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A Appendix

A.1 Causal inference

Confounder A confounder is a variable that is associated with both the treatment and the outcome,
causing a spurious correlation. For instance, summer is associated with eating ice cream and getting
sunburns, but there is no causal relationship between the two.

Propensity score model A propensity score model is a function that predicts treatment from the
observed covariates i.e. P(T = 1|C = ¢) for a binary treatment 7" and a covariate vector C'.

Potential outcome As defined by the Rubin causal model (39), a potential outcome Y (¢) is the
value that Y would take if T" were set by (hypothetical) intervention to the value ¢.

Identification assumptions Inference is possible under three identification assumptions.

e No interference For a given individual i, this assumption implies that Y;(¢) represents the
value that Y would have taken for individual i if 7" had been set to ¢ for individual ¢, i.e the
potential value of Y; if T; had been set to t.

e Consistency For a given individual i, T; = t = Y; = Y;(t). This means that for individuals
who actually received treatment level ¢, their observed outcome is the same as what it would
have been had they received treatment level ¢ via an hypothetical intervention.

e Conditional exchangeability For a given individual ¢, we assume that conditional on C,
the actual treatment level T is independent of each of the potential outcomes:
Y(t)LT|C,Vt

A.2 Evaluation of the tree consistency

We evaluated the consistency of our clustering across subsamples using an Adjusted Rand Index (33).
Given a set of n elements S = {01, ..., 0,} and two partitions of S to compare, X = {X1,..., X, },
a partition of S into r subsets, and Y = {Y7,...,Ys}, a partition of S into s subsets, define the
following:

e a, the number of pairs of elements in S that are in the same subset in X and in the same
subsetin Y.

e b, the number of pairs of elements in .S that are in different subsets in X and in different
subsets in Y.

e ¢, the number of pairs of elements in S that are in the same subset in X and in different
subsets in Y.

e d, the number of pairs of elements in S that are in different subsets in X and in the same
subset in Y.

The Rand index, R, is:

B a-+b _a+b
T a+bt+ce+d < n>
2

Intuitively, a 4 b can be considered as the number of agreements between X and Y and ¢ + d as the
number of disagreements between X and Y. The adjusted Rand index is the corrected-for-chance
version of the Rand index (40).

A.3 Further related work

This section was mistakenly referred to as section 3.1 in the main text, 218.

Causal inference provides a wide range of methods for estimating causal effect from data with
unbalanced treatment allocation. In balancing methods such as matching or weighting methods, the
data is pre-processed to create subgroups with lower treatment imbalance or “natural experiments”.

Matching Matching methods consist of clustering similar units from the treatment and control
groups to reduce imbalance. In general, a matching procedure generates weights w;; denoting the
assignment of one or many control units j to a treated unit ¢ ((41), Chapter 5). Exact matching only
assigns control units to treatment units with the exact same set of covariate values. But typically,
matched control units j are chosen based on a nearest neighbours search according to some distance
metric. However, matching procedures induce a bias-variance trade-off as discarding unmatched
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samples reduces estimation error at the cost of increased variance. However, all matching methods
suffer from the curse of dimensionality, making them impractical in high-dimensional datasets. Exact
matching and coarsened exact matching (42) find exponentially fewer matches as the input dimension
grows (43). Alternative methods include Propensity score matching (44), where distance is computed
from an estimate of the propensity score P(T' = 1 | X = ), and Mahalanobis distance matching
(28) (see more details below in 4.1). However, compression into a single dimension can lead to
highly unrelated matches with very different characteristics in the original covariate space, and can
ultimately increase estimation bias (45). Clivio et. al overcome this issue by developing a multivariate
balancing scores to perform matching for high-dimensional causal inference. Nevertheless, this
approach is not interpretable.

Weighting methods An alternative to matching are weighting methods, where sample weights are
estimated, generalising the problem formulation of matching. In Inverse Probability Weighting (IPW)
(4) which is the most popular alternative in that category, the samples are weighted according to their
propensity score, i.e. the estimated probability of treatment conditional on their covariates.

Adjustment methods Adjustment methods estimate the causal effect from regression outcome
models where both treatment and covariates act as predictors of the outcome. These regressions can
be fitted through various methods like linear regression (5), neural networks (6; 7), or tree-based
models (8). Common alternatives include Doubly Robust estimators (46), Double Debiased Machine
Learning (47) and metalearners such as the T-learner and X-learner (9). These methods have the
advantage of being very data-adaptive. More particularly, the Causal Tree approach (8) builds on
regression tree methods, and splits the data to optimize for goodness of fit in treatment effects. Causal
Tree separates the training dataset into two subsamples: a splitting subsample and an estimating
subsample. The splitting subsample is used to build a causal tree while the estimating subsample is
used to generate unbiased conditional treatment effect estimates. This procedure is called “honest
estimation” and is anticipated to avoid overfitting.

A.4 Experimental details: synthetic datasets

A.4.1 Natural experiment dataset

For the natural experiment dataset, we consider a Death outcome D, a binary treatment of interest 7’
and two covariates such that X = (.S, A) with S the sex and A the continuous age such that:

S ~ Bernoulli(0.5)
A ~ Normal (50, 20%)

The sample size was chosen to be N = 20, 000.
We defined four sub-populations, each constituting a natural experiment, with a different propensity
distribution P(T = 1|1 X = z):

Pr(T =1|S =1, A > 50) ~ TruncatedNormaljg 1) (0.5, 0.1%)
Pr(T = 1|S = 1, A < 50) ~ TruncatedNormaljy 1) (0.3,0.17)
Pr(T = 1|8 = 0, A > 50) ~ TruncatedNormalj 1 (0.1,0.1%)

Pr(T =1|S =0, A < 50) ~ TruncatedNormal[g 1) (0.4, 0.1%)

Individual treatment propensities were sampled from the corresponding distributions above and
observed treatment values were sampled from a Bernoulli distribution parameterized with the individ-
ual propensities. The outcome probabilities were not modeled as a distribution. Instead, observed
outcome values were sampled directly from a Bernoulli distribution parameterized with a constant
value that depended on both X and 7T'.

e Pr(YIT=1,8=1,A>50)~ B(0.1)
o Pr(Y|IT=1,5=1,4<50)~ B(0.2)
e Pr(Y|IT=1,5=0,4>50)~ B(04)
e Pr(Y|T=1,5=0,A <50) ~ B(0.15)
e Pr(Y|T=0,5=1,A4>50) ~ B(0.2)
e Pr(Y|T=0,5=1,4<50)~ B(0.4)
e Pr(Y|T=0,5=0,4>50) ~ B(0.8)
e Pr(Y|T =0,5=0,A4 < 50) ~ B(0.3)

No positivity violation was modeled in this experiment.
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A.4.2 Positivity violations dataset

For this second synthetic experiment, we build a dataset with two positivity violating subgroups. Let
us consider a synthetic example of a dataset with a Death outcome D, a binary treatment of interest 7'
and three binary covariates —sex, cancer and arrhythmia— such that X = (S, C, A). For the marginal
distributions, we set:

S ~ Ber(0.5)
C ~ Ber(0.3)
A ~ Ber(0.1)
The sample size was chosen to be N = 20, 000.
e Pr(I'=1|S=1,C =1, A = 1) ~ TruncatedNormal 1) (1.00,0.022
=1|8=1,C=0,A=1) ~ TruncatedNormaljy 1 0.32,0.102
=1|S=1,C=1,4=0) ~ TruncatedNormaly, ; (0.12,0.10

0.1] ( )

T 0.1] ( )
T 0.1] ( )
T =1|$=1,C =0,A = 0) ~ TruncatedNormal 3 (0.42,0.10?)
0.1] ( )

0.1] ( )

0.1] ( )

Pr( )
Pr( )
P )
Pr(T'=1|S =0,C =1, A = 0) ~ TruncatedNormalg y 0.17,0.102
Pr(T'=1[S =0,C =1, A= 1) ~ TruncatedNormal 1 0.30,0.102
Pr(T'=1|5 =0,C = 0,A = 1) ~ TruncatedNormalg y 0.24,0.102
e Pr(T'=1|S=0,C =0,A = 0) ~ TruncatedNormaljy 1} (0.00,0.02)
The observed outcome values were sampled from a Bernoulli distribution parameterized with a
constant value that depended on both X and 7T'. For the treated:

e Pr(Y|IT=1,85=1,C=1,A=1) ~ B(0.13)
e Pr(Y|T=1,5=1,C=1,A=0) ~ B(0.08)
e Pr(Y|IT=1,5=1,C=0,A=1) ~ B(0.21)
e Pr(YIT=1,5=1,C=0,A=0) ~ B(0.1)
e Pr(Y|IT=1,5=0,C=1,A=1) ~ B(0.36)
e Pr(Y|T=1,5=0,C=1,A=0) ~ B(0.29)
e Pr(Y|IT=1,5=0,C=0,A=1)~ B(0.24)
e Pr(Y|IT=1,5=0,C=0,4=0)~ B(0.09)
For the untreated:
e Pr(Y|IT=0,S5=1,C=1,A=1) ~ B(0.31)
e Pr(YIT=0,S5=1,C=1,A=0) ~B(0.4)
e Pr(Y|IT=0,S5=1,C=0,4A=1) ~ B(0.29)
e Pr(Y|T=0,S5=1,C=0,4A=0) ~ B(0.45)
e Pr(Y|IT=0,5=0,C=1,A=1)~B(04)
e Pr(Y|IT=0,5=0,C=1,A=0)~ B(0.51)
e Pr(Y|T=0,5=0,C=0,A=1) ~ B(0.43)
e Pr(Y|IT=0,5=0,C=0,4=0)~ B(0.73)

A.5 Further experiment results: synthetic experiments
A.5.1 Natural experiment dataset

Partitioning The tree partitions so to recreate the four intended sub populations where a natural
experiment was simulated. The average Rand index was equal to 0.901 across the 50 subsamples
(o = 0.263). Violating leaf nodes are marked in red.

N = 20,000
P=0.332
Max ASMD = 0.145
S<0 $>0
N =9,955 N =10,045
P=0.287 P=0.377
Max ASMD = 0.391 Max ASMD = 0.426
C>55.04 C<55.04 C<55.08 C > 55.08
N =3,984 N=5,971 N=6,031 N=4,014
P=0.125 P=0.395 P=0.293 P =0.503
Max ASMD = 0.011 Max ASMD = 0.021 Max ASMD = 0.003 Max ASMD = 0.000

Figure Al: Tree structure after training on the entire natural experiment dataset (N = 20, 000).
Violating leaf nodes are marked in red.
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Causal effect estimation Here, Causal Tree has both higher estimation bias and higher estimation
variance compared to other methods. The tree-like nature of our data structure may be incompatible
with the optimization function of Causal Tree, which maximizes on treatment effect heterogeneity.
Causal Forest, which has multiple Causal Tree models, however overcomes this difficulty and
performs well.

BlCauseTree | B Test
(Marginal) [ Train

Causal Forest 4

]
Causal Tree E N

IPW(GBT) §

Marginal

Matching

!
IPW(LR) 1 I
|
|

10 20 30 40 50
|ATE — ATE]|

Figure A2: Estimation bias for the natural experiment dataset across 50 subsamples with N = 20, 000.

Propensity score estimation BICauseTree(Marginal)’s propensity estimation is well calibrated.
It is closer to the identity line than logistic regression- (IPW(LR)) and the gradient boosting trees-
(IPW(GBT)) based models. The calibration however remains satisfactory across all models. This
further shows our ability to identify natural experiments in a simple data setting.

BlCauseTree(Marginal) IPW(GBT)

> 1.0 = q =
£ ~~ Optimal - -~ Optimal -
3 Subsamples T Subsamples e
805/ —My,, | — average _-
5
)
2 - =
F 001~ 1r

00 02 04 06 08 10 00 02 04 06 08 10

Predicted probability Predicted probability
IPW(LR)

21'0’ —— Optimal Pl
3 Subsamples /—”
§ 0.5 T Averose /,,/
5
g N
foodletl 1 . . . .

00 02 04 06 08 10 00 02 04 06 08 10

Predicted probability

Figure A3: Calibration of the propensity score estimation for the natural experiment dataset across
50 subsamples, on the natural experiment testing set (N = 10, 000).

Outcome estimation The performance of BICauseTree w.r.t outcome estimation is only satisfactory
in this experiment. This shows our ability to estimate the ATE despite a somehow lower calibration
of our outcome estimation. Ultimately, the performance would likely have been improved had we
used a more complex outcome model. The calibration of the predicted outcomes by BICauseTree
however remains better than the one by Matching.
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Figure A4: Calibration of the outcome estimation for the natural experiment dataset across 50
subsamples on the natural experiment testing set (/N = 10, 000).

Effect estimation bias reduction with tree depth Figure[A3]shows how estimation bias decreases
as we increase the maximum depth hyperparameter of our BICauseTree(Marginal) on the natural
experiment training dataset (N = 10,000). Here, each circle in the plot represents the effect
estimated for each subsample. Note that the circles were mistakenly described as corresponding to
nodes instead of subsamples in the main text, on line 301. The dotted line shows the average bias
with an IPW estimator. The shaded area represents the 95% confidence interval (CI) for IPW. This
result shows that our estimation is robust to the choice of a maximum tree depth hyperparameter.
Above a certain threshold, the effect estimate from BICauseTree remains unbiased.

1 2 3 4 5 6 71 8 9 10
Tree maximum depth
Figure AS: Estimation bias when comparing BICauseTree(Marginal) with varying maximum depth

parameters with the average bias of IPW (dotted), on the natural experiment training set (/N = 10, 000)
across 50 subsamples.

Treatment allocation bias reduction with tree depth Figure [A@ below shows the weighted
ASMD of both covariates S and A in BlCauseTree models with varying maximum tree depth
hyperparameters. It illustrates the reduction of treatment allocation bias as the tree grows, but also
shows that this reduction is a heuristic as the ASMD might not decrease monotonically.
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Figure A6: Weighted ASMD for all covariates applying BICauseTree(Marginal) models with varying
maximum tree depths on the natural experiment training set (N = 10, 000) across 50 subsamples.

A.5.2 Positivity violations dataset

Partitioning BICauseTree coherently flags the two subpopulations where a positivity violations
were simulated, as shown in the example partition on the entire dataset below in Figure[A7|(violating
leaves are marked in red). The average Rand index was equal to 0.986 across the 50 subsamples
(0 =0.026).

c<o0

[

N =20,000
P=0.223

Max ASMD = 0.626

S<0

$>0

N=9,927
P=0.085
Max ASMD = 0.613

N=10,073
P=0.746

Max ASMD =0.132

c>0

JLLE

[

N =6,962
P=0.041

Max ASMD = 0.999

]

[

P=0.189
Max ASMD = 0.184

N = 3,089 N = 6,984
P=0.225 P=0.418
Max ASMD = 0.883 Max ASMD =0.122

A<O0 A>0 A<O0 A>0 A<O0 A>0 A>0 A<O0
N = 6,248 N =2,664 N =301 N=2,776 N=313 N =682 N =6,302
P=0.017 P=0.253 P=0.174 P=0319 P=0.139 P=0.984 P=0.293 P=0.431

Max ASMD = Max ASMD = Max ASMD = Max ASMD = Max ASMD = Max ASMD = Max ASMD = Max ASMD =

0.000 0.000 0.000 0.000 0.000 0.000

Figure A7: Tree structure after training on the entire positivity violations dataset (N = 20, 000).
Violating leaf nodes are marked in red.

Causal effect estimation Our tree compares with all existing alternatives. Matching has both
higher estimation bias and higher estimation variance compared to other methods.
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Figure A8: Estimation bias on the positivity violations dataset (/N = 20, 000) across 50 subsamples

Propensity score estimation BICauseTree(Marginal) shows good calibration, since it indeed
clearly identified the correct subpopulations. The gradient-boosting tree (IPW(GBT)) also shows
good calibration, as the tree-based modeling captures the underlying structure of the data. On the
other hand, the logistic regression-based model (IPW(LR)) is ill-specified for the data and therefore
presents relatively poorer calibration.
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Figure A9: Propensity score calibration comparing our approach to existing alternatives on the testing
set of the positivity violation dataset (/N = 10, 000) across 50 subsamples

Outcome estimation BICauseTree shows descent calibration on outcome prediction in this experi-
ment. Matching shows poor calibration.

BlCauseTree(Marginal) Matching

1.0+ -- Optimal . 1 == optimal
Subsamples - Subsamples %
— Average / — Average 2

True probability

e
0.44 B S
/
/
/
g
;
0.2 %
/
;
/
/
/
0.0 /
00 02 04 06 08 10 00 02 04 06 08 1.0
Predicted probability Predicted probability

Figure A10: Calibration of the outcome estimation comparing our approach to existing alternatives
on the positivity violations testing dataset (N = 10, 000) across 50 subsamples

Effect estimation bias reduction with tree depth We see in this case, that having a max depth

which is too large leads to an increase in the bias. This might indicate that a hyper parameter tuning
procedure would benefit cases where the tree might become too deep and overfit to the training data.
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Figure A11: Estimation bias when comparing BICauseTree(Marginal) with varying maximum depth

parameters with the average bias of IPW (dotted), on the positivity violations experiment training set
(N = 10, 000) across 50 subsamples.

Treatment allocation bias reduction with tree depth Figure below shows the weighted
ASMD of all three covariates in BICauseTree models with varying maximum tree depth hyperparam-
eters. We see that the ASMD generally decreases with tree depth, showing that the splitting criteria
we use leads to balanced subpopulations, as expected.

Weighted ASMD
o o o o o
N w ES wn o

o
=

0.0 1

Tree maximum depth

Figure A12: Weighted ASMD for all covariates applying BICauseTree(Marginal) models with
varying maximum tree depths on the positivity violations dataset training set (/N = 10, 000) across
50 subsamples

A.6 Further experiment results: the twins dataset

Partitioning The following plot shows the final tree built for the twins dataset. Red nodes indicate
positivity violation population.
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N=11,984
P=0.746
Max ASMD = 0.132

gestatcat2 <0 gestatcat2 >0
N=7,032 N =14,952
P=0.775 P=0.746
Max ASMD = 0.130 Max ASMD =0.132
bord> 0 bord <0 gestatcat2.2< 0 gestatcat2.2 >0
N=3,272 N =3,760 N =2,691 N=2,261
P=0.741 P=0.805 P=0.735 P =0.665
Max ASMD = 0.100 Max ASMD = 0.098 Max ASMD = 0.147 Max ASMD = 0.092
gestatcat2.2> 0 gestatcat2.2 <0 cigar<4 cigar>4
N=1,225 N=2,047 N =2,001 N =690
P=0.706 P=0.762 P=0.713 P=0.800
Max ASMD = 0.146 Max ASMD = 0.091 Max ASMD = 0.127 Max ASMD = 0.220
gestatcat10.1 >0 gestatcat10.1 <0
N =695 N=1,352
P=0.794 P=0.746
Max ASMD = 0.192 Max ASMD = 0.109
gestatcat9.1 <0 gestatcat9.1 >0
N=212 N =483
P=0.858 P=0.766
Max ASMD = 0.442 Max ASMD =0.193
feducé >2 feducb< 2
N =281 N =202
P=0.804 P=0.713
Max ASMD = 0.428 Max ASMD = 0.257
gestatcat 6.2 >0 gestatcat 6.2< 0
N=106 N=175
P=0.915 P=0.737
Max ASMD = 0.714 Max ASMD = 0.262

Figure A13: Tree structure after training on the entire twins dataset (N = 11, 984). Violating leaf
nodes are marked in red. Note that this was mistakenly referred to as figure A.4. in the main text, on
line 319.

Causal effect estimation Figure shows a comprehensive comparison of the different mod-
els. Causal tree shows poor performance, whereas causal forest performs comparably to BICause-
Tree(Marginal) and IPW.
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Figure A14: Estimation bias on the twins dataset (/N = 11, 984) across 50 subsamples

Outcome estimation BICauseTree(Marginal) shows good calibration on outcome estimation. BI-
CauseTree(IPW) seem to have some bias in outcome estimation. This is possibly due to the parametric
nature of our IPW model which uses a Logistic Regression. Matching shows poor outcome estimation
ability.
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Figure A15: Calibration of the outcome estimation across 50 subsamples, on the twins testing set
(N =5,992).

726 Treatment allocation bias reduction with tree depth Figure[AT6|below shows the reduction in
727 ASMD for the top 10 most imbalanced features in the entire population. It compares BICauseTree

726 models with varying maximum tree depth hyperparameters. In all 10 covariates, we notice how the
729 ASMD reduces as the maximum tree depth increases.
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Figure A16: Weighted ASMD for the top 10 covariates with the highest ASMD in the initial
population for BICauseTree(Marginal) models with varying maximum tree depths on the twins
dataset training set (N = 5, 992) across 50 subsamples

730 A.7 Further experiment results: the ACIC dataset

731 Partitioning The following shows the tree built for the ACIC dataset.
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N = 4,802
P=0.666
Max ASMD = 0.093

X_37<79 X_37>79
N =4,442 N =360
P=0.680 P =0.489
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X_3<15 X_3>15
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P=0.308 P =0.600
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feduc6 >2 feduc6< 2
N=16 N=6
P=0.813 P=0.00
Max ASMD = 1.074 Max ASMD = 0.000

Figure A17: Tree structure after training on the entire ACIC dataset (N = 4, 802). Violating leaf
nodes are marked in red.

Causal effect estimation Figure[AT4]shows a comprehensive comparison of the different models.
The performance of both BICauseTree models compares with the one from IPW or Causal Forest.
Causal Tree however shows poor performance. Matching shows high estimation bias compared to all
other models, including the Marginal estimator.
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Figure A18: Estimation bias on the ACIC dataset testing set (/N = 960) across 50 subsamples

Propensity score estimation We show here the calibration of propensity scores in the ACIC dataset.
BICauseTree preforms less well than IPW, which is more tailored for propensity estimation. As the
outcome is non-binary in ACIC, we are not able to generate a calibration plot comparing the outcome
estimation of BICauseTree with the one from existing approaches.
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Figure A19: Propensity score calibration comparing our approach to existing alternatives on the
ACIC dataset testing set (N = 960) across 50 subsamples

Effect estimation bias reduction with tree depth Figure[A20|below shows the estimation bias for
various maximum tree depth hyperparameters. We notice some overlap to IPW confidence interval,
and bias reduces for depths up to max depth 6, then the variance across subsamples starts to increase.
This may be due to the limited sample size of this dataset.

2.01 i —_—

o
I
sl

225 Peos
i 2l
3

] 2
T 1.8 | -|- E{| [assie]
VRN U s g« 4
< 4 b .

1.7 1 ¢

¢
ew M S N
1.6

95% confidence interval

1.5+

1 2 3 4 5 6 7 8 9 10
Tree maximum depth
Figure A20: Estimation bias when comparing BICauseTree(Marginal) with varying maximum depth

parameters with the average bias of IPW (dotted), on the ACIC training set (N = 3, 842) across 50
subsamples.

Treatment allocation bias reduction with tree depth Figure below shows the reduction in
ASMD for the top 10 most imbalanced features in the entire population. It compares BICauseTree

models with varying maximum tree depth hyperparameters. All 10 covariates show reduction in
ASMD with depth.
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Figure A21: Weighted ASMD across maximum tree depths for the top 10 covariates with the highest
ASMD in the initial population, applying BICauseTree(Marginal) models with varying maximum
tree depths on the ACIC dataset training set (/N = 3, 842) across 50 subsamples

A.8 Implementation
A.8.1 Positivity violations evaluations

We implemented two positivity violations definition procedures: the Crump method and a method
we introduced, which we call the symmetric prevalence threshold method. The Crump method is a
data driven method that defines a threshold for extreme propensity scores (i.e., positivity violations),
based on the distribution of propensity scores in the data (see further results in (14)).

The symmetric prevalence procedure generates upper and lower cutoff values that are adjusted for
the prevalence. The cutoffs are computed such that if the overall prevalence was 0.5 they would be
symmetrical (e.g. for o = 0.05 the cutoffs would be 0.05 and 0.95). We may consider this as class
reweighting of the propensities, within the entire population.

If we denote the overall prevalence i, and consider « as the cutoff had the distribution been symetric
(we recommend taking o = 0.1), the cutoffs are computed as follows:

(1—a)*p
(1—a)*p+a*(l—p)

Upper cutoff =

Qax [
axp+(1—a)x(l—p)

Lower cutoff =

A.9 Experimental details and computation

For BICauseTree, most hyperparameters were set to their default value. Multiple hypothesis test
correction was done following a step-down method using Holm-Bonferroni adjustments (26; 27),
with a = 0.05. The threshold for weight trimming for positivity violations was computed using
the Crump procedure (48; 14) with 10000 segments. Throughout all experiments the minimum
treatment group size was set to 2 patients. The maximum depth is the only parameter which varied
depending on experiments. It was set to 5 for both synthetic datasets, and 10 for the experiments on
the twins dataset. A long-standing practice has been to define any covariate with ASM D > 0.10 as
a potentially problematic confounder (25), so we set this as our default threshold and used it in our
experiments.

For IPW(LR), we used a Logistic Regression with a saga solver, no penalty and a maximum number
of iterations equal to 500. For comparison purposes, BICauseTree(IPW) used similar hyperparameters
for its internal [IPW outcome model. For IPW(GBT) we used default hyperparameters.

We applied double matching based on the Mahalanobis distance for all datasets but ACIC, on which
we used a Euclidean distance to avoid non-invertable matrices caused by the sparsity of non-null
column values.

Causal Tree with a single estimator and a subforest size of 1. For Causal Forest, we used 50 estimators
and subforest size of 1.

In general BICauseTree compares with IPW, Causal Tree and Causal Forest w.r.t computational
efficiency. Matching has higher compute time than all other models.
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Experiment Amount of Compute
Natural experiment dataset
BICauseTree(Marginal) 286
IPW 134
Matching 882
Causal Tree 183
Causal Forest 390
Positivity violations dataset
BICauseTree(Marginal) 258
IPW 128
Matching 929
Causal Tree 137
Causal Forest 384
Twins

BICauseTree(Marginal) 420
BICauseTree(IPW) 567
IPW 329
Matching 2283
Causal Tree 403
Causal Forest 672
ACIC

BICauseTree(Marginal) 329
BICauseTree(IPW) 376
IPW 239
Matching 1092
Causal Tree 354
Causal Forest 439

Table Al: Total amount of compute in seconds for model fitting across 50 train-test splits, for selected
experiments. All experiments were run on a 10 core CPU Apple M1 Pro.

For including Causal Tree into our experiments, we used the code available at https://github.
com/py-why/EconML. Outcome and propensity models were trained using sklearn with default
parameters and 500 maximum iterations for Logistic Regression when relevant. Statistical testing
was implemented using the statsmodel package.

Causal benchmark datasets The twins dataset was originally taken from the denominator file
at https://www.nber.org/research/data/linked-birthinfant-death-cohort-datal
However, we use data generated by Neal et. al (30), which simulates an observational study from the
initial data by selectively hiding one of the twins with a generative approach. The sample size is
N = 11,984 pairs of twins, with the essential inclusion criterion being that both individuals were
born weighing less than 2kg. The mortality rate amongst the lighter twins is 18.9%, and for the
heavier 16.4%, for an average treatment effect of —2.5% (which we thus consider as ground truth). A
total of 75 covariates were recorded, relating to the parents’ socio-demographic features and medical
history, the pregnancy and the birth.

The ACIC dataset was generated using the causallib package at https://github.com/
BiomedSciAI/causallib/blob/master/causallib/datasets/data/acic_challenge_
2016/README . md. It contains covariates, simulated treatment, and simulated response variables for
the causal inference challenge in the 2016 Atlantic Causal Inference Conference (49). For each of
20 conditions, treatment and response data were simulated from real-world data corresponding to
4802 individuals and 58 covariates. After one-hot encoding, a total of 79 covariates was included.
More specifically, we used the set of treatment and response variables zymu 174570858, with the two
expected potential outcomes (mu0, mul).

A.10 Social impact of our work: further details

Recent years have seen a surge in the Explainable AI (XAI) literature, motivated by rising ethical
concerns around artificial intelligence. Model scrutiny is particularly relevant in sensitive environ-
ments such as healthcare, which require high safety standards considering the major consequences of
invalid predictions on individual trajectories (50). Calls for model transparency are further motivated
by evidences that supervised machine learning is inclined to reproduce inherent bias and prejudice
against discriminated groups (51). Ultimately, XAI aims at building trust in models that ought to be
deployed. In recent years, the demand for transparency expanded beyond the research community,
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notably with incentives from high institutions. The European Union General Data Protection Regula-
tion legislation has mandated a “right to explanation” for individual predictions that can “significantly
affect” users (52). In other words, algorithmic results should be re-traceable on demand. In parallel,
quality control frameworks such as the U.S. Food and Drug Administration guidance have been
introduced to ensure the safety of clinical Al (53). By providing interpretable effect estimation, our
BICauseTree approach aligns with the mission of increasing transparency for downstream users. As
such, it is most likely to have positive social impact. We however caution against relying exclusively
on causal inference when data accuracy or volumes are insufficient, as misleading effect estimates
may have negative social impact.
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