ROIX32x3x3

b € RO

Relu Relu Relu Relu
\ (Conv3 N ([Conv4 D
128x32x3x3 128 x64x3x3
(Conv3 N (Conv4 (_Convs) (Conv3 (Conv4 (Convs ’C‘ SR tﬁ R j
IC;ER’” X32x3x ; K46R‘“ X64x3x x IC € R128X64x3x x K;ER“’ X28x3x ; ’C4€P‘“ xB1x3x x K5 € R30X31x3x ; bSER baeR
b3 € RI28 b1 c RI28 b € RI28 b3 € R30 b1 € R3O bs € B30
Relu
Relu Relu e

Original Network Pruned Network by OTOv2 Sub-network by OTOv3

(a) OTOV3 versus OTOv2.

MaxPool H Conv3 H BN3
AvgPool H Conv4 H BN4

(b) DemoSupNet dependency graph for ZIG partltlon in OTOV2

e et o e e |—|HH ----- =

EEEEE EENEEE EEEEEE BN BN N RN R

G =GucUG%¢ Gue = {0OMOEROEROCOBROERO0E} G4, = {0} o
(c) DemoSupNet ZIG partition in OTOv2.

Figure 4: (a) OTOv3 versus OTOv2. (b) Dependency graph for DemoSupNet by OTOv?2 for automatic
structured pruning. (c) ZIG partition for DemoSupNet by OTOv2.

B ZIG versus GeZIG

We aim to clarify the distinction between the Zero-Invariant Group (ZIG) introduced in OTOV2 (

,) and the Generalized Zero-Invariant Group (GeZIG) proposed in this work. Broadly
speaking, ZIG and GeZIG refer to different categories of minimal removal structures satisfying zero-
invariant property, serving distinct purposes to search optimal architecture within the super-network.

A minimal removal structure refers to a structure that satisfies two conditions: (i) removing it from
the deep neural network (DNN) still leaves a valid network, and (i) the structure cannot be further
decomposed into smaller removal structures, making it minimal. The specific forms of minimal
removal structures depend on whether the vertices (representing operations) and edges (representing
connections) in the trace graph are preserved or not.

ZIG (Zero-Invariant Group) pertains to the minimal removal structure employed in the context of
structure pruning. In structure pruning, the vertices (operations) and edges (connections) of the
trace graph (V, &) are preserved, but the vertices become slimmer. In contrast, GeZIG (Generalized
Zero-Invariant Group) focuses on the standard NAS* problem that involves removing redundant
vertices and edges entirely. GeZIG considers the entire removal of vertices and edges in order to
search for more compact and efficient network architectures.

Figure 4a presents the difference between OTOv3 and OTOv2, which train the super-networks and
search compact sub-networks from different perspectives. Consequently, the dependency graph for
the GeZIG partition differs significantly from the dependency graph for the ZIG partition.

*Structured pruning actually can be interpreted as NAS as well, i.e., searching inside each operation.

14

547
548
549
550
551
552
553

554
555
556
557
558

559

560
561
562
563
564

As illustrated Figure 4b, which shows the example of dependency graph for ZIG over DemoSupNet,
the connected components marked with the same color represent vertices that have affiliations
and need to be pruned together. For instance, the output tensors of Conv5-BN5 and Conv6 are
added together, requiring them to have the same shapes for the addition operation. Therefore, both
Conv5-BN5 and Conv6 need to be slimmed by removing the same number of filters, bias or weight
scalars. Consequently, their filters, bias scalar, BN bias, and weight bias are grouped together as a
single ZIG, as depicted in Figure 4c.

In contrast, GeZIG groups the trainable variables of several entire vertices together, as shown in
Figure 1c. Moreover, GeZIG needs to consider the hierarchy of the dependency graph to ensure the
validity of the sub-network since entire connections and vertices are removed. This hierarchical con-
sideration is necessary for NAS and brings significant challenges to the structured sparse optimizers.

C Graph Visualizations

In this appendix, we present visualizations generated by the OTOv3 library to provide more intuitive
illustrations of the architectures tested in the paper. The visualizations include trace graphs, depen-
dency graphs, identified redundant GeZIGs, and constructed sub-networks. To ensure clear visibility,
we highly recommend zooming in with an upscale ratio of at least 500% to observe finer details
and gain a better understanding of the proposed system.

(a) StackedUnets trace graph.

Figure 5: StackedUnets illustrations drawn by OTOv3.

15

node-0-node-1-node-2-node-3 node-39-node-40-node-41
conv-batchnorm-relu-conv conv-batchnorm-relu
node-4-node-5-node-6-node-7-node-8-node-9 node-42-node-43-node-44
maxpool-conv-relu-conv-relu-batchnorm conv-conv-relu
node-10-node-11-node-12 node-45-node-46-node-47-node-48-node-49
maxpool-conv-conv conv-relu-batchnorm-conv-conv

/

node-50-node-51-node-

conv-conv-conv

node-20 node-57
add add
A y
node-24 node-61
resize resize
\ y
node-25 node-62
add add

/

node-26-node-27-node-28-node-29-node-33

conv-conv-batchnorm-relu-resize

node-34 node-71
add add

node-35-node-36-node-37-node-38 node-72-node-73-node-74-node-75

relu-conv-relu-batchnorm relu-conv-relu-batchnorm

node-76

add

node-77-node-79-node-81-node-82-dummy_output

Tohal 1]
510 5€P e (!

(b) StackedUnets search space.

Figure 5: StackedUnets illustrations drawn by OTOv3.

16

node-0-node-1-node-2-node-3 node-39-node-40-node-41

conv-batchnorm-relu-conv conv-batchnorm-relu

—

node-4-node-5-node-6-node-7-node-8-node-9

node-42-node-43-node-44

maxpool-conv-relu-conv-relu-batchnorm conv-conv-relu

/

node-45-node-46-node-47-node-48-node-49

node-10-node-11-node-12

maxpool-conv-conv

conv-relu-batchnorm-conv-conv

===
| node-50-node-51-node-52-node-56 !
I I

I .
I X conv-conv-conv-resize I

A
node-20 node-57
add add
A y
node-24 node-61
resize resize
\ y

node-25 node-62

node-26-node-27-node-28-node-29-node-33

conv-conv-batchnorm-relu-resize

node-35-node-36-node-37-node-38

relu-conv-relu-batchnorm

node-76
add

node-77-node-79-node-81-node-82-dummy_output

glol gepool-sq q linear-

(c) StackedUnets dependency graph with identified removal vertices.

Figure 5: StackedUnets illustrations drawn by OTOv3.

17

(d) Constructed sub-network upon StackedUnets.

Figure 5: StackedUnets illustrations drawn by OTOv3.

18

(a) DARTS (8 cells) trace graph.
Figure 6: DARTS (8 cells) illustrations drawn by OTOvV3.

19

(b) DARTS (8 cells) search space.
Figure 6: DARTS (8 cells) illustrations drawn by OTOv3.

20

= Il
=

(c) DARTS (8 cells) dependency graph with identified removal vertices.
Figure 6: DARTS (8 cells) illustrations drawn by OTOV3.

21

(d) Constructed sub-network upon DARTS (8 cells).
Figure 6: DARTS (8 cells) illustrations drawn by OTOv3.

22

(a) SuperResNet trace graph.
Figure 7: SuperResNet illustrations drawn by OTOv3.

23

(b) SuperResNet search space.

Figure 7: SuperResNet illustrations drawn by OTOv3.

24

(c) SuperResNet dependency graph with identified removal vertices.

Figure 7: SuperResNet illustrations drawn by OTOv3.

25

T

(d) Constructed sub-network upon SuperResNet.

Figure 7: SuperResNet illustrations drawn by OTOv3.

26

(a) DARTS (14 cells) trace graph.
Figure 8: DARTS (14 cells) illustrations drawn by OTOv3.

27

(b) DARTS (14 cells) search space.
Figure 8: DARTS (14 cells) illustrations drawn by OTOv3.

28

(c) DARTS (14 cells) dependency graph with identified removal vertices.
Figure 8: DARTS (14 cells) illustrations drawn by OTOv3.

29

(d) Constructed sub-network upon DARTS (14 cells).
Figure 8: DARTS (14 cells) illustrations drawn by OTOv3.

30

565

566
567
568
569
570

571
572
573
574

575
576
577
578
579
580

581
582
583
584
585

587
588

589

590
591

592
593
594
595

596
597
598
599
600
601

D Ablation Studies Extensive Experiments

In this appendix, we conduct extensive experiments and ablation studies over one more benchmark
architecture RegNet (,) on CIFAR10. Without loss of generality, we employ
OTOv3 over the RegNet-800M which has accuracy 95.01% on CIFAR10 according to https:
//github.com/yhhhli/RegNet-Pytorch. As other experiments, OTOv3 automatically
constructs its search space, trains via H2SPG, and establishes the sub-networks without fine-tuning.

We conduct ablations by employing OTOv3 with two sparse optimizers: H2SPG and DHSPG. We
separately evaluate them with varying target hierarchical group sparsity levels in problem (1) across
arange of {0.1,0.3,0.5,0.7,0.9}. The obtained results are from three independent tests initialized
with different random seeds, and reported in Table 4.

Table 4: OTOv3 on RegNet on CIFAR10.
9

6

Backend Method Optimizer Tarstg;;rgfsusv # of Params (M) Top-1 Acc. (%) 107 gron \I:TH\ A0 mrowp sparsity
RegNet-200M Baseline SGD - 231 9358 sl el e, OTOvs
RegNet-400M Baseline SGD - 4.77 94.15 = SOOM " e " e
RegNet-600M Baseline SGD - 5.67 94.73 = 600M \‘ 50% aroup sparsity
RegNet-800M Baseline SGD - 6.60 95.01 g 9 100M < o

" RegNet-800M~ ~OTOv3 ~ DHSPG ~ ~ ~01 ~ = 7556+0.02 ~ 95264+0.13 =~ < . Tee
RegNet-800M OTOv3 DHSPG 0.3 (3.40, X, X) (95.01, X, X) 1 RegNet (2020) 200
RegNet-800M OTOv3 DHSPG 0.5 (X, X, X) (X, X, X) S 93
RegNet-800M OTOv3 DHSPG 0.7 (X, X, X) (X, X, X)

_ RegNet-800M__OTOv3 _ DHSPG = 09 = XXX XXX 92l
RegNet-800M~ ~OTOvV3 ~ H2SPG 01 558+ 0.01 9530 +0.10
RegNet-800M OTOv3 H2SPG 03 3.54+0.15 95.08 & 0.14
RegNet-800M OTOv3 H2SPG 0.5 1.83 £ 0.09 94.61 & 0.19 o1l
RegNet-800M OTOv3 H2SPG 0.7 1.16 +0.12 91.92 4 0.24 | I I
RegNet-800M OTOv3 H2SPG 0.9 0.82+0.17 87.91 +0.32 8 6 4 2 0

Params (M)

Sub-networks by OTOv3 versus Super-Networks. As presented in Table 4, the sub-networks
under varying hierarchical group sparsity levels computed by OTOv3 with H2SPG exhibits the Pareto
frontier comparing with the benchmark RegNet. Notably, the sub-networks under target group sparsity
levels of 0.1 and 0.3 outperform the full RegNet-800M. Furthermore, the sub-network produced with
a group sparsity level of 0.5 outperforms the RegNet200M, RegNet400M, and RegNet600M, despite
utilizing significantly fewer parameters while achieving higher accuracy.

H2SPG versus DHSPG. In Table 4, a comparison between H2SPG and DHSPG reveals that
DHSPG often fails when confronts with reasonably large target sparsity levels. The failure tests are
denoted by the symbol X. The underlying reason lies in its design, which solely treats problem (1) as
an independent and disjoint structured sparsity problem. By disregarding the hierarchy within the
network, DHSPG easily generates sub-networks that lack validity. Conversely, H2SPG takes into
account the network hierarchy and successfully addresses the target problem (1). This stark contrast
highlights the superior performance of H2SPG in producing valid sub-networks via identifying and
removing entire redundant operations and connections.

E Complexity Analysis

We end the appendix via analyzing the time and space complexity in OTOvV3 to construct the search
space and the hierarchy consideration during H2SPG optimization.

Search Space Construction. The automatic search space construction Algorithm 2 primarily a
customized graph algorithm designed to identify minimal removal structures and partition trainable
variables into GeZIGs. It contains two main stages: (i) establishing the dependency graph, and (ii)
constructing the GeZIG partition.

During the first stage, the algorithm traverses the trace graph using a combination of depth-first and
breadth-first approaches with specific operations. Consequently, the worst-case time complexity is
O(|V| + |€]) to visit every vertex and edge in the trace graph. The worst-case space complexity
equals to O(|V]) due to the queue container used in Algorithm 2 and the cache employed during
the recursive depth-first search. In the second stage, the constructed dependency graph (V,4, £4) is
traversed in a depth-first manner to perform the GeZIG partition. In the worst case scenario, where

31

https://github.com/yhhhli/RegNet-Pytorch
https://github.com/yhhhli/RegNet-Pytorch
https://github.com/yhhhli/RegNet-Pytorch

602
603
604
605

606
607
608
609
610
611

612
613
614
615
616
617

618
619
620
621
622

(V4,E4) equals (V, £), the time and space complexities remain the same as O(|V| + |€]) and O(|V])
respectively. In summary, the worst-case time complexity for both stages combined is O(|V| + |£]),
and the worst-case space complexity is O(|V|). Therefore, the search space construction can be
typically efficiently finished in practice.

Hierarchy Structured Sparsity Optimization. Compared to standard structured sparsity opti-
mizers, H2SPG takes into account of the hierarchy of the network during optimization to ensure the
validity of the generated sub-networks. This is achieved through a hierarchy check, which involves
removing one vertex from the dependency graph (V4, £4) and determining if the remaining DNN
remains connected from the input to the output. A depth-first search is performed for this purpose,
with a worst-case time complexity of O(|V,| + |€4|) and a worst-case space complexity of O(|Vy]).

Throughout the optimization process, the hierarchy check is only triggered once iteratively over a
subset of minimal removal structures (proportional to the target group sparsity level). This check
occurs immediately after the warm-up phase in Algorithm 3. Consequently, the worst-case overall
time complexity for the hierarchy check is O(|V,|? + |E4] - [Val|). The worst-case overall space
complexity remains O(|V,]|), since the cache used for the hierarchy check is cleaned up after each
vertex completes its own check.

It is important to note that although the worst-case time complexity is quadratic in the number of ver-
tices of the constructed dependency graph, the hierarchy check can be efficiently executed in practice
because the number of vertices in the dependency graph is typically reasonably limited. Additionally,
the hierarchy check only occurs once during the entire optimization process, consequently does not
bring significant computational overhead to the whole process.

32

