
Algorithm 1 SUPPORT(p, cache)

1: Input: a smooth, deterministic, and decomposable circuit p over variables X and a cache for
memorization

2: Output: a smooth, deterministic, and decomposable circuit s over X encoding s(x) =
Jx ∈ supp(p)K

3: if p ∈ cache then return cache(p)
4: if p is an input unit then s← INPUT(Jx ∈ supp(p)K, φ(p))

5: else if p is a sum unit then s← SUM({SUPPORT(pi, cache)}|in(p)|i=1 , {1}|in(p)|i=1)

6: else if p is a product unit then s← PRODUCT({SUPPORT(pi, cache)}|in(p)|i=1 |)
7: cache(p)← s
8: return s

A Useful Sub-Routines

This section introduces the algorithmic construction of gadget circuits that will be adopted in our
proofs of tractability as well as hardness. We start by introducing three primitive functions for
constructing circuits—INPUT, SUM, and PRODUCT.

• INPUT(lp, φ(p)) constructs an input unit p that encodes a parameterized function lp over variables
φ(p). For example, INPUT(JX = TrueK, X) and INPUT(JX = FalseK, X) represent the positive
and negative literals of a Boolean variable X , respectively. On the other hand, INPUT(N (µ, σ), X)
defines a Gaussian pdf with mean µ and standard deviation σ over variable X as an input function.

• SUM({pi}ki=1, {θi}ki=1) constructs a sum unit that represents the weighted combination of k circuit
units {pi}ki=1 encoded as an ordered set w.r.t. the correspondingly ordered weights {θi}ki=1.

• PRODUCT({pi}ki=1) builds a product unit that encodes the product of k circuit units {pi}ki=1.

A.1 Support circuit of a deterministic circuit

Given a smooth, decomposable, and deterministic circuit p(X), its support circuit s(X) is a smooth,
decomposable, and deterministic circuit that evaluates 1 iff the input x is in the support of p (i.e.,
x ∈ supp(p)) and otherwise evaluates 0, as defined below.
Definition A.1 (Support circuit). Let p be a smooth, decomposable, and deterministic PC over
variables X. Its support circuit is the circuit s that computes s(x) = Jx ∈ supp(p)K, obtained by
replacing every sum parameter of p by 1 and every input distribution l by the function Jx ∈ supp(l)K.

A construction algorithm for the support circuit is provided in Alg. 1. This algorithm will later be
useful in defining some circuit operations such as the logarithm.

A.2 Circuits encoding uniform distributions

We can build a deterministic and omni-compatible PC that encodes a (possibly unnormalized) uniform
distribution over binary variables X = {X1, . . . , Xn}: i.e., p(x) = c for a constant c ∈ R+ for all
x ∈ val(X). Specifically, p can be defined as a single sum unit with weight c that receives input from
a product unit over n univariate input distribution units that always output 1 for all values val(Xi).
This construction is summarized in Alg. 2. It is a key component in the algorithms for many tractable
circuit transformations/queries as well as in several hardness proofs.

A.3 A circuit representation of the #3SAT problem

We define a circuit representation of the #3SAT problem, following the construction in Khosravi et al.
[23]. Specifically, we represent each instance in the #3SAT problem as two poly-sized structured-
decomposable and deterministic circuits pβ and pγ , such that the partition function of their product
equals the solution of the original #3SAT problem.

#3SAT is defined as follows: given a set of n boolean variables X = {X1, . . . , Xn} and a CNF
that contains m clauses {c1, . . . , cm} (each clause contains exactly 3 literals), count the number of
satisfiable worlds in val(X).

14

Algorithm 2 UNIFORMCIRCUIT(X, c)

1: Input: a set of variables X and constant c ∈ R+.
2: Output: a deterministic and omni-compatible PC encoding an unnormalized uniform distribution

over X.
3: n← {}
4: for i = 1 to |X| do
5: m← {}
6: for xi in val(Xi) do
7: m← m ∪ {INPUT(JXi = xiK, Xi)}
8: n← n ∪ {SUM(m, {1}|val(Xi)|

j=1)}
9: return SUM({PRODUCT(n)}, {c})

For every variable Xi in clause cj , we introduce an auxiliary variable Xij . Intuitively, {Xij}mj=1 are
copies of the variable Xi, one for each clause. Therefore, for any i, {Xij}mj=1 share the same value
(i.e., true or false), which can be represented by the following formula β:

β ≡
n∧

i=1

(Xi1 ⇔ Xi2 ⇔ · · · ⇔ Xim).

Then we can encode the original CNF in the following formula γ by substituting Xi with the
respective Xij in each clause:

γ ≡
m∧

j=1

∨

i:Xi∈φ(cj)

l(Xij),

where φ(c) denotes the variable scope of clause c, and l(Xij) denotes the literal of Xi in clause cj .
Since β restricts the variables {Xij}mj=1 to have the same value, the model count of β ∧ γ is equal to
the model count of the original CNF.

We are left to show that both β and γ can be compiled into a poly-sized structured-decomposable and
deterministic circuit. We start from compiling β into a circuit pβ . Note that for each i, (Xi1 ⇔ · · · ⇔
Xim) has exactly two satisfiable variable assignments (i.e., all true or all false), it can be compiled as
a sum unit ai over two product units bi1 and bi2 (both weights of a are set to 1), where bi1 takes inputs
from the positive literals {Xi1, . . . , Xim} and bi2 from the negative literals {¬Xi1, . . . ,¬Xim}.
Then pβ is represented by a product unit over {a1, . . . , an}. Note that by definition this pβ circuit is
structured-decomposable and deterministic.

We proceed to compile γ into a polysized structured-decomposable and deterministic circuit pγ .
Note that in #3SAT, each clause cj contains 3 literals. Therefore, for any j ∈ {1, . . . ,m},∨
Xi∈φ(cj) l(Xij) has exactly 7 models w.r.t. the variable scope φ(cj). Hence, we compile∨
Xi∈φ(cj) l(Xij) into a circuit dj , which is a sum unit with 7 inputs {ej1, . . . , ej7}. Each ejh

is constructed as a product unit over variables {X1j , . . . , Xnj} that represents the h-th model of
clause cj . More formally, we have ejh ← PRODUCT({gijh}ni=1), where gijh is a sum unit over
literals Xij and ¬Xij (with both weights being 1) if i 6∈ φ(cj) and otherwise gijh is the literal unit
corresponds to the h-th model of clause cj . The circuit pγ representing the formula γ is constructed
by a product unit with inputs {dj}mj=1. By construction this circuit is also structured-decomposable
and deterministic.

B Circuit Operations

This section formally presents the tractability and hardness results w.r.t. circuit operations summarized
in Tab. 1—sums, products, quotients, powers, logarithms, and exponentials. For each circuit operation,
we provide both its proof of tractability by constructing a polytime algorithm given sufficient structural
constraints and novel hardness results that identify necessary structural constraints for the operation
to yield a decomposable circuit as output.

Throughout this paper, we will show hardness of operations to output a decomposable circuit by
proving hardness of computing the partition function of the output of the operation. This follows from

15

the fact that we can smooth and integrate a decomposable circuit in polytime (Prop. 2.1), thereby
making the former problem at least as hard as the latter.

For the tractability theorems, we will assume that the operation referenced by the theorem is tractable
over input units of circuit or pairs of compatible input units. For example, for Thm. 3.2 we assume
tractable product of input units sharing the same scope and for Thm. 3.5 we assume that the powers
of the input units can be tractably represented as a single new unit. Note that this is generally easy
to realize for simple parametric forms e.g., multivariate Gaussians and for univariate distributions,
unless specified otherwise.

Moreover, in the following results, we will adopt a more general definition of compatibility that
can be applied to circuits with different variable scopes, which is often useful in practice. Formally,
consider two circuits p and q with variable scope Z and Y. Analogous to Def. 2.5, we say that p and
q are compatible over variables X = Z∩Y if (1) they are smooth and decomposable and (2) any pair
of product units n ∈ p and m ∈ q with the same overlapping scope with X can be rearranged into
mutually compatible binary products. Note that since our tractability results hold for this extended
definition of compatibility, they are also satisfied under Def. 2.5.

B.1 Sum of Circuits

The hardness of the sum of two circuits to yield a deterministic circuit has been proven by Shen et al.
[43] in the context of arithmetic circuits (ACs) [15]. ACs can be readily turned into circuits over
binary variables according to our definition by translating their input parameters into sum parameters
as done in Rooshenas and Lowd [41].

A sum of circuits will preserve decomposability and related properties as the next proposition details.
Proposition B.1 (Closure of sum of circuits). Let p(Z) and q(Y) be decomposable circuits. Then
their sum circuit s(Z∪Y) = θ1 ·p(Z)+θ2 · q(Y) for two reals θ1, θ2 ∈ R is decomposable. If p and
q are structured-decomposable and compatible, then s is structured-decomposable and compatible
with both p and q. Lastly, if both inputs are also smooth, s can be smoothed in polytime.

Proof. If p and q are decomposable, s is also decomposable by definition (no new product unit
is introduced). If they are also structured-decomposable and compatible, s would be structured-
decomposable and compatible with p and q as well, as summation does not affect their hierarchical
scope partitioning. Note that if one input is decomposable and the other omni-compatible, then s
would only be decomposable.

If Z = Y then s is smooth; otherwise we can smooth it in polytime [13, 45], by realizing the circuit

s(x) = θ1 · p(z) · Jq(x|Y\Z) 6= 0K + θ2 · q(y) · Jp(x|Z\Y) 6= 0K
where Jq(x|Y\Z) 6= 0K (resp. Jp(x|Z\Y) 6= 0K) can be encoded as an input distribution over variables
Y \ Z (resp.Z \ Y). Note that if the supports of p(Z \ Y) and q(Y \ Z) are not bounded, then
integrals over them would be unbounded as well.

B.2 Product of Circuits

Theorem 3.1 (Hardness of product). Let p and q be two structured-decomposable and deterministic
circuits over variables X. Computing their product m(X) = p(X) · q(X) as a decomposable circuit
is #P-hard.8

Proof. As noted earlier, we will prove hardness of computing the product by showing hardness
of computing the partition function of a product of two circuits. In particular, let p and q be two
structured-decomposable and deterministic circuits over binary variables X. Then, computing the
following quantity is #P-hard:

∑

x∈val(X)

p(x) · q(x). (MULPC)

8Note that this implies that product of decomposable circuits is also #P-hard, as decomposability is a weaker
condition than structured-decomposability. The hardness results throughout this paper translate directly when
input properties are relaxed.

16

The following proof is adapted from the proof of Thm. 2 in Khosravi et al. [23]. We reduce the #3SAT
problem defined in Sec. A.3, which is known to be #P-hard, to MULPC. Recall that pβ and pγ , as
constructed in Sec. A.3, are structured-decomposable and deterministic; additionally, the partition
function of pβ · pγ is the solution of the corresponding #3SAT problem. In other words, computing
MULPC of two structured-decomposable and deterministic circuits pβ and pγ exactly solves the
original #3SAT problem. Therefore, computing the product of two structured-decomposable and
deterministic circuits is #P-hard.

Theorem 3.2 (Tractable product of circuits). Let p(Z) and q(Y) be two compatible circuits over
variables X = Z ∩Y. Then, computing their product m(X) = p(Z) · q(Y) as a decomposable
circuit can be done in O(|p| |q|) time. If both p and q are also deterministic, then so is m, moreover
if p and q are structured-decomposable then m is compatible with p (and q) over X.

Proof. The proof proceeds by showing that computing the product of (i) two smooth and compatible
sum units p and q and (ii) two smooth and compatible product units p and q given the product
circuits w.r.t. pairs of child units from p and q (i.e., ∀r ∈ in(p) s ∈ in(q), (r ·s)(X)) takes time
O(|in(p)| |in(q)|). Then, by recursion, the overall time complexity is O(|p| |q|). Alg. 3 illustrates the
overall process in detail.

If p and q are two sum units defined as p(x) =
∑
i∈in(p) θipi(x) and q(x) =

∑
j∈in(q) θ

′
jqj(x),

respectively. Then, their product m(x) can be broken down to the weighted sum of |in(p)|·|in(q)|
circuits that represent the products of pairs of their inputs:

m(x) =

 ∑

i∈in(p)

θipi(x)

 ∑

j∈in(q)

θ′jqj(x)

 =

∑

i∈in(p)

∑

j∈in(q)

θiθ
′
j(piqj)(x).

Note that this Cartesian product of units is a deterministic sum unit if both p and q were deterministic
sum units, as supp(piqj)=supp(pi) ∩ supp(qj) are disjoint for different i, j.

If p and q are two product units defined as p(X) = p1(X1)p2(X2) and q(X) = q1(X1)q2(X2),
respectively. Then, their product m(x) can be constructed recursively from the product of their
inputs:
m(x) = p1(x1)p2(x2) · q1(x1)q2(x2) = p1(x1)q1(x1) · p2(x2)q2(x2) = (p1q1)(x1) · (p2q2)(x2).

Note that by this construction m retains the same scope partitioning of p and q, hence if they were
structured-decomposable, m will be structured-decomposable and compatible with p and q.

Possessing additional structural constrains can lead to sparser output circuits as well as efficient
algorithms to construct them. First, if one among p and q is omni-compatible, it suffices that the other
is just decomposable to obtain a tractable product, whose size this time is going to be linear in the
size of the decomposable circuit.
Corollary B.1. Let p be a smooth and decomposable circuit over X and q an omni-compatible
circuit over X comprising a sum unit with k inputs, hence its size is k |X|. Then, m(X) = p(X)q(X)
is a smooth and decomposable circuit constructed in O(k |p|) time.

Second, if p and q have inputs with restricted supports, their product is going to be sparse, i.e., only
a subset of their inputs is going to yield a circuit that does not constantly output zero. Note that
in Alg. 3 we can check in polytime if the supports of two units to be multiplied are overlapping
by a depth-first search (realized with a Boolean indicator s in Alg. 3), thanks to decomposability.
Therefore, for two compatible sum units p and q we will effectively build a number of units that is

O(|{(pi, qj)|pi∈ in(p), qi∈ in(q), supp(pi)∩supp(qj) 6=∅}|).

In practice, this sparsifying effect will be more prominent when both p and q are deterministic. This
is because having disjoint supports is required for deterministic circuits. This “decimation” of product
units will be maximum if p and q partition the support in the very same way, for instance when we
have p = q, i.e., we are multiplying one circuit with itself, or we are dealing with a logarithmic
circuit (cf. Sec. B.5). In such a case, we can omit the depth-first check for overlapping supports of
the product units participating in the product of a sum unit. If both p and q have an identifier for their
supports, we can simply check for equality of their identifiers. This property and algorithmic insight
will be key when computing powers of a deterministic circuit and its entropies (cf. Sec. C.2), as it
would suffice the input circuit p to be decomposable (cf. Sec. 3) to obtain a linear time complexity.

17

Algorithm 3 MULTIPLY(p, q, cache)

1: Input: two circuits p(Z) and q(Y) that are compatible over X = Z ∩ Y and a cache for
memoization

2: Output: their product circuit m(Z ∪Y) = p(Z)q(Y)
3: if (p, q) ∈ cache then return cache(p, q)
4: if φ(p) ∩ φ(q) = ∅ then
5: m← PRODUCT({p, q}); s← True
6: else if p, q are input units then
7: m← INPUT(p(Z) · q(Y),Z ∪Y)
8: s← Jsupp(p(X)) ∩ supp(q(X)) 6= ∅K
9: else if p is an input unit then

10: n← {}; s← False //q(Y) =
∑
j θ
′
jqj(Y)

11: for j = 1 to |in(q)| do
12: n′, s′ ← MULTIPLY(p, qj , cache)
13: n← n ∪ {n′}; s← s ∨ s′
14: if s then m← SUM(n, {θ′j}

|in(q)|
j=1) else m← null

15: else if q is an input unit then
16: n← {}; s← False //p(Z) =

∑
i θipi(Z)

17: for i = 1 to |in(p)| do
18: n′, s′ ← MULTIPLY(pi, q, cache)
19: n← n ∪ {n′}; s← s ∨ s′
20: if s then m← SUM(n, {θi}|in(p)|i=1) else m← null
21: else if p, q are product units then
22: n← {}; s← True
23: {pi, qi}ki=1 ← sortPairsByScope(p, q,X)
24: for i = 1 to k do
25: n′, s′ ← MULTIPLY(pi, qi, cache)
26: n← n ∪ {n′}; s← s ∧ s′
27: if s then m← PRODUCT(n) else m← null
28: else if p, q are sum units then
29: n← {}; w ← {}; s← False
30: for i = 1 to |in(p)|, j = 1 to |in(q)| do
31: n′, s′ ← MULTIPLY(pi, qj , cache)
32: n← n ∪ n′;w ← w ∪ {θiθ′j}; s← s ∨ s′
33: if s then m← SUM(n,w) else m← null
34: cache(p, q)← (m, s)
35: return m, s

B.3 Power Function of Circuits

Theorem 3.3 (Natural powers). If p is a structured-decomposable circuit, then for any α ∈ N, its
power can be represented as a structured-decomposable circuit in O(|p|α) time. Otherwise, if p is
only smooth and decomposable, then computing pα(X) as a decomposable circuit is #P-hard.

Proof. The proof for tractability easily follows by directly applying the product operation repeatedly.

We prove hardness for the special case of discrete variables, and by showing the hardness of computing
the partition function of p2(X). In particular, let X be a collection of binary variables and let p be a
smooth and decomposable circuit over X, then computing the quantity

∑

x∈val(X)

p2(x) (POW2PC)

is #P-hard.

The proof builds a reduction from the #3SAT problem, which is known to be #P-hard. We employ the
same setting of Sec. A.3, where a CNF over n Boolean variables X = {X1, . . . , Xn} and containing

18

Algorithm 4 SORTPAIRSBYSCOPE(p, q,X)

1: Input: two decomposable and compatible product units p and q, and a variable scope X.
2: Output: Pairs of compatible sum units {(pi, qi)}ki=1.
3: children_p← {pi}|in(p)|i=1 , children_q ← {qi}|in(q)|i=1
4: pairs← {}. // “pairs” stores circuit pairs with matched scope.
5: cmp_p← {{}}|in(p)|i=1 , cmp_q ← {{}}|in(q)|j=1 .
// cmp_p[i] (resp. cmp_q[j]) stores the children of q (resp. p) whose scopes are subsets of pi’s
(resp. qj’s) scope.

6: for i = 1 to |in(p)| do
7: for j = 1 to |in(q)| do
8: if φ(pi) ∩X = φ(qj) ∩X then
9: pairs.append((pi, qj))

10: children_p.pop(pi), children_q.pop(qj)
11: else if φ(pi) ∩X ⊂ φ(qj) ∩X then
12: cmp_q[j].append(pi)
13: children_p.pop(pi), children_q.pop(qj)
14: else if φ(qj) ∩X ⊂ φ(pi) ∩X then
15: cmp_p[i].append(qj)
16: children_p.pop(pi), children_q.pop(qj)
17: for i = 1 to |in(p)| do
18: if len(cmp_p[i]) 6= 0 then
19: s← SUM({PRODUCT(cmp_p[i])}, {1})
20: pairs.append((pi, s))
21: for j = 1 to |in(q)| do
22: if len(cmp_q[j]) 6= 0 then
23: r ← SUM({PRODUCT(cmp_q[j])}, {1})
24: pairs.append((r, qj))
25: for r, s in zip(children_p, children_q) do
26: pairs.append((r, s))
27: if len(children_p) > len(children_q) then
28: for i = len(children_q) + 1 to len(children_p) do
29: pairs.append((children_p[i], children_q[1]))
30: else if len(children_p) < len(children_q) then
31: for j = len(children_p) + 1 to len(children_q) do
32: pairs.append((children_p[1], children_q[j]))
33: return pairs

m clauses {c1, . . . , cm}, each with exactly 3 literals, is encoded into two structured-decomposable
and deterministic circuits pβ and pγ over variables X̂ = {X11, . . . , X1m, . . . , Xn1, . . . , Xnm}.
Then, we construct circuit pα as the sum of pβ and pγ , i.e., pα(x̂) := pβ(x̂) + pγ(x̂). By definition
pα is smooth and decomposable, but not structured-decomposable. We proceed to show that if we
can represent p2α(x̂) as a smooth and decomposable circuit in polytime, we could solve POW2PC
and hence #3SAT. That would mean that computing POW2PC is #P-hard.

By definition, p2α(x̂) = (pβ(x̂) + pγ(x̂))2 = p2β(x̂) + p2γ(x̂) + 2pβ(x̂) · pγ(x̂), and hence

∑

x̂∈val(X̂)

p2α(x̂) =
∑

x̂∈val(X̂)

p2β(x̂) +
∑

x̂∈val(X̂)

p2γ(x̂) +
∑

x̂∈val(X̂)

pβ(x̂) · pγ(x̂).

Since pβ and pγ are both structured-decomposable and deterministic the first two summations over
the squared circuits can be computed in timeO(|pβ |+ |pγ |) (see Thm. 3.5). It follows that if we could
efficiently solve POW2PC we could then solve the that third summation, i.e.,

∑
x̂∈val(X̂) pβ(x̂) ·

pγ(x̂). However, since such a summation is the instance of MULPC between pβ and pγ reduced from
#3SAT (see Thm. 3.1), it would mean that we could solve #3SAT. We can conclude that computing
POW2PC is #P-hard.

19

Theorem B.1 (Hardness of natural power of a structured-decomposable circuit). Let p be a structured-
decomposable circuit over variables X. Let k be a natural number. Then there is no polynomial
f(x, y) such that the power pk can be computed in O(f(|p| , k)) time unless P=NP.

Proof. We construct the proof by showing that for a structured-decomposable circuit p, if we could
compute

∑

x∈val(X)

pk(x). (POWkPC)

in O(f(|p| , k)) time, then we could solve the 3SAT problem in polytime, which is known to be
NP-hard.

The 3SAT problem is defined as follows: given a set of n Boolean variables X = {X1, . . . , Xn}
and a CNF that contains m clauses {c1, . . . , cm}, each one containing exactly 3 literals, determine
whether there exists a satisfiable configuration in val(X).

We start by constructing m gadget circuits {dj}mj=1 for the m clauses such that dj(x) evaluates to 1
m

iff x satisfies cj and otherwise evaluates to 0, respectively.

Since each clause cj contains exactly 3 literals, it comprises exactly 7 models w.r.t. the variables
appearing in it, i.e., its scope φ(cj). Therefore, following a similar construction in Sec. A.3, we
can compile dj as a weighted sum of 7 circuits that represent the 7 models of cj , respectively. By
choosing all weights of dj as 1

m , the circuit dj outputs 1
m iff cj is satisfied; otherwise it outputs 0.

The gadget circuits {dj}mj=1 are then summed together to represent a circuit p. That is, p =
SUM({dj}mj=1, {1}mj=1). In the following, we complete the proof by showing that if the power circuit
pk (we will pick later k = dmax(m,n)2 · log 2e) can be computed in O(f(|p| , k)) time, then the
corresponding 3SAT problem can be solved in O(f(|p| , k)) time.

If the original CNF is satisfiable, then there exists at least 1 world such that all clauses are satisfied.
In this case, all circuits in {dj}mj=1 will evaluate 1

m . Since p is the sum of the circuits {dj}mj=1, it will
evaluate 1 for any world that satisfies the CNF. We obtain the bound

∑

x∈val(X)

pk(x) > m · 1

m
= 1.

In contrast, if the CNF is unsatisfiable, each variable assignment x ∈ val(X) satisfies at most m− 1
clauses, so the circuit p will output at most m−1m . Therefore , we retrieve the following bound

∑

x∈val(X)

pk(x) ≤ 2n
(
m− 1

m

)k
.

Then, we can retrieve a value for k to separate the two bounds as follows.

2n
(
m− 1

m

)k
< 1 ⇔ k >

log(2−n)

log m−1
m

⇔ k >
n log 2

log(m)− log(m− 1)

(a)⇔ k > m · n · log 2,

where (a) follows the fact that log
(

m
m−1

)
≤ 1

m−1 . Let l = max(m,n). If we choose k = dl2 · log 2e,
then we can separate the two bounds above.

Therefore, if there exists a polynomial f(x, y) such that the power pk (k = dl2 · log 2e) can be
computed in O(f(|p| , k)) time, then we can solve 3SAT in O(f(|p| , k)) time since the CNF is
satisfiable iff

∑
x∈val(X) p

k(x) > 1, which is impossible unless P=NP.

Theorem 3.4 (Hardness of reciprocal of a circuit). Let p be a smooth and decomposable circuit
over variables X. Then computing p−1(X)

∣∣
supp(p)

as a decomposable circuit is #P-hard, even if p is
structured-decomposable.

Proof. We prove it for the case of PCs over discrete variables. We will prove hardness of computing
the reciprocal by showing hardness of computing the partition of the reciprocal of a circuit. In

20

particular, let X = {X1, . . . , Xn} be a collection of binary variables and let p be a smooth and
decomposable PC over X, then computing the quantity

∑

x∈val(X)

1

p(x)
(INVPC)

is #P-hard.

Proof is by reduction from the EXPLR problem as defined in Thm. B.2. Similarly to Thm. B.2,
the reduction is built by constructing a smooth and decomposable unnormalized circuit p(x) =
2n · 1 + 2ne−(w0+

∑
i wixi). The circuit p comprises a sum unit over two sub-circuits. The first

is a uniform (unnormalized) distribution over X defined as a product unit over n univariate input
distribution units that always output 1 for all values val(Xi) (see Sec. A.2 for a construction algorithm).
The second is an exponential of a linear circuit (Alg. 7) and encodes e−(w0+

∑
i wixi) via a product

unit over n univariate input distributions, where one of them encodes e−w0−w1x1 and the rest e−wjxj

for j = 2, . . . , n. Both sub-circuits participates in the sum with parameters 2n.

The size of the constructed circuit is linear in n, and INVPC of this circuit corresponds to the
solution of the EXPLR problem. If you can represent the reciprocal of this circuit as a decomposable
circuit, you can compute its marginals (including the partition function) which solves INVPC and
hence EXPLR. Furthermore, the circuit is also omni-compatible because mixture of fully-factorized
distributions.

Theorem 3.5 (Tractable real power of a deterministic circuit). Let p be a smooth, decomposable,
and deterministic circuit over variables X. Then, for any real number α ∈ R, its restricted power,
defined as a(x)|supp(p) = pα(x)Jx ∈ supp(p)K can be represented as a smooth, decomposable, and
deterministic circuit over variables X in O(|p|) time. Moreover, if p is structured-decomposable,
then a is structured-decomposable as well.

Proof. The proof proceeds by construction and recursively builds a(x)|supp(p). As the base case, we
can assume to compute the restricted α-power of the input units of p and represent it as a single new
unit. When we encounter a deterministic sum unit, the power will decompose into the sum of the
powers of its inputs. Specifically, let p be a sum unit: p(X) =

∑
i∈in(p) θipi(X). Then, its restricted

real power circuit a(x)|supp(p) can be expressed as

a(x)|supp(p) =

 ∑

i∈in(p)

θipi(x)

α

Jx ∈ supp(p)K =
∑

i∈in(p)

θαi
(
pi(x)

)αJx ∈ supp(pi)K.

Note that this construction is possible because only one input of p will be non-zero for any input
(determinism). As such, the power circuit is retaining the same structure of the original sum unit.

Next, for a decomposable product unit, its power will be the product of the powers of its inputs.
Specifically, let p be a product unit: p(X) = p1(X1) · p2(X2). Then, its restricted real power circuit
a(x)|supp(p) can be expressed as

a(x)|supp(p) =
(
p1(x1) · p2(x2)

)αJx ∈ supp(p)K
=
(
p1(x1)

)αJx ∈ supp(p1)K ·
(
p2(x2)

)αJx ∈ supp(p2)K.
Note that even this construction preserves the structure of p and hence its scope partitioning is retained
throughout the whole algorithm. Hence, if p were also structured-decomposable, then a would be
structured-decomposable. Alg. 5 illustrates the whole algorithm in detail.

B.4 Quotient of Circuits

Theorem B.2 (Hardness of quotient of two circuits). Let p and q be two smooth and decomposable
circuits over variables X, and let q(x) 6= 0 for every x ∈ val(X). Then, computing their quotient
p(X)/q(X) as a decomposable circuit is #P-hard, even if they are compatible.

21

Algorithm 5 POWER(p, α, cache)

1: Input: a smooth, deterministic and decomposable circuit p(X), a scalar α ∈ R, and a cache for
memoization

2: Output: a smooth, deterministic and decomposable circuit a(X) encoding pα(X)|supp(p)
3: if p ∈ cache then return cache(p)
4: if p is an input unit then a← INPUT(pα(X)|supp(p) , φ(p))

5: else if p is a sum unit then a← SUM({POWER(pi, α, cache)}|in(p)|i=1), {θαi }
|in(p)|
i=1)

6: else if p is a product unit then a← PRODUCT({POWER(pi, α, , cache)}|in(p)|i=1)
7: cache(p)← a
8: return a

Proof. This result follows from Thm. 3.4 by noting that computing the reciprocal of a circuit is a
special case of computing the quotient of two circuits. In particular, let p be an omni-compatible
circuit representing the constant function 1 over variables X, constructed as in Sec. A.2. Then
computing the reciprocal of a structured-decomposable circuit q as a decomposable circuit reduces to
computing the quotient p/q.

Theorem B.3 (Tractable restricted quotient of two circuits). Let p and q be two compatible circuits
over variables X, and let q be also deterministic. Then, their quotient restricted to supp(q) can be
represented as a circuit compatible with p (and q) over variables X in O(|p| |q|) time. Moreover, if p
is also deterministic, then the quotient circuit is deterministic as well.

Proof. We know from Thm. 3.5 that we can obtain the reciprocal circuit q−1 that is also compatible
with q (and by extension p) in O(|q|) time. Then we can multiply p and q−1 in O(|p| |q|) time
using Thm. 3.2 to compute their quotient circuit that is still compatible with p and q. If p is also
deterministic, then we are multiplying two deterministic circuits and therefore their product circuit is
deterministic (Thm. 3.2).

B.5 Logarithm of a PC

Theorem 3.6 (Logarithms). (Tractability) Let p be a smooth, deterministic and decomposable PC
over variables X. Then its logarithm circuit, restricted to the support of p and defined as

l(x)|supp(p) =

{
log p(x) if x ∈ supp(p)

0 otherwise

for every x ∈ val(X) can be represented as a smooth and decomposable circuit that shares the scope
partitioning of p in O(|p|) time. (Hardness) Otherwise, if p is a smooth and decomposable PC, then
computing its logarithm circuit l(X) := log p(X) as a decomposable circuit is #P-hard, even if p is
structured-decomposable.

We will provide the proofs for tractability and hardness separately below.

Proof of tractability. The proof proceeds by recursively constructing l(x)|supp(p). In the base case,
we assume computing the logarithm of an input unit can be done in O(1) time. When we encounter
a deterministic sum unit p(x) =

∑
i∈|in(p)| θipi(x), its logarithm circuit consists of the sum of (i)

the logarithm circuits of its child units and (ii) the support circuits of its children weighted by their
respective weights {θi}|in(p)|i=1 :

l(x)|supp(x) = log

 ∑

i∈in(p)

θipi(x)

 · Jx ∈ supp(p)K =

∑

i∈|in(p)|

log
(
θipi(x)

)
Jx ∈ supp(pi)K

=
∑

i∈|in(p)|

log θiJx ∈ supp(pi)K +
∑

i∈|in(p)|

li(x)|supp(pi) .

22

JX < γK

JY ≥ δK

JX ≥ γK

JY < δK

×

×

p1

p2
θ1

θ2

log p1(X)

JY ≥ δK

log p1(Y)

JX < γK

×

×

supp(p1)

log θ1

log p2(X)

JY < δK

log p2(Y)

JX ≥ γK

×

×

supp(p2)

log θ2

Figure 3: Building the logarithmic circuit (right) for a deterministic PC (left) whose input units are
labeled by their supports. A single sum unit is introduced over smoothed product units and additional
dummy input units which share the same support across circuits if they have the same color.

For a smooth, decomposable, and deterministic product unit p(x) = p1(x)p2(x), its logarithm circuit
can be decomposed as sum of the logarithm circuits of its child units:

l(x)|supp(x) = log (p1(x1)p2(x2)) · Jx ∈ supp(p)K
= log p1(x1)Jx ∈ supp(p)K + log p2(x2)Jx ∈ supp(p)K
= log p1(x1)Jx1 ∈ supp(p1)KJx2 ∈ supp(p2)K + log p2(x2)Jx2 ∈ supp(p2)KJx1 ∈ supp(p1)K
= l(x1)|supp(p1) Jx2 ∈ supp(p2)K + l(x2)|supp(p2) Jx1 ∈ supp(p1)K.

Note that in both case, the support circuits (e.g., Jx ∈ supp(p)K) are used to enforce smoothness
in the output circuit. Alg. 6 illustrates the whole algorithm in detail, showing that the construction
of these support circuits can be done in linear time by caching intermediate sub-circuits while
calling Alg. 1. Furthermore, the newly introduced product units, i.e., l(x1)|supp(p1) Jx2 ∈ supp(p2)K,
l(x2)|supp(p2) Jx1 ∈ supp(p1)K, and the additional support input unit log θiJx ∈ supp(pi)K share the
same support of p by construction. Fig. 3 illustrates this property with one example. This implies
that when a deterministic circuit and its logarithmic circuit are going to be multiplied, e.g., when
computing entropies (Sec. C.2), we can check for their support to overlap in linear time (Alg. 3).

Proof of hardness. We will prove hardness of computing the logarithm by showing hardness of
computing the partition function of the logarithm of a circuit. Let X = {X1, . . . , Xn} be a collection
of binary variables, and p a smooth and decomposable PC over X where p(x) > 0 for all x ∈ val(X).
Then computing the quantity ∑

x∈val(X)

log p(x) (LOGPC)

is #P-hard.

The proof is by reduction from #NUMPAR, the counting problem of the number partitioning problem
(NUMPAR) defined as follows. Given n positive integers k1, . . . , kn, we want to decide whether there
exists a subset S ⊂ [n] such that

∑
i∈S ki =

∑
i 6∈S ki. NUMPAR is NP-complete, and #NUMPAR

which asks for the number of solutions is known to be #P-hard.

We will show that we can solve #NUMPAR using an oracle for LOGPC, which will imply that
LOGPC is also #P-hard. First, consider the following quantity SL for a given weight function w(·):

SL :=
∑

x∈val(X)

log(σ(w(x)) + 1) =
∑

x∈val(X)

log

(
1

1 + e−w(x)
+ 1

)
=

∑

x∈val(X)

log

(
2 + e−w(x)

1 + e−w(x)

)

=
∑

x∈val(X)

log(2 + e−w(x))−
∑

x∈val(X)

log(1 + e−w(x)).

Similar to the construction in the proof of Thm. 3.4, we can construct smooth and decomposable,
unnormalized PCs for 2 + e−w(x) and 1 + e−w(x) of size linear in n. Then, we can compute SL via
two calls to the oracle for LOGPC on these PCs.

Next, we choose the weight function w(·) such that SL can be used to answer #NUMPAR. For a
given instance of NUMPAR described by k1, . . . , kn and a large integer m, which will be chosen

23

later, we define the following weight function:

w(x) := −m
2
−m

∑

i

ki + 2m
∑

i

kixi.

In other words, w(x) = w0 +
∑
i wixi where w0 = −m/2 − m

∑
i ki and wi = 2mki for

i = 1, . . . , n. Here, an assignment x corresponds to a subset Sx = {i|xi = 1, xi ∈ x}. Then the
assignment 1− x corresponds to the complement S1−x = Sx. In the following, we will consider
pairs of assignments (x, 1 − x) and say that it is a solution to NUMPAR if Sx and by extension
S1−x are solutions to NUMPAR.

Observe that if (x, 1− x) is a solution to NUMPAR, then w(x) = w(1− x) = −m/2. Otherwise,
one of their weights must be≥ m/2 and the other≤ −3m/2. We can then deduce the following facts
about the contribution of each pair to SL, defined as c(x, 1−x) = log(σ(w(x))+1) + log(σ(w(1−
x)) + 1).

If the pair (x, 1− x) is a solution to NUMPAR, then its contribution to SL is going to be:

c(x, 1− x) = 2 log(σ(−m/2) + 1).

Otherwise, we can bound its contribution as follows:

log(σ(m/2) + 1) ≤ c(x, 1− x) ≤ 1 + log(σ(−3m/2) + 1)

If there are k pairs that are solutions to the NUMPAR problem, then using the above observations we
have the following bounds on SL:

SL ≥(2n−1 − k) log (σ(m/2) + 1) + 2k log (σ(−m/2) + 1) ≥ (2n−1 − k) log (σ(m/2) + 1) ,
(1)

SL ≤(2n−1 − k)(1 + log (σ(−3m/2) + 1)) + 2k log(σ(−m/2) + 1). (2)

Suppose for some given ε > 0, we select m such that it satisfies both 1− ε ≤ log(σ(m/2) + 1) and
log(σ(−m/2) + 1) ≤ ε. First, this implies that m also satisfies the following:

1 + log (σ(−3m/2) + 1)) ≤ 1 + log(σ(−m/2) + 1) ≤ 1 + ε.

Plugging in above inequalities to Eqs. (1) and (2), we get the following bounds on SL w.r.t. ε and k:

(2n−1 − k)(1− ε) ≤ SL ≤ (2n−1 − k)(1 + ε) + 2kε.

We can alternatively express this as the following bounds on k:

2n−1(1− ε)− SL

1− ε ≤ k ≤ 2n−1(1 + ε)− SL

1− ε .

The difference between the upper and lower bounds on k is equal to 2nε/(1− ε). If this difference is
less than 1—e.g. by setting ε = 1/(2n + 2)—we can exactly solve for k. In particular, it must be
equal to the ceiling of the lower bound as well as the floor of the upper bound. Moreover, the answer
to #NUMPAR is given by 2k. This concludes the proof that computing LOGPC is #P-hard.

B.6 Exponential Function of a Circuit

Theorem 3.7 (Hardness of the exponential of a circuit). Let p be a smooth and decomposable circuit
over variables X. Then, computing its exponential exp (p(X)) as a decomposable circuit is #P-hard,
even if p is structured-decomposable.

Proof. We will prove hardness of computing the exponential by showing hardness of computing
the partition function of the exponential of a circuit. Let X = {X1, . . . , Xn} be a collection of
binary variables with values in {−1,+1} and let p be a smooth and decomposable PC over X then
computing the quantity ∑

x∈val(X)

exp (p(x)) (EXPOPC)

24

Algorithm 6 LOGARITHM(p, cachel, caches)

1: Input: a smooth, deterministic and decomposable PC p(X) and two caches for memoization
(cachel for the logarithmic circuit and caches for the support circuit).

2: Output: a smooth and decomposable circuit l(X) encoding log (p(X))
3: if p ∈ cachel then return cachel(p)
4: if p is an input unit then
5: l← INPUT(log

(
p|supp(p)

)
, φ(p))

6: else if p is a sum unit then
7: n← {}
8: for i = 1 to |in(p)| do
9: n← n ∪ {SUPPORT(pi, caches)} ∪ {LOGARITHM(pi, cachel)}

10: l← SUM(n, {log θ1, 1, log θ2, 1, . . . , log θ|in(p)|, 1})
11: else if p is a product unit then
12: n← {}
13: for i = 1 to |in(p)| do
14: n← n ∪ {PRODUCT({LOGARITHM(pi, cachel)} ∪ {SUPPORT(pj , caches)}j 6=i)}
15: l← SUM(n, {1}|in(p)|i=1)
16: cachel(p)← l
17: return l

is #P-hard.

The proof is a reduction from the problem of computing the partition function of an Ising model,
ISING which is known to be #P-complete [20]. Given a graphG = (V,E) with n vertexes, computing
the partition function of an Ising model associated to G and equipped with potentials associated to its
edges ({wu,v}(u,v)∈E) and vertexes ({wv}v∈V) equals to

∑

x∈val(X)

exp

 ∑

(u,v)∈E

wu,vxuxv +
∑

v∈V
wvxv

 . (ISING)

The reduction is made by constructing a smooth and decomposable circuit p(X) that computes∑
(u,v)∈E wu,vxuxv +

∑
v∈V . This can be done by introducing a sum units with |E|+ |V | inputs

that are product units and with weights {wu,v}(u,v)∈E ∪{wv}v∈V . The first |E| product units receive
inputs from n input distributions where only 2 corresponds to the binary indicator inputs Xu and Xv

for an edge (u, v) ∈ E while the remaining n− 2 are uniform distributions outputting 1 for all the
possible states of variables X \ {Xu, Xv}. Analogously, the remaining |V | product units receive
input from n of which only one, corresponding to the vertex v ∈ V is an indicator unit over Xv,
while the remaining are uniform distributions for variables in X \ {Xv}.

Proposition 3.1 (Tractable exponential of a linear circuit). Let p be a linear circuit over variables X,
i.e., p(X) =

∑
i θi ·Xi. Then exp (p(X)) can be represented as an omni-compatible circuit with a

single product unit in O(|p|) time.

Proof. The proof follows immediately by the properties of exponentials of sums. Alg. 7 formalizes
the construction.

Algorithm 7 EXPONENTIAL(p)

1: Input: a smooth circuit p encoding p(X) = θ0 +
∑n
i=1 θiXi

2: Output: its exponential circuit encoding exp (p(X))
3: e← {INPUT(exp (θ0 + θ1X1) , X1)}
4: for i = 2 to n do
5: e← e ∪ {INPUT(exp (θiXi) , Xi)}
6: return PRODUCT(e)

25

B.7 Other tractable operators over circuits

This section proves Lemma 3.8, which states that any operator over circuits that should yield a
decomposable and smooth circuit as output must take the form of a sum, power, logarithm or
exponential.

Lemma 3.8 (Atlas Completeness). Let f be a continuous function. If (1) f : R → R satisfies
f(x+ y) = f(x) + f(y) then it is a linear function β · x; if (2) f : R+ → R+ satisfies f(x · y) =
f(x) · f(y), then it takes the form xβ ; if (3) instead f : R+ → R satisfies f(x · y) = f(x) + f(y),
then it takes the form β log(x); and if (4) f : R→ R+ satisfies that f(x+ y) = f(x) · f(y) then it
is of the form exp(β · x), for a certain β ∈ R.

Proof. The proof of all properties follows from constructing f such that we obtain a Cauchy functional
equation [21, 42].

The condition (1) exactly takes the form of a Cauchy functional equation, then it must hold that
f(x) = β · x.

For condition (2), let g(x) = log(f(exp(x))) for all x ∈ R, which is continuous because f is. Then,
it follows that

g(x+ y) = log(f(exp(x+ y))) = log(f(exp(x) · exp(y))) = log(f(exp(x))) + log(f(exp(y)))

= g(x) + g(y).

Therefore, g(x) assumes the Cauchy functional form and, as in case (1), it is equal to β · x. β can
be retrieved by solving β · x = log(f(exp(x))) for x = 1. This gives β = log(f(e)). Applying the
definition of g, we can hence write

f(exp(x)) = eg(x) = eβ·x = (ex)
β

Let y ∈ R+. Using the identity y = elog(y) it follows that:

f(y) = f(elog(y)) =
(
elog(y)

)β
= yβ .

Condition (3) follows an analogous pattern. Let g(x) = f(exp(x)) for all x ∈ R, which is continuous
as f is. Once again, g satisfies the Cauchy functional form:

g(x+ y) = f(exp(x+ y)) = f(exp(x) · exp(y)) = f(exp(x)) + f(exp(y)) = g(x) + g(y).

Therefore, g(x) must be of the form β · x for β = f(e). Hence, f(y) = β log(y).

Lastly, for condition (4), g(x) = log(f(x)) for all x ∈ R, which is continuous if f is. Then, we can
retrieve the Cauchy functional by

g(x+ y) = log(f(x+ y)) = log(f(x) · f(y)) = log(f(x)) + log(f(y)) = g(x) + g(y).

Therefore, g(x) must be of the form β · x. Hence, f(y) = exp(β · y).

In summary, Lemma 3.8 states that if we want to enlarge our atlas beyond sum and product circuit
operators, we need to focus our attention over powers, logarithms and exponentials. At the same
time, it states that no operator with a different functional form and yet yielding a circuit made of sum
and product units can be found. Extending our atlas to deal with a new language of circuits is an
interesting future research direction.

C Complex Information-Theoretic Queries

This section collects the complete tractability and hardness results for the queries in Tab. 2. Note that
the tractability proofs are succinct thanks to our atlas which allows to define a tractable model class
effortlessly. Some hardness proofs also benefit from the hardness results we provided for the simple
operators in the previous section.

26

C.1 Cross Entropy

Theorem C.1. Let p and q be two compatible PCs over variables X, and also let q be deterministic.
Then their cross-entropy, i.e.,

−
∫

val(X)

p(x) log(q(x))dX,

restricted to the support of q can be exactly computed inO(|p| |q|) time. If q is not deterministic, then
computing their cross-entropy is #P-hard, even if p and q are compatible over X.

Proof. (Tractability) From Thm. 3.6 we know that we can compute the logarithm of q in polytime,
which is a PC of size O(|q|) that is compatible with q and hence with p. Therefore, multiplying p and
log q according to Thm. 3.1 can be done exactly in polytime and yields a circuit of size O(|p| |q|)
that is still smooth and decomposable, hence we can tractably compute its partition function.

(Hardness) The proof consists of a simple reduction from LOGPC from Thm. 3.6. We know that
computing LOGPC for a smooth and decomposable PC over binary variables X is #P-hard. We can
reduce this to computing the cross entropy between p = 1, which can be constructed as an omni-
compatible circuit (Sec. A.2), and the original PC of the LOGPC problem. Thus, the cross-entropy
of two compatible circuits is a #P-hard problem.

C.2 Entropy

Theorem C.2. Let p be a smooth, deterministic, and decomposable PC over variables X. Then its
entropy,9 defined as

−
∫

val(X)

p(x) log p(x) dX

can be exactly computed in O(|p|) time. If p is smooth and decomposable but not deterministic, then
computing its Shannon entropy, defined as

ENT(p) := −
∑

val(X)

p(x) log(p(x))dX (ENTPC)

is coNP-hard.

Proof. (Tractability) Using Thm. 3.6 we can compute the logarithm of p in polytime as a smooth
and decomposable PC of size O(|p|) which furthermore shares the same support partitioning with p.
Therefore, multiplying p and log p according to Alg. 3 can be done in polytime and yields a smooth
and decomposable circuit of size O(|p|) since log p shares the same support structure of p (Thm. 3.6).
Therefore, we can compute the partition function of the resulting circuit in time linear in its size.

(Hardness) The hardness proof contains a polytime reduction from the coNP-hard 3UNSAT problem,
defined as follows: given a set of n Boolean variables X = {X1, . . . , Xn} and a CNF with m clauses
{c1, . . . , cm} (each clause contains exactly 3 literals), decide whether the CNF is unsatisfiable.

The reduction borrows two gadget circuits pβ and pγ defined in Sec. A.3. They each represent a
logical formula over an auxiliary set of variables, which we denote here X′, and thus outputs 0 or 1
for all values of X′. Moreover, by construction, pβ · pγ is the constant function 0 if and only if the
original CNF is unsatisfiable.

We further construct a circuit pα as the summation over pβ and pγ . Recall that pβ and pγ can
efficiently be constructed as smooth and decomposable circuits, and thus their sum can be represented
as a smooth and decomposable circuit in polynomial time. We will now show that 3UNSAT can be
reduced to checking whether the entropy of pα is zero.

First, observe that for any assignment x′ to X′, pα(x′) evaluates to 0, 1, or 2, because pβ and pγ
always evaluates to either 0 or 1. Moreover, if pα only outputs 0 or 1 for all values of X′, then
pβ · pγ must always be 0, implying that the original CNF is unsatisfiable. Lastly, in such a case, the
entropy of pα must be 0, whereas the entropy will be nonzero if there is an assignment x′ such that

9For the continuous case this quantity refers to the differential entropy, while for the discrete case it is the
Shannon entropy.

27

pα(x′) = 2. This concludes the proof that computing the entropy of a smooth and decomposable PC
is coNP-hard.

C.3 Mutual Information

Theorem C.3. Let p be a deterministic and structured-decomposable PC over variables Z = X∪Y
(X ∩Y = ∅). Then the mutual information between X and Y, defined as

MI(p;X,Y) :=

∫

val(Z)

p(x,y) log
p(x,y)

p(x) · p(y)
dXdY,

can be exactly computed in O(|p|) time if p is still deterministic after marginalizing out Y as well as
after marginalizing out X.10 If p is instead smooth, decomposable, and deterministic, then computing
the mutual information between X and Y is coNP-hard.

Proof. (Tractability) From Thm. 3.6 we know that the logarithm circuits of p(X,Y),
p(X)Jy ∈ supp(p(Y))K, and p(Y)Jx ∈ supp(p(X))K can be computed in polytime and are smooth
and decomposable circuits of size O(|p|) that furthermore share the same support partitioning with
p(Y,Z). Therefore, we can multiply p(X,Y) with each of these logarithm circuits efficiently ac-
cording to Thm. 3.2 to yield circuits of size O(|p|). These are still smooth and decomposable circuits.
Hence we can compute their partition functions and compute the mutual information between X and
Y w.r.t. p.

(Hardness) We show hardness for the case of Boolean inputs, which implies hardness in the general
case. This proof largely follows the hardness proof of Thm. C.2 to show that there is a polytime
reduction from 3UNSAT to the mutual information of PCs. For a given CNF, suppose we construct
pβ , pγ , and pα = pβ + pγ over a set of Boolean variables, say X, as shown in Sec. A.2 and Thm. C.2.

Let Y={Y } be a single Boolean variable, and define pδ as:

pδ := pβ × JY = 1K + pγ × JY = 0K.
That is, we first construct two product units q1, q2 with inputs {pβ , JY = 1K} and {pγ , JY = 0K},
respectively, and build a sum unit pδ with inputs {q1, q2} and weights {1, 1}. Then pδ has the
following properties: (1) pδ is smooth, decomposable, and deterministic, following from the fact that
pβ and pγ are also smooth, decomposable, and deterministic, and that q1 and q2 have no overlapping
support. (2) ENT(pδ) can be computed in linear-time w.r.t. the circuit size by Thm. C.2. (3) pδ(Y = 1)
and pδ(Y = 0) can be computed in linear time (w.r.t. size of the circuit pδ), as pδ admits tractable
marginalization. (4) For any x ∈ val(X), pδ(x) = pβ(x) + pγ(x) = pα(x).

We can express the mutual information MI(pδ;X,Y) as:

MI(pδ;X,Y) =ENT(pδ)− pδ(Y =1) log pδ(Y =1)− pδ(Y =0) log pδ(Y =0)− ENT(pα).

Therefore, given an oracle that computes MI(pδ;X,Y), we can check if it is equal to ENT(pδ) −
pδ(Y = 1) log pδ(Y = 1)−pδ(Y = 0) log pδ(Y = 0), which is equivalent to checking ENT(pα) = 0,
and decide whether the original CNF is unsatisfiable. Hence, computing the mutual information of
smooth, deterministic, and decomposable PCs is a coNP-hard problem.

C.4 Kullback-Leibler Divergence

Theorem C.4. Let p and q be two deterministic and compatible PCs over variables X. Then, their
intersectional Kullback-Leibler divergence (KLD), defined as

DKL(p ‖ q) =

∫

supp(p)∩supp(q)
p(x) log

p(x)

q(x)
dX,

can exactly be computed in O(|p| |q|) time. If p and q are not deterministic, then computing their
KLD is #P-hard, even if they are compatible.

10This structural property of circuits is also known as marginal determinism [8] and has been introduced
in the context of marginal MAP inference and the computation of same-decision probabilities of Bayesian
classifiers [35, 5].

28

Proof. (Tractability) Tractability of the intersectional KLD can be concluded directly from the
tractability of cross entropy and entropy (Thm. C.1 and C.2). Specifically, KLD can be expressed as
the difference between cross entropy and entropy:

∫
p(x) log

p(x)

q(x)
dX =

∫
p(x) log p(x) dX−

∫
p(x) log q(x) dX.

We can compute the entropy of a smooth, decomposable, and deterministic PC p in O(|p|); and the
cross entropy between two deterministic and compatible PCs p and q in O(|p| |q|) time.

(Hardness) The proof proceeds similarly to the hardness proof of Thm. C.1. Recall that the LOGPC
problem from Thm. 3.6 is #P-hard for a smooth and decomposable PC over binary variables. We can
reduce this to computing the negative of KL divergence between p = 1, which can be constructed as
an omni-compatible circuit (Sec. A.2), and q the original PC of the LOGPC problem. Thus, the KLD
of two compatible circuits is a #P-hard problem.

C.5 Rényi Entropy

Definition C.1 (Rényi entropy). The Rényi entropy of order α ∈ R of a PC p is defined as

1

1− α log

∫

supp(p)

pα(x)dX.

Theorem C.5 (Rényi entropy for natural α). Let p be a structured-decomposable PC over variables
X and α ∈ N. Its Rényi entropy can be computed in O(|p|α) time. If p is instead smooth and
decomposable, then computing its Rényi entropy of order α is #P-hard.

Proof. (Tractability) Tractability easily follows from computing the natural power circuit of p, which
takes O(|p|α) time according to Thm. 3.3.

(Hardness) We show hardness for the case of discrete inputs. The hardness of computing the Rényi
entropy for natural number α is implied by the hardness of computing the natural power of smooth
and decomposable PCs. Specifically, we conclude the proof by observing that there exists a polytime
reduction from POW2PC, defined as

∑
x∈val(X) p

2(x), a #P-hard problem as proved in Thm. 3.3, to
Rényi entropy with α = 2.

Theorem C.6 (Rényi entropy for real α). Let p be a smooth, decomposable, and deterministic PC over
variables X and α ∈ R+. Its Rényi entropy can be computed in O(|p|) time. If p is not deterministic,
then computing its Rényi entropy of order α is #P-hard, even if p is structured-decomposable.

Proof. (Tractability) Tractability easily follows from computing the power circuit of p, which takes
O(|p|) time according to Thm. 3.5.

(Hardness) Similar to the hardness proof of Thm. C.5, this hardness result follows from the fact that
computing the reciprocal of a structured-decomposable circuit is #P-hard (Thm. 3.4). Again, this is
demonstrated by a polytime reduction from INVPC (i.e.,

∑
x∈val(X) p

−1(x)) to Rényi entropy with
α = −1.

C.6 Rényi’s α-divergence

Definition C.2 (Rényi’s α-divergence). The Rényi’s α-divergence of two PCs p and q is defined as

Dα(p ‖ q) =
1

1− α log

∫

supp(p)∩supp(q)
pα(x)q1−α(x)dX.

Theorem C.7 (Hardness of alpha divergence of two PCs). Let p and q be two smooth and decompos-
able PCs over variables X. Then computing their Rényi’s α-divergence for α ∈ R \ {1} is #P-hard,
even if p and q are compatible.

Proof. Suppose p is a smooth and decomposable PC X representing the constant function 1, which
can be constructed as in Sec. A.2. Then pα is also a constant 1. Hence, computing Rényi’s 2-
divergence between p and another smooth and decomposable PC q is as hard as computing the
reciprocal of q, which is #P-hard (Thm. 3.4).

29

Theorem 4.1 (Tractable alpha divergence of two PCs). Let p and q be compatible PCs over variables
X. Then their Rényi’s α-divergence can be exactly computed in O(|p|α |q|) time for α ∈ N, α > 1 if
q is deterministic or in O(|p| |q|) for α ∈ R, α 6= 1 if p and q are both deterministic.

Proof. The proof easily follows from first computing the power circuit of p and q according to
Thm. 3.5 or Thm. 3.3 in polytime. Depending on the value of α, the resulting circuits will have size
O(|p|α) and O(|q|) for α ∈ N or O(|p|) and O(|q|) for α ∈ R and will be compatible with the input
circuits. Then, since they are compatible between themselves, their product can be done in polytime
(Thm. 3.2) and it is going to be a smooth and decomposable PC of size O(|p|α |q|) (for α ∈ N) or
O(|p| |q|) (for α ∈ R), for which the partition function can be computed in time linear in its size.

C.7 Itakura-Saito Divergence

Theorem C.8. Let p and q be two deterministic and compatible PCs over variables X, with bounded
intersectional support supp(p) ∩ supp(q). Then their Itakura-Saito divergence, defined as

DIS(p ‖ q) =

∫

supp(p)∩supp(q)

(
p(x)

q(x)
− log

p(x)

q(x)
− 1

)
dX, (3)

can be exactly computed in O(|p| |q|) time. If p and q are instead compatible but not deterministic,
then computing their Itakura-Saito divergence is #P-hard.

Proof. (Tractability) The proof easily follows from noting that the integral decomposes into
three integrals over the inner sum:

∫
supp(p)∩supp(q)

p(x)
q(x) dX −

∫
supp(p)∩supp(q) log p(x)

q(x) dX -∫
supp(p)∩supp(q) 1 dX.. Then, the first integral over the quotient can be solved O(|p| |q|) (Thm. B.3);

the second integral over the log of a quotient of two PCs can be computed in timeO(|p| |q|) (Thm. 3.6
and B.3) and finally the last one integrates to the dimensionality of |supp(p) ∩ supp(q)|, which we
assume to exist.

(Hardness) We show hardness for the case of binary variables X = {X1, . . . , Xn}. Suppose q is an
omni-compatible circuit representing the constant function 1, which can be constructed as in Sec. A.2.
As such, integration in Eq. (3) becomes the summation

∑
val(X) p(x)−∑val(X) log p(x)−2n. Hence,

computing DIS must be as hard as computing
∑

val(X) log p(x), since the first sum can be efficiently
computed as p must be smooth and decomposable by assumption and the last one is a constant. That
is, we reduced the problem of computing the logarithm of the non-deterministic circuit (LOGPC,
Thm. 3.6) to computing DIS.

C.8 Cauchy-Schwarz Divergence

Theorem C.9. Let p and q be two structured-decomposable and compatible PCs over variables X.
Then their Cauchy-Schwarz divergence, defined as

DCS(p ‖ q) = − log

∫
x∈val(X)

p(x)q(x) dX
√∫

x∈val(X)
p2(x) dX

∫
x∈val(X)

q2(x) dX
,

can be exactly computed in timeO(|p| |q|+|p|2+|q|2). If p and q are instead structured-decomposable
but not compatible, then computing their Cauchy-Schwarz divergence is #P-hard.

Proof. (Tractability) The proof easily follows from noting that the numerator inside the log can be
computed in O(|p| |q|) time as a product of two compatible circuits (Thm. 3.2); and the integrals
inside the square root at the denominator can both be solved in O(|p|2) and O(|q|2) respectively as
natural powers of structured-decomposable circuits (Thm. 3.3).

(Hardness) The proof follows by noting that if p and q are structured-decomposable, then computing
the denominator inside the log can be exactly done in |p|2 + |q|2 because they are natural powers
of structured-decomposable circuits (Thm. 3.3). Then DCS must be as hard as a the product of two
non-compatible circuits. Therefore we can reduce MULPC (Thm. 3.1) to computing DCS.

30

C.9 Squared Loss Divergence

Theorem C.10. Let p and q be two structured-decomposable and compatible PCs over variables X.
Then their squared loss, defined as

DSL(p ‖ q) =

∫

val(X)

(p(x)− q(x))
2
dX,

can be computed exactly in time O(|p| |q|+|p|2+|q|2). If p and q are structured-decomposable but
not compatible, then computing their squared loss is #P-hard.

Proof. (Tractability) Proof follows by noting that the integral decomposes over the expanded square
as
∫
val(X)

p2(x) dX +
∫
val(X)

q2(x) dX− 2
∫
val(X)

p(x)q(x) dX and as such each integral can be
computed by leveraging the tractable power of structured-decomposable circuits (Thm. 3.3) and the
tractable product of compatible circuits (Thm. 3.2) and therefore the overall complexity is given by
the maximum of the three.

(Hardness) Proof follows by noting that the integral decomposes over the expanded square as∫
val(X)

p2(x) dX +
∫
val(X)

q2(x) dX − 2
∫
val(X)

p(x)q(x) dX and that the first two terms can be
computed in polytime as natural powers of structured-decomposable circuits (Thm. 3.3), hence
computing DSL must be as hard as computing the product of two non-compatible circuits. Therefore
we can reduce MULPC (Thm. 3.1) to computing DSL.

D Expectation-based queries

This section completes the discussion around the complex queries that can be dealt with our atlas and
details the expectations briefly discussed at the end of Sec. 4.

D.1 Moments of a distribution

Proposition D.1 (Tractable moments of a PC). Let p(X) be a smooth and decomposable PC over
variables X = {X1, . . . , Xd}, then for a set of natural numbers k = (k1, . . . , kd), its k−moment,
defined as

∫

val(X)

xk11 x
k2
2 . . . xkdd p(x) dX

can be computed exactly in time O(|p|).

Proof. The proof directly follows from representing xk11 x
k2
2 . . . xkdd as an omni-compatible circuit

comprising a single product unit over d input units, each encoding xkii , and then applying Cor. B.1.

D.2 Probability of logical formulas

Proposition D.2 (Tractable probability of a logical formula). Let p be a smooth and decomposable
PC over variables X and f an indicator function that represents a logical formula over X that can be
compiled into a circuit compatible with p.11 Then computing Pp [f] can be done in O(|p| |f |) time.

Proof. It follows directly from Thm. 3.1, by noting that Pp [f] = Ex∼p(X) [f(x)] and hence a
tractable product between p and f suffices.

31

l1 l2

X1

0 1 l3

X2

0 1

l4 l5

X1

0 1

JX1 = 0KJX2 = 0KJX1 = 1KJX2 = 0K1JX2 = 1KJX1 = 0K1JX1 = 1K1

×××××

l1
l2

l3
l4

l5

Figure 4: Encoding an additive ensemble of two trees over X = {X1, X2} (left) in an omni-
compatible circuit over X (right).

D.3 Expected predictions

Example D.1 (Decision trees as circuits). Let F be an additive ensemble of (decision or regression)
trees over variables X, also called a forest, and computing

F(x) =
∑

Ti∈F
θiTi(x)

for some input configuration x ∈ val(X) and each Ti realizing a tree, i.e., a function of the form

T (x) =
∑

pj∈paths(T)

lj ·
∏

Xk∈φ(pj)

Jxk ≤ δkK

where the outer sum ranges over all possible paths in tree T , lj ∈ R is the label (class or predicted
real) associated to the leaf of that path, and the product is over indicator functions encoding the
decision to take one branch of the tree in path pj if xk, the observed value for variable Xk appearing
in the decision node, i.e., satisfies the condition Jxk ≤ δkK for a certain threshold δk ∈ R.

Then, it is easy to transform F into an omni-compatible circuit p(X) of the form

p(x) =
∑

Ti∈F,pj∈paths(T〉)

lj ·
∏

Xk∈φ(pj)

Jxk ≤ δkK ·
∏

X′
k 6∈φ(pj)

1

with a single sum unit realizing the outer sum and as many input product units as paths in the forest,
each of which realizing a fully-factorized model over X, and weighted by lj . One example is shown
in Fig. 4.

Proposition D.3 (Tractable expected predictions of additive ensembles of trees). Let p be a smooth
and decomposable PC and f an additive ensemble of k decision trees over variables X and bounded
depth. Then, its expected predictions can be exactly computed in O(k |p|).

Proof. Recall that an additive ensemble of decision trees can be encoded as an omni-compatible
circuit. Then, proof follows from Cor. B.1.

Proposition D.4 (Tractable expected predictions of deep regressors (regression circuits)). Let p be a
structured-decomposable PC over variables X and f be a regression circuit [23] compatible with p
over X, and defined as

fn(x) =

0 if n is an input
fnL

(xL) + fnR
(xR) if n is an AND∑

c∈in(n) sc(x) (φc + fc(x)) if n is an OR

where sc(x) = Jx ∈ supp(c)K. Then, its expected predictions can be exactly computed in O(|p| |h|)
time, where h is its circuit representation as computed by Alg. 8.

Proof. Proof follows from noting that Alg. 8 outputs a polysize circuit representation h in polytime.
Then, computing Ex∼p(X) [h(x)] can be done in O(|p| |h|) time by Thm. 3.2.

32

Table 4: Sizes of the intermediate and final circuits as processed by the operators in the pipelines
of the Shannon and Rényi (for α = 1.5) entropies and Kullback-Leibler and Alpha (for α = 1.5)
divergences when computed for two input circuits p and q learned from 20 different real-world
datasets as in [11].

DATASET p q pα q1−α r = log(q) s = p/q t = log(s) p× q p× r p× t pα × q1−α

NLTCS 2779 7174 2779 7174 26155 7202 26239 7202 26183 26239 7202
MSNBC 2765 6614 2765 6614 24111 6634 24171 6634 24131 24171 6634

KDD 4963 50377 4963 50377 184575 50417 184695 50417 184615 184695 50417
PLANTS 12909 64018 12909 64018 234661 64070 234817 64070 234713 234817 64070

AUDIO 10278 45864 10278 45864 168062 45950 168320 45950 168148 168320 45950
JESTER 6475 35369 6475 35369 129579 35479 129909 35479 129689 129909 35479

NETFLIX 5068 14636 5068 14636 53571 14706 53781 14706 53641 53781 14706
ACCIDENTS 3193 8183 3193 8183 29891 8299 30239 8299 30007 30239 8299

RETAIL 4790 14926 4790 14926 54554 14994 54758 14994 54622 54758 14994
PUMSB 4277 12461 4277 12461 45500 12595 45902 12595 45634 45902 12595

DNA 73828 856955 73828 856955 3141981 857029 3142203 857029 3142055 3142203 857029
KOSAREK 5115 12988 5115 12988 47354 13106 47708 13106 47472 47708 13106
MSNWEB 4859 9025 4859 9025 32675 9175 33125 9175 32825 33125 9175

BOOK 7718 12731 7718 12731 45985 12943 46621 12943 46197 46621 12943
MOVIE 8309 11732 8309 11732 42374 11926 42956 11926 42568 42956 11926

WEBKB 10598 13397 10598 13397 47859 13653 48627 13653 48115 48627 13653
CR52 10912 14348 10912 14348 51094 14546 51688 14546 51292 51688 14546

C20NG 11386 14630 11386 14630 52120 14886 52888 14886 52376 52888 14886
BBC 13884 17016 13884 17016 60857 17282 61655 17282 61123 61655 17282

AD 17744 21676 17744 21676 76870 21920 77602 21920 77114 77602 21920

Table 5: Times in seconds to compute the Shannon entropy (ENT), the cross-entropy (XENT),
Kullback-Leibler (KLD), Alpha (for α = 1.5) divergence, Rényi entropy (RényiEnt), and Cauchy-
Schwarz divergence (CSDiv) over the circuits learned from 20 different real-world datasets by either
using the algorithm distilled by our pipelines (see Tab. 4 and Fig. 5) compared to the custom and
highly-optimized implementations of the same ENT [44] and KLD [28] algorithms as available in
Juice.jl [12].

DATASET ENT KLD XENT ALPHADIV RÉNYIENT CSDIV
OURS JUICE OURS JUICE OURS JUICE OURS JUICE OURS JUICE OURS JUICE

NLTCS 0.143 0.001 0.830 0.207 0.422 - 0.140 - 0.013 - 0.300 -
MSNBC 0.109 0.001 0.369 0.182 0.297 - 0.105 - 0.018 - 0.227 -

KDD 0.157 0.001 3.154 0.790 2.180 - 0.885 - 0.016 - 1.136 -
PLANTS 0.679 0.005 3.983 3.909 3.739 - 1.160 - 0.088 - 1.572 -

AUDIO 0.406 0.003 2.736 1.681 1.873 - 0.537 - 0.029 - 0.771 -
JESTER 0.764 0.003 1.019 0.432 0.805 - 0.351 - 0.024 - 0.476 -

NETFLIX 0.106 0.002 0.352 0.175 0.264 - 0.100 - 0.017 - 0.201 -
ACCIDENTS 0.055 0.001 0.207 0.039 0.542 - 0.091 - 0.009 - 0.124 -

RETAIL 0.108 0.001 0.508 0.153 0.415 - 0.184 - 0.013 - 0.197 -
PUMSB 0.092 0.001 0.701 0.133 0.316 - 0.119 - 0.012 - 0.214 -

DNA 4.365 0.027 64.664 220.377 52.997 - 15.609 - 0.255 - 22.901 -
KOSAREK 0.182 0.002 0.477 0.106 0.379 - 0.139 - 0.011 - 0.735 -
MSNWEB 0.128 0.002 0.261 0.047 0.211 - 0.342 - 0.015 - 0.135 -

BOOK 0.086 0.003 0.215 0.036 0.202 - 0.075 - 0.020 - 0.115 -
MOVIE 0.272 0.002 0.443 0.063 0.373 - 0.172 - 0.015 - 0.194 -

WEBKB 0.138 0.003 0.241 0.031 0.164 - 0.079 - 0.023 - 0.098 -
CR52 0.141 0.004 0.260 0.035 0.188 - 0.087 - 0.031 - 0.143 -

C20NG 0.118 0.003 0.264 0.034 0.194 - 0.088 - 0.032 - 0.101 -
BBC 0.205 0.005 0.308 0.037 0.225 - 0.110 - 0.038 - 0.189 -

AD 0.193 0.007 0.346 0.046 0.281 - 0.151 - 0.031 - 0.207 -

33

Algorithm 8 RGCTOCIRCUIT(r, cacher, caches)

1: Input: a regression circuit r over variables X and two caches for memoization (i.e., cacher and
caches).

2: Output: its representation as a circuit p(X).
3: if r ∈ cacher then return cacher(r)
4: if r is an input gate then
5: p← INPUT(0, φ(r))
6: else if r is a sum gate then
7: n← {}
8: for i = 1 to |in(r)| do
9: n← n ∪ {SUPPORT(ri, caches)} ∪ {RGCTOCIRCUIT(ri, cacher)}

10: p← SUM(n, {θi, 11, . . . , 1in(p)}|in(r)|i=1)
11: else if r is a product gate then
12: for i = 1 to |in(r)| do
13: p← PRODUCT({RGCTOCIRCUIT(ri, cacher)} ∪ {SUPPORT(rj , caches)}j 6=i)
14: cacher(r)← p
15: return p

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

1

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

1

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

function ent(p)
q = log(p)
r = product(p, q)
return -integrate(s)

end

function alphadiv(p, q, alpha =1.5)
r = real_pow(p, alpha)
s = real_pow(q, 1.0- alpha)
t = product(r, s)
return integrate(t) / (1.0- alpha)

end

function csdiv(p, q)
r = product(p, q)
s = real_pow(p, 2.0)
t = real_pow(q, 2.0)
a = integrate(r)
b = integrate(s)
c = integrate(t)
return -log(a / sqrt(b * c))

end

1

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

function ent(p)
q = log(p)
r = product(p, q)
return -integrate(s)

end

function alphadiv(p, q, alpha =1.5)
r = real_pow(p, alpha)
s = real_pow(q, 1.0- alpha)
t = product(r, s)
return integrate(t) / (1.0- alpha)

end

function csdiv(p, q)
r = product(p, q)
s = real_pow(p, 2.0)
t = real_pow(q, 2.0)
a = integrate(r)
b = integrate(s)
c = integrate(t)
return -log(a / sqrt(b * c))

end

1

function kld(p, q)
r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

function ent(p)
q = log(p)
r = product(p, q)
return -integrate(s)

end

function alphadiv(p, q, alpha =1.5)
r = real_pow(p, alpha)
s = real_pow(q, 1.0- alpha)
t = product(r, s)
return log(integrate(t)) / (1.0- alpha)

end

function csdiv(p, q)
r = product(p, q)
s = real_pow(p, 2.0)
t = real_pow(q, 2.0)
a = integrate(r)
b = integrate(s)
c = integrate(t)
return -log(a / sqrt(b * c))

end

1

Figure 5: The modular operators defined in Sec. 3 can be easily composed to implement tractable
algorithms for novel query classes. Here we show the code snippet for five queries: Kullback-
Leibler divergence (kld), Cross Entropy (xent), Entropy (ent), Alpha divergence (alphadiv), and
Cauchy-Schwarz divergence (csdiv).

E Experiments

Generated PCs All adopted PCs were generated by running Strudel [11] on the twenty density
estimation benchmarks [48]. For every dataset, we ran Strudel twice with 200 and 500 iterations,
respectively. All other hyperparameters were selected following Dang et al. [11].

Server specifications All our experiments were run on a server with 72 CPUs, 512G Memory, and 2
TITAN RTX GPUs.

Implementations Code snippet for the five adopted queries (i.e., Kullback-Leibler divergence, Cross
Entropy, Entropy, Alpha divergence, and Cauchy-Schwarz divergence) are shown in Fig. 5. Note that
they are simple compositions of the modular operators introduced in Sec. 3.

11E.g. by compiling it into an SDD [14, 3] whose vtree encodes the hierarchical scope partitioning of p.

34

