
A Experiment Details479

A.1 New Object Generalization480

In Fig. 5, we show pictures of seen / unseen objects. For all the new object generalizations, we481

evaluate policies on multiple objects despite each policy being trained on a single object. Across482

tasks, we showcase the new objects that involve variations in color and geometry.483

(a) Pick-place cup (b) Stamp-paper (c) Take-mug (d) Pick-place-mug (e) Roll-stamp

Figure 5: Overview of objects used in real-robot experiments. In each image, the single object on the left side
is used during data collection, and all the objects on the right side are not seen during training. They are used
for the evaluation of new object generalization in each task.

B Additional Implementation Details484

We describe all the details of our model implementation aside from the ones mentioned in main text.485

B.1 Model Details486

Neural Network Details. We use a standard Transformer [21] architecture in our paper. We use 4487

layers of transformer encoder layers, and 6 heads of the multi-head self-attention modules. For the488

two-layered fully connected networks, we use 1024 hidden units for each layer. For GMM output489

head, we choose the number of modes for the Gaussian Mixture Model to be 5, which is the same490

as in Mandlekar et al. [1].491

Temporal Positional Encoding. For computing temporal positional encoding, we follow the492

equation for each dimension i in the encoding vector at a temporal position pos:493

PE(pos, 2i) = sin (
pos

102i/D
)

PE(pos, 2i+ 1) = cos (
pos

10(2i+1)/D
)

We choose the frequency of positional encoding to be 10 which is different from the one in the494

original transformer paper. This is because our input sequence is much shorter than those in natu-495

ral language tasks, hence we choose a smaller value to have sufficiently distinguishable positional496

features for input tokens.497

Training Details For point masking, we use a masking ratio of 0.6 in simulation, and 0.75 for498

real world. Because of the limited field-of-view, the occlusion of objects in simulation is severe.499

To properly evaluate policies in simulation, we add an eye-in-hand camera that only captures close-500

distance depth (the depth observation is clipped to the range of gripper tips). This design choice501

allows the policies to learn while preventing policies from relying entirely on eye-in-hand cameras.502

In all our experiments of GROOT, we train for 100 epochs. We use a batch size of 16 and a503

learning rate of 10�4. We use negative log-likelihood as the loss function for action supervision504

loss since we use a GMM output head. As we notice that validation loss doesn’t correlate with505

policy performance [1], we adopt a pragmatic way of saving model checkpoint as in Zhu et al. [3],506

which is to save the checkpoint that has the lowest loss over all the demonstration data at the end of507

training. We apply a gradient clip at 100 across all the experiments to prevent training from gradient508

explosion.509
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Figure 6: Screenshots of simulation tasks, for both Canonical, Background(Easy),
Background(Hard), Camera(Easy), Camera(Hard)

C Environment Details510

Here we describe more about our environment designs.511

Baseline Implementations As we mainly focus on comparing the effectiveness of representations,512

all the transformer-based baselines (VIOLA and MAE-POLICY) use the same architecture for a fair513

comparison. Since none of the baselines were proposed for learning with RGB-D observations, we514

implemented them with minimal changes to accommodate the RGB-D observations. For BC-RNN,515

we encode depth images with an additional resnet encoder, and concatenate the features along with516

the other features as inputs to the RNN backbone. For VIOLA, we extract the task-agnostic pro-517

posals and back project each proposal into point clouds, giving VIOLA a fair comparison with our518

approach. As for MAE-POLICY, we patchify both RGB and depth images and pass the unmasked519

patches into the transformer architecture.520

Generalization Settings in Simulation Fig. 6 shows the initial conditions of simulation tasks.521

Note that “Put the moka pot on the stove” and “Put the frying pan on the stove” share the same522

initial distributions, so we only visualize one of the tasks for showing the initialization settings.523

Background(Hard) is the hard level as we changed both the lighting conditions, and add the524

table cloth that has object patterns. Camera(Hard) is harder than Camera(Easy), as the cam-525

eras are rotated with 40 more degrees. Such a wild change in camera viewpoints results in a very526

different perspective on objects. Challenges the generalization abilities of policies.527

Real-Robot Setup We use a 7-DoF Franka Emika Panda arm in all tasks. For real robot end-528

effector control, we use the Operational Space Controller [58] implemented from Deoxys [3]. The529

controller operates at 20Hz alongside a binary gripper control. We use Intel Realsense D435i as the530

workspace camera.531

Success Conditions of Real-Robot Task To quantify the policy performance, we explain the532

success conditions for all the tasks as follows:533

• “Pick Place Cup”: The cup is placed on the coaster upright.534

• “Stamp The Paper”: The robot stamps on the paper and put the stamp back to the table535

• “Take The Mug”: The mug is taken from the coaster, and placed on the table steadily.536

• “Put the Mug On The Coaster”: The mug is put on the coaster steadily.537

• “Roll the Stamp”: The robot successfully rolls the stamp for half of the paper length.538

Data Collection We use a 3Dconnexion SpaceMouse to collect 50 human-teleoperated demon-539

strations for every real-world task. As for simulation, the simulation environments directly provide540

50 high-quality teleoperated demonstrations, so we directly leverage them for policy learning.541
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Evaluation Horizons For policy evaluation, we limit the decision horizons to 600 timesteps.542
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