
A Appendix545

A.1 Causal inference546

Confounder A confounder is a variable that is associated with both the treatment and the outcome,547

causing a spurious correlation. For instance, summer is associated with eating ice cream and getting548

sunburns, but there is no causal relationship between the two.549

Propensity score model A propensity score model is a function that predicts treatment from the550

observed covariates i.e. P (T = 1|C = c) for a binary treatment T and a covariate vector C.551

Potential outcome As defined by the Rubin causal model (39), a potential outcome Y (t) is the552

value that Y would take if T were set by (hypothetical) intervention to the value t.553

Identification assumptions Inference is possible under three identification assumptions.554

• No interference For a given individual i, this assumption implies that Yi(t) represents the555

value that Y would have taken for individual i if T had been set to t for individual i, i.e the556

potential value of Yi if Ti had been set to t.557

• Consistency For a given individual i, Ti = t⇒ Yi = Yi(t). This means that for individuals558

who actually received treatment level t, their observed outcome is the same as what it would559

have been had they received treatment level t via an hypothetical intervention.560

• Conditional exchangeability For a given individual i, we assume that conditional on C,561

the actual treatment level T is independent of each of the potential outcomes:562

Y (t) ⊥ T | C,∀t563

A.2 Evaluation of the tree consistency564

We evaluated the consistency of our clustering across subsamples using an Adjusted Rand Index (33).565

Given a set of n elements S = {o1, . . . , on} and two partitions of S to compare, X = {X1, . . . , Xr},566

a partition of S into r subsets, and Y = {Y1, . . . , Ys}, a partition of S into s subsets, define the567

following:568

• a, the number of pairs of elements in S that are in the same subset in X and in the same569

subset in Y .570

• b, the number of pairs of elements in S that are in different subsets in X and in different571

subsets in Y .572

• c, the number of pairs of elements in S that are in the same subset in X and in different573

subsets in Y .574

• d, the number of pairs of elements in S that are in different subsets in X and in the same575

subset in Y .576

The Rand index, R, is:

R =
a+ b

a+ b+ c+ d
=

a+ b(
n
2

)
Intuitively, a+ b can be considered as the number of agreements between X and Y and c+ d as the577

number of disagreements between X and Y . The adjusted Rand index is the corrected-for-chance578

version of the Rand index (40).579

A.3 Further related work580

This section was mistakenly referred to as section 3.1 in the main text, 218.581

Causal inference provides a wide range of methods for estimating causal effect from data with582

unbalanced treatment allocation. In balancing methods such as matching or weighting methods, the583

data is pre-processed to create subgroups with lower treatment imbalance or “natural experiments”.584

Matching Matching methods consist of clustering similar units from the treatment and control585

groups to reduce imbalance. In general, a matching procedure generates weights wij denoting the586

assignment of one or many control units j to a treated unit i ((41), Chapter 5). Exact matching only587

assigns control units to treatment units with the exact same set of covariate values. But typically,588

matched control units j are chosen based on a nearest neighbours search according to some distance589

metric. However, matching procedures induce a bias-variance trade-off as discarding unmatched590
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samples reduces estimation error at the cost of increased variance. However, all matching methods591

suffer from the curse of dimensionality, making them impractical in high-dimensional datasets. Exact592

matching and coarsened exact matching (42) find exponentially fewer matches as the input dimension593

grows (43). Alternative methods include Propensity score matching (44), where distance is computed594

from an estimate of the propensity score P (T = 1 | X = x), and Mahalanobis distance matching595

(28) (see more details below in 4.1). However, compression into a single dimension can lead to596

highly unrelated matches with very different characteristics in the original covariate space, and can597

ultimately increase estimation bias (45). Clivio et. al overcome this issue by developing a multivariate598

balancing scores to perform matching for high-dimensional causal inference. Nevertheless, this599

approach is not interpretable.600

Weighting methods An alternative to matching are weighting methods, where sample weights are601

estimated, generalising the problem formulation of matching. In Inverse Probability Weighting (IPW)602

(4) which is the most popular alternative in that category, the samples are weighted according to their603

propensity score, i.e. the estimated probability of treatment conditional on their covariates.604

Adjustment methods Adjustment methods estimate the causal effect from regression outcome605

models where both treatment and covariates act as predictors of the outcome. These regressions can606

be fitted through various methods like linear regression (5), neural networks (6; 7), or tree-based607

models (8). Common alternatives include Doubly Robust estimators (46), Double Debiased Machine608

Learning (47) and metalearners such as the T-learner and X-learner (9). These methods have the609

advantage of being very data-adaptive. More particularly, the Causal Tree approach (8) builds on610

regression tree methods, and splits the data to optimize for goodness of fit in treatment effects. Causal611

Tree separates the training dataset into two subsamples: a splitting subsample and an estimating612

subsample. The splitting subsample is used to build a causal tree while the estimating subsample is613

used to generate unbiased conditional treatment effect estimates. This procedure is called “honest614

estimation” and is anticipated to avoid overfitting.615

A.4 Experimental details: synthetic datasets616

A.4.1 Natural experiment dataset617

For the natural experiment dataset, we consider a Death outcome D, a binary treatment of interest T
and two covariates such that X = (S,A) with S the sex and A the continuous age such that:

S ∼ Bernoulli(0.5)

A ∼ Normal
(
50, 202

)
The sample size was chosen to be N = 20, 000.618

We defined four sub-populations, each constituting a natural experiment, with a different propensity619

distribution P (T = 1|X = x):620

Pr(T = 1|S = 1, A ≥ 50) ∼ TruncatedNormal[0,1]
(
0.5, 0.12

)
Pr(T = 1|S = 1, A < 50) ∼ TruncatedNormal[0,1]

(
0.3, 0.12

)
Pr(T = 1|S = 0, A ≥ 50) ∼ TruncatedNormal[0,1]

(
0.1, 0.12

)
Pr(T = 1|S = 0, A < 50) ∼ TruncatedNormal[0,1]

(
0.4, 0.12

)
Individual treatment propensities were sampled from the corresponding distributions above and621

observed treatment values were sampled from a Bernoulli distribution parameterized with the individ-622

ual propensities. The outcome probabilities were not modeled as a distribution. Instead, observed623

outcome values were sampled directly from a Bernoulli distribution parameterized with a constant624

value that depended on both X and T .625

• Pr(Y |T = 1, S = 1, A ≥ 50) ∼ B(0.1)626

• Pr(Y |T = 1, S = 1, A < 50) ∼ B(0.2)627

• Pr(Y |T = 1, S = 0, A ≥ 50) ∼ B(0.4)628

• Pr(Y |T = 1, S = 0, A < 50) ∼ B(0.15)629

• Pr(Y |T = 0, S = 1, A ≥ 50) ∼ B(0.2)630

• Pr(Y |T = 0, S = 1, A < 50) ∼ B(0.4)631

• Pr(Y |T = 0, S = 0, A ≥ 50) ∼ B(0.8)632

• Pr(Y |T = 0, S = 0, A < 50) ∼ B(0.3)633

No positivity violation was modeled in this experiment.634
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A.4.2 Positivity violations dataset635

For this second synthetic experiment, we build a dataset with two positivity violating subgroups. Let
us consider a synthetic example of a dataset with a Death outcome D, a binary treatment of interest T
and three binary covariates –sex, cancer and arrhythmia– such that X = (S,C,A). For the marginal
distributions, we set:

S ∼ Ber(0.5)

C ∼ Ber(0.3)

A ∼ Ber(0.1)

The sample size was chosen to be N = 20, 000.636

• Pr(T = 1|S = 1, C = 1, A = 1) ∼ TruncatedNormal[0,1]
(
1.00, 0.022

)
637

• Pr(T = 1|S = 1, C = 0, A = 1) ∼ TruncatedNormal[0,1]
(
0.32, 0.102

)
638

• Pr(T = 1|S = 1, C = 1, A = 0) ∼ TruncatedNormal[0,1]
(
0.12, 0.102

)
639

• Pr(T = 1|S = 1, C = 0, A = 0) ∼ TruncatedNormal[0,1]
(
0.42, 0.102

)
640

• Pr(T = 1|S = 0, C = 1, A = 0) ∼ TruncatedNormal[0,1]
(
0.17, 0.102

)
641

• Pr(T = 1|S = 0, C = 1, A = 1) ∼ TruncatedNormal[0,1]
(
0.30, 0.102

)
642

• Pr(T = 1|S = 0, C = 0, A = 1) ∼ TruncatedNormal[0,1]
(
0.24, 0.102

)
643

• Pr(T = 1|S = 0, C = 0, A = 0) ∼ TruncatedNormal[0,1] (0.00, 0.02)644

The observed outcome values were sampled from a Bernoulli distribution parameterized with a645

constant value that depended on both X and T . For the treated:646

• Pr(Y |T = 1, S = 1, C = 1, A = 1) ∼ B(0.13)647

• Pr(Y |T = 1, S = 1, C = 1, A = 0) ∼ B(0.08)648

• Pr(Y |T = 1, S = 1, C = 0, A = 1) ∼ B(0.21)649

• Pr(Y |T = 1, S = 1, C = 0, A = 0) ∼ B(0.1)650

• Pr(Y |T = 1, S = 0, C = 1, A = 1) ∼ B(0.36)651

• Pr(Y |T = 1, S = 0, C = 1, A = 0) ∼ B(0.29)652

• Pr(Y |T = 1, S = 0, C = 0, A = 1) ∼ B(0.24)653

• Pr(Y |T = 1, S = 0, C = 0, A = 0) ∼ B(0.09)654

For the untreated:655

• Pr(Y |T = 0, S = 1, C = 1, A = 1) ∼ B(0.31)656

• Pr(Y |T = 0, S = 1, C = 1, A = 0) ∼ B(0.4)657

• Pr(Y |T = 0, S = 1, C = 0, A = 1) ∼ B(0.29)658

• Pr(Y |T = 0, S = 1, C = 0, A = 0) ∼ B(0.45)659

• Pr(Y |T = 0, S = 0, C = 1, A = 1) ∼ B(0.4)660

• Pr(Y |T = 0, S = 0, C = 1, A = 0) ∼ B(0.51)661

• Pr(Y |T = 0, S = 0, C = 0, A = 1) ∼ B(0.43)662

• Pr(Y |T = 0, S = 0, C = 0, A = 0) ∼ B(0.73)663

A.5 Further experiment results: synthetic experiments664

A.5.1 Natural experiment dataset665

Partitioning The tree partitions so to recreate the four intended sub populations where a natural666

experiment was simulated. The average Rand index was equal to 0.901 across the 50 subsamples667

(σ = 0.263). Violating leaf nodes are marked in red.668
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P = 0.332
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N = 9,955
P = 0.287

Max ASMD = 0.391

N = 10,045
P = 0.377

Max ASMD = 0.426

N = 3,984
P = 0.125

Max ASMD = 0.011

N = 5,971
P = 0.395

Max ASMD = 0.021

S≤ 0 S > 0

C ≤ 55.04C> 55.04 C > 55.08

N = 4,014
P = 0.503

Max ASMD = 0.000

N = 6,031
P = 0.293

Max ASMD = 0.003

C ≤ 55.08

Figure A1: Tree structure after training on the entire natural experiment dataset (N = 20, 000).
Violating leaf nodes are marked in red.
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Causal effect estimation Here, Causal Tree has both higher estimation bias and higher estimation669

variance compared to other methods. The tree-like nature of our data structure may be incompatible670

with the optimization function of Causal Tree, which maximizes on treatment effect heterogeneity.671

Causal Forest, which has multiple Causal Tree models, however overcomes this difficulty and672

performs well.673
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Figure A2: Estimation bias for the natural experiment dataset across 50 subsamples withN = 20, 000.

Propensity score estimation BICauseTree(Marginal)’s propensity estimation is well calibrated.674

It is closer to the identity line than logistic regression- (IPW(LR)) and the gradient boosting trees-675

(IPW(GBT)) based models. The calibration however remains satisfactory across all models. This676

further shows our ability to identify natural experiments in a simple data setting.677
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Figure A3: Calibration of the propensity score estimation for the natural experiment dataset across
50 subsamples, on the natural experiment testing set (N = 10, 000).

Outcome estimation The performance of BICauseTree w.r.t outcome estimation is only satisfactory678

in this experiment. This shows our ability to estimate the ATE despite a somehow lower calibration679

of our outcome estimation. Ultimately, the performance would likely have been improved had we680

used a more complex outcome model. The calibration of the predicted outcomes by BICauseTree681

however remains better than the one by Matching.682
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Figure A4: Calibration of the outcome estimation for the natural experiment dataset across 50
subsamples on the natural experiment testing set (N = 10, 000).

Effect estimation bias reduction with tree depth Figure A5 shows how estimation bias decreases683

as we increase the maximum depth hyperparameter of our BICauseTree(Marginal) on the natural684

experiment training dataset (N = 10, 000). Here, each circle in the plot represents the effect685

estimated for each subsample. Note that the circles were mistakenly described as corresponding to686

nodes instead of subsamples in the main text, on line 301. The dotted line shows the average bias687

with an IPW estimator. The shaded area represents the 95% confidence interval (CI) for IPW. This688

result shows that our estimation is robust to the choice of a maximum tree depth hyperparameter.689

Above a certain threshold, the effect estimate from BICauseTree remains unbiased.690
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Figure A5: Estimation bias when comparing BICauseTree(Marginal) with varying maximum depth
parameters with the average bias of IPW (dotted), on the natural experiment training set (N = 10, 000)
across 50 subsamples.

Treatment allocation bias reduction with tree depth Figure A6 below shows the weighted691

ASMD of both covariates S and A in BICauseTree models with varying maximum tree depth692

hyperparameters. It illustrates the reduction of treatment allocation bias as the tree grows, but also693

shows that this reduction is a heuristic as the ASMD might not decrease monotonically.694
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Figure A6: Weighted ASMD for all covariates applying BICauseTree(Marginal) models with varying
maximum tree depths on the natural experiment training set (N = 10, 000) across 50 subsamples.

A.5.2 Positivity violations dataset695

Partitioning BICauseTree coherently flags the two subpopulations where a positivity violations696

were simulated, as shown in the example partition on the entire dataset below in Figure A7 (violating697

leaves are marked in red). The average Rand index was equal to 0.986 across the 50 subsamples698

(σ = 0.026).699
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Figure A7: Tree structure after training on the entire positivity violations dataset (N = 20, 000).
Violating leaf nodes are marked in red.

Causal effect estimation Our tree compares with all existing alternatives. Matching has both700

higher estimation bias and higher estimation variance compared to other methods.701
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Figure A8: Estimation bias on the positivity violations dataset (N = 20, 000) across 50 subsamples

Propensity score estimation BICauseTree(Marginal) shows good calibration, since it indeed702

clearly identified the correct subpopulations. The gradient-boosting tree (IPW(GBT)) also shows703

good calibration, as the tree-based modeling captures the underlying structure of the data. On the704

other hand, the logistic regression-based model (IPW(LR)) is ill-specified for the data and therefore705

presents relatively poorer calibration.706
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Figure A9: Propensity score calibration comparing our approach to existing alternatives on the testing
set of the positivity violation dataset (N = 10, 000) across 50 subsamples

Outcome estimation BICauseTree shows descent calibration on outcome prediction in this experi-707

ment. Matching shows poor calibration.708
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Figure A10: Calibration of the outcome estimation comparing our approach to existing alternatives
on the positivity violations testing dataset (N = 10, 000) across 50 subsamples

Effect estimation bias reduction with tree depth We see in this case, that having a max depth709

which is too large leads to an increase in the bias. This might indicate that a hyper parameter tuning710

procedure would benefit cases where the tree might become too deep and overfit to the training data.711
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Figure A11: Estimation bias when comparing BICauseTree(Marginal) with varying maximum depth
parameters with the average bias of IPW (dotted), on the positivity violations experiment training set
(N = 10, 000) across 50 subsamples.

Treatment allocation bias reduction with tree depth Figure A12 below shows the weighted712

ASMD of all three covariates in BICauseTree models with varying maximum tree depth hyperparam-713

eters. We see that the ASMD generally decreases with tree depth, showing that the splitting criteria714

we use leads to balanced subpopulations, as expected.715
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Figure A12: Weighted ASMD for all covariates applying BICauseTree(Marginal) models with
varying maximum tree depths on the positivity violations dataset training set (N = 10, 000) across
50 subsamples

A.6 Further experiment results: the twins dataset716

Partitioning The following plot shows the final tree built for the twins dataset. Red nodes indicate717

positivity violation population.718
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Figure A13: Tree structure after training on the entire twins dataset (N = 11, 984). Violating leaf
nodes are marked in red. Note that this was mistakenly referred to as figure A.4. in the main text, on
line 319.

Causal effect estimation Figure A14 shows a comprehensive comparison of the different mod-719

els. Causal tree shows poor performance, whereas causal forest performs comparably to BICause-720

Tree(Marginal) and IPW.721
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Figure A14: Estimation bias on the twins dataset (N = 11, 984) across 50 subsamples

Outcome estimation BICauseTree(Marginal) shows good calibration on outcome estimation. BI-722

CauseTree(IPW) seem to have some bias in outcome estimation. This is possibly due to the parametric723

nature of our IPW model which uses a Logistic Regression. Matching shows poor outcome estimation724

ability.725
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Figure A15: Calibration of the outcome estimation across 50 subsamples, on the twins testing set
(N = 5, 992).

Treatment allocation bias reduction with tree depth Figure A16 below shows the reduction in726

ASMD for the top 10 most imbalanced features in the entire population. It compares BICauseTree727

models with varying maximum tree depth hyperparameters. In all 10 covariates, we notice how the728

ASMD reduces as the maximum tree depth increases.729
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Figure A16: Weighted ASMD for the top 10 covariates with the highest ASMD in the initial
population for BICauseTree(Marginal) models with varying maximum tree depths on the twins
dataset training set (N = 5, 992) across 50 subsamples

A.7 Further experiment results: the ACIC dataset730

Partitioning The following shows the tree built for the ACIC dataset.731
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Figure A17: Tree structure after training on the entire ACIC dataset (N = 4, 802). Violating leaf
nodes are marked in red.

Causal effect estimation Figure A14 shows a comprehensive comparison of the different models.732

The performance of both BICauseTree models compares with the one from IPW or Causal Forest.733

Causal Tree however shows poor performance. Matching shows high estimation bias compared to all734

other models, including the Marginal estimator.735
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Figure A18: Estimation bias on the ACIC dataset testing set (N = 960) across 50 subsamples

Propensity score estimation We show here the calibration of propensity scores in the ACIC dataset.736

BICauseTree preforms less well than IPW, which is more tailored for propensity estimation. As the737

outcome is non-binary in ACIC, we are not able to generate a calibration plot comparing the outcome738

estimation of BICauseTree with the one from existing approaches.739
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Figure A19: Propensity score calibration comparing our approach to existing alternatives on the
ACIC dataset testing set (N = 960) across 50 subsamples

Effect estimation bias reduction with tree depth Figure A20 below shows the estimation bias for740

various maximum tree depth hyperparameters. We notice some overlap to IPW confidence interval,741

and bias reduces for depths up to max depth 6, then the variance across subsamples starts to increase.742

This may be due to the limited sample size of this dataset.743
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Figure A20: Estimation bias when comparing BICauseTree(Marginal) with varying maximum depth
parameters with the average bias of IPW (dotted), on the ACIC training set (N = 3, 842) across 50
subsamples.

Treatment allocation bias reduction with tree depth Figure A21 below shows the reduction in744

ASMD for the top 10 most imbalanced features in the entire population. It compares BICauseTree745

models with varying maximum tree depth hyperparameters. All 10 covariates show reduction in746

ASMD with depth.747
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Figure A21: Weighted ASMD across maximum tree depths for the top 10 covariates with the highest
ASMD in the initial population, applying BICauseTree(Marginal) models with varying maximum
tree depths on the ACIC dataset training set (N = 3, 842) across 50 subsamples

A.8 Implementation748

A.8.1 Positivity violations evaluations749

We implemented two positivity violations definition procedures: the Crump method and a method750

we introduced, which we call the symmetric prevalence threshold method. The Crump method is a751

data driven method that defines a threshold for extreme propensity scores (i.e., positivity violations),752

based on the distribution of propensity scores in the data (see further results in (14)).753

The symmetric prevalence procedure generates upper and lower cutoff values that are adjusted for754

the prevalence. The cutoffs are computed such that if the overall prevalence was 0.5 they would be755

symmetrical (e.g. for α = 0.05 the cutoffs would be 0.05 and 0.95). We may consider this as class756

reweighting of the propensities, within the entire population.757

If we denote the overall prevalence µ, and consider α as the cutoff had the distribution been symetric
(we recommend taking α = 0.1), the cutoffs are computed as follows:

Upper cutoff =
(1− α) ∗ µ

(1− α) ∗ µ+ α ∗ (1− µ)

Lower cutoff =
α ∗ µ

α ∗ µ+ (1− α) ∗ (1− µ)

A.9 Experimental details and computation758

For BICauseTree, most hyperparameters were set to their default value. Multiple hypothesis test759

correction was done following a step-down method using Holm-Bonferroni adjustments (26; 27),760

with α = 0.05. The threshold for weight trimming for positivity violations was computed using761

the Crump procedure (48; 14) with 10000 segments. Throughout all experiments the minimum762

treatment group size was set to 2 patients. The maximum depth is the only parameter which varied763

depending on experiments. It was set to 5 for both synthetic datasets, and 10 for the experiments on764

the twins dataset. A long-standing practice has been to define any covariate with ASMD ≥ 0.10 as765

a potentially problematic confounder (25), so we set this as our default threshold and used it in our766

experiments.767

For IPW(LR), we used a Logistic Regression with a saga solver, no penalty and a maximum number768

of iterations equal to 500. For comparison purposes, BICauseTree(IPW) used similar hyperparameters769

for its internal IPW outcome model. For IPW(GBT) we used default hyperparameters.770

We applied double matching based on the Mahalanobis distance for all datasets but ACIC, on which771

we used a Euclidean distance to avoid non-invertable matrices caused by the sparsity of non-null772

column values.773

Causal Tree with a single estimator and a subforest size of 1. For Causal Forest, we used 50 estimators774

and subforest size of 1.775

In general BICauseTree compares with IPW, Causal Tree and Causal Forest w.r.t computational776

efficiency. Matching has higher compute time than all other models.777
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Experiment Amount of Compute
Natural experiment dataset
BICauseTree(Marginal) 286
IPW 134
Matching 882
Causal Tree 183
Causal Forest 390
Positivity violations dataset
BICauseTree(Marginal) 258
IPW 128
Matching 929
Causal Tree 137
Causal Forest 384
Twins
BICauseTree(Marginal) 420
BICauseTree(IPW) 567
IPW 329
Matching 2283
Causal Tree 403
Causal Forest 672
ACIC
BICauseTree(Marginal) 329
BICauseTree(IPW) 376
IPW 239
Matching 1092
Causal Tree 354
Causal Forest 439

Table A1: Total amount of compute in seconds for model fitting across 50 train-test splits, for selected
experiments. All experiments were run on a 10 core CPU Apple M1 Pro.

For including Causal Tree into our experiments, we used the code available at https://github.778

com/py-why/EconML. Outcome and propensity models were trained using sklearn with default779

parameters and 500 maximum iterations for Logistic Regression when relevant. Statistical testing780

was implemented using the statsmodel package.781

Causal benchmark datasets The twins dataset was originally taken from the denominator file782

at https://www.nber.org/research/data/linked-birthinfant-death-cohort-data.783

However, we use data generated by Neal et. al (30), which simulates an observational study from the784

initial data by selectively hiding one of the twins with a generative approach. The sample size is785

N = 11, 984 pairs of twins, with the essential inclusion criterion being that both individuals were786

born weighing less than 2kg. The mortality rate amongst the lighter twins is 18.9%, and for the787

heavier 16.4%, for an average treatment effect of −2.5% (which we thus consider as ground truth). A788

total of 75 covariates were recorded, relating to the parents’ socio-demographic features and medical789

history, the pregnancy and the birth.790

The ACIC dataset was generated using the causallib package at https://github.com/791

BiomedSciAI/causallib/blob/master/causallib/datasets/data/acic_challenge_792

2016/README.md. It contains covariates, simulated treatment, and simulated response variables for793

the causal inference challenge in the 2016 Atlantic Causal Inference Conference (49). For each of794

20 conditions, treatment and response data were simulated from real-world data corresponding to795

4802 individuals and 58 covariates. After one-hot encoding, a total of 79 covariates was included.796

More specifically, we used the set of treatment and response variables zymu 174570858, with the two797

expected potential outcomes (mu0, mu1).798

A.10 Social impact of our work: further details799

Recent years have seen a surge in the Explainable AI (XAI) literature, motivated by rising ethical800

concerns around artificial intelligence. Model scrutiny is particularly relevant in sensitive environ-801

ments such as healthcare, which require high safety standards considering the major consequences of802

invalid predictions on individual trajectories (50). Calls for model transparency are further motivated803

by evidences that supervised machine learning is inclined to reproduce inherent bias and prejudice804

against discriminated groups (51). Ultimately, XAI aims at building trust in models that ought to be805

deployed. In recent years, the demand for transparency expanded beyond the research community,806
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notably with incentives from high institutions. The European Union General Data Protection Regula-807

tion legislation has mandated a “right to explanation” for individual predictions that can “significantly808

affect” users (52). In other words, algorithmic results should be re-traceable on demand. In parallel,809

quality control frameworks such as the U.S. Food and Drug Administration guidance have been810

introduced to ensure the safety of clinical AI (53). By providing interpretable effect estimation, our811

BICauseTree approach aligns with the mission of increasing transparency for downstream users. As812

such, it is most likely to have positive social impact. We however caution against relying exclusively813

on causal inference when data accuracy or volumes are insufficient, as misleading effect estimates814

may have negative social impact.815
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