
A Mathematical Proofs

Throughout the following proofs, for the convenience of description, we denote two symbols:

• the symbol ∠(a, b), which means the angle of two vectors a, b ∈ Rn;

• cone(A), which means the conic combination of the row vectors of matrix A; cone(A,B)
stands for the conic combination of the union of the row vectors of matrix A,B.

Throughout this section, we will assume the same variables as in Eq.1-5 and Section 3 by default,
and further make the following assumptions or simplification for ease of description.

• Assume the main objective g(x, θ) = θTx, where ||θ||2 ≤ E. In reality, elements of the
predictive vector θ have a known range and thus l2-norm of θ is bounded by a constant,
namely E ∈ R.

• We omit the soft constraints in original objective. Since all proofs in this section consider
the worst direction of ∂L∂x in Eq.5, for soft constraints which are linear, their derivatives are
constant and can be integrated into E for any bounded penalty multiplier α.

• Similarly, we omit quadratic term Q. At first glance, it seems that Q will bring unbounded
derivative of decision variable x. However, note that we are finding the maximum value of
function, and the matrix Q is semi-definite positive, we have ∂−xTQx

∂xi
< 0 for any i. Thus,

denote the maximum point of −xTQx to be x0, we can find a finite radius r > 0, such that
any point x ∈ Rn out of the circle with x0 as the center and r as radius is impossible to be
the global optimal point; intuitively, the norm of the derivative of Q becomes so large as to
"draw the optimal point back" from too far, and thus we can ignore the points outside the
circle. Since the circle is a bounded set, the norm of derivative E is also bounded inside the
circle.

• When we consider the effect of violating constraints, we only consider non-degraded
activated cone, i.e.,, for an activated cone in a n-dimensional Euclidean space, there are
at least n non-redundant active constraints. Otherwise, as we stated in the main paper, we
can project the activated cone K = {z ∈ Rn|z − x0 ∈ cone(A′)} onto the complementary
space of the cone tip x0 (i.e., the solution space of A′) and proceed on a low-dimensional
subspace.

• As for constraint itself, we assume that for any row vector of A in Ax ≤ b, and any row
vector of B in Bx = c, we have ||Ai||2 = 1 and ||Bi||2 = 1 for any row vector Ai, Bi,
i ∈ {1, 2, ...,m} where m is the number of constraints. If not, we can first normalize the
row vectors of A and B while adequately scaling b, c, then apply our proofs.

Thus it is straightforward to apply our proofs to the general form of Eq.5.

A.1 Lemma 1

Lemma 1. (Bounding the utility gain) Let R = f(x, θ) − maxx1∈C f(x1, θ) be the utility gain,
then R ≤ f(x, θ) − f(x0, θ) ≤ E

cos p0

∑n
i=1(A′ix − b′i), where x is an infeasible point, A′x ≤

b′ the active constraints at x, p0 = ∠(A′i
∗
, θ∗) where A′i

∗ and θ∗ are the optimal solution of
maxθ minA′i cos∠(A′i, θ) (i.e., the maximin angle between θ and hyperplanes of the activated cone
K = {z ∈ Rn|z − x0 ∈ cone(A′)}), and x0 the projection of x to the tip of cone C = {z ∈
Rn|A′z ≤ b′}. E is the upper bound of ||θ||2.

Proof. The first inequality is trivial as x0 ∈ C and directly followed from the definition of utility gain
R.

For the second inequality, by the law of sines, we have ||x− x0||2 = di
sin τi

, where di is the distance
of x to the i-th hyper-plane in the activated cone cone(A′) with A′i (i.e., the i-th row of A′) being the
normal vector of the i-th hyper-plane in A′x ≤ b′, and τi is the angle between i-th hyper-plane and θ.

14

Then the utility gain R from violating the constraints follows:

R ≤ θT (x− x0)

≤ ||θ||2||x− x0||2

= ||θ||2
di

sin τi
(By the law of sines; i is arbitrary)

= ||θ||2
dj

sin τj
(By selecting j = argmin

i
sin τi = argmax

i
cos∠(A′i, x− x0))

≤ E
∑n
i=1 di

sin τj
(E is the upper bound of ||θ||2)

= E

∑n
i=1(A′ix− b′i)

sin τj
(di =

|A′ix− b′i|
||A′i||2

= A′ix− b′i; note the fifth assumption.)

(10)

Thus, setting all entries of penalty multiplier β in the hard constraint conversion to O(E
sin τj

) =

O(E
cos∠(A′j ,x−x0)) will give us an upper bound of the minimum feasible β.

The rest of the work is to find the lower bound for minθ maxi cos∠(A′i, x − x0) for any given
activated cone cone(A′) and x0; as we have assumed ||A′i|| = 1 ∀i ∈ {1, 2, ..., n}, the objective
minθ maxi cos∠(A′i, x− x0) can be equivalently written as5

F = min
θ

max
i
A′iθ (11)

Deriving the lower bound of F is the core part of proving Theorem 3 and 6.

A.2 Lemma 7

In order to prove Theorem 2, we give a crucial lemma.

Lemma 7. Consider a set of hyper-planes with normal vectorsA′1, A
′
2, ..., A

′
n ∈ Rn ≥ 0, ||A′i||2 = 1

for i ∈ {1, 2, ..., n} which forms a cone. Let di be the distance of a point x to the hyper-plane A′i,
where x is in the cone of A′i (i.e., x = k1A

′
1 + ...+ knA

′
n, ki ≥ 0 ∀i ∈ {1, 2, ..., n}), then we have

||x||2 ≤
∑n
i=1 di.

Proof. Without loss of generality, let x = k1A
′
1 + k2A

′
2 + ...+ knA

′
n, and ||x||2 = 1 (we can scale

x if ||x||2 6= 1). The distance di =
A′i

T x
||A′i||2

= A′i
T
x. Therefore, we have

n∑
i=1

di =

n∑
i=1

A′i
T

(k1A
′
1 + ...+ knA

′
n)

=

n∑
j=1

kj(A
′
j
T
A′j +

n∑
i=1,i6=j

A′i
T
A′j)

≥
n∑
j=1

kj ||A′j ||2 (A′i ≥ 0, therefore A′i
T
A′j ≥ 0)

= k1 + k2 + ...+ kn

(12)

We next prove that k1 + k2 + ...+ kn ≥ 1. As ||x||2 = 1, we have

||x||2 = 1

k1A
′
1
T
x+ k2A

′
2
T
x+ ...+ knA

′
n
T
x = 1

(13)

AsA′i
T
x ∈ [0, 1], k1 + ...+kn ≥ 1 must hold. Therefore,

∑n
i=1 di ≥ k1 + ...+kn ≥ 1 = ||x||2.

5With an abuse of notation, the θ in Eq.11 represents x− x0, as the worst situation for deriving upper bound
of β is that x− x0 has the same direction with the objective θTx’s derivative θ.

15

A.3 Theorem 2

Theorem 2. Assume the optimization objective θTx with constraints Ax ≤ b, where A ≥ 0, and
b ≥ 0. Then, the utility gain R obtained from violating Ax − b ≤ 0 has an upper bound of
O(
∑
i max(wi, 0)E), where w = A′x− b′, and A′x ≤ b′ is the active constraints.

Proof. Let di = (di,1, di,2, ..., di,n)T be the vector of distances to the i-th hyper-plane of A′ with
normal vector A′i from x. By definition of x and x0, the distance vector of the point to the convex
hull C is x− x0. When A ≥ 0 and b ≥ 0, obviously Lemma 7 holds. Consider the active constraints
w = A′x − b′ ≥ 0 which is the subset of active constraints in Ax ≤ b. The utility gain R from
violating the rules w = A′x− b′ satisfies:

R ≤ θT (x− x0)

≤ ||θ||2||(x− x0)||2
≤ ||θ||2

∑
i

||di||2 (Lemma 7)

≤ E
∑
i

||di||2

= E
∑
i

max(wi, 0) (di =
|A′ix− b′i|
||A′i||2

= A′ix− b′i; note the fifth assumption.)

(14)

This holds for any x. Therefore, we turn the hard constraint Ax ≤ b into a soft constraint with penalty
multiplier β = E.

A.4 Theorem 3

Theorem 3. Assume at least one constraint in x ≥ 0 is active, then the utility gain R by deviating
from the feasible region is bounded by O(

n1.5E
∑

imax(wi,0)

sin p0
), where p0 = mini,j ∠(Ai, ej) (i.e., the

smallest corner between axes and other constraint hyper-planes), and w =

[
A′

−I ′
]
x−

[
b′

0

]
, where

A′x ≤ b′ and −I ′x ≤ 0 are active constraints in Ax ≤ b and x ≥ 0 respectively.

Proof. As Lemma 1 implies, the key point of proving this theorem is to prove that θ (the derivative
of the objective), is always close to some rows of A′ and −I ′.
Consider the activated cone K = {z ∈ Rn|z − x0 ∈ cone(A′,−I ′)}; all hyper-planes of A′x = b′

and violated entries of x ≥ 0 must pass throughK’s tip x0. Figure 3 gives such an illustrative example.
For the rest of the proof, it is enough to assume that the activated coneK is a non-degraded cone, since
otherwise, as the main paper states, we can project the activated cone onto the supplementary space
of its tip. By the projection, we actually reduce the problem to the same one with lower dimensions
of x, and can apply the following proof in the same way. Let q be the number of rows in I ′, i.e., the
number of active constraints in x ≥ 0; and r be the number of rows in A′, i.e., the number of active
constraints in Ax ≤ b. Since K is non-degraded, we have r + q ≥ n.

Without loss of generality, we transform the problem equivalently by rearranging the order of
dimensions of x so that I ′ is the first q rows of In×n. Let’s see an example after this transformation.
As shown in Figure 3, the three solid black vectors are (−1, 0, 0), (0,−1, 0), and A′1 ≥ 0, where the
first and second entries of A′1 are strictly greater than 0 (otherwise the cone is degraded). Similarly,
for the n-dimensional non-degraded activated cone, we consider the maximin angle between θ and
all active inequality constraints A′ and −I ′ (which is equivalent to finding the minimax cosine value
of angles between θ and all active inequality constraints). Then, guided by Equation 11 in Lemma 1,
the upper bound of distance between θ and hyper-planes with normal vector A′j , is the solution of the
following optimization problem w.r.t. θ ∈ Rn and A′j (since the cone is non-degraded, we assume
that A′j are linearly independent):

F = min
θ

max
j∈J={1,..,r},k∈K={1,..,q}

{A′jθ,−eTk θ},

s.t. ||θ||2 = 1, θ ∈ K, r + q ≥ n.
(15)

16

Figure 3: A 3-dimensional illustration of the proof for Theorem 3. The green polytope is the feasible
region; the black solid vectors are the related vectors (i.e. rows of A′) and the red line is the utility
vector θ. Apparently, (0, 0, 1)T θ ≥ 0, otherwise the intersection point will move down to origin. The
worse case appears when the red θ is on the circumcenter of the triangle formed by the three solid
unit vectors.

where ek is the unit vector where the k-th entry is 1 and others are 0. Note that according to our
presumptions, A′j ≥ 0, ||A′j ||2 = 1 for j ∈ {1, 2, ..., r} have already satisfied. The constraints
θ ∈ K come from the following consideration: if with given θ we update x in an iterative manner
such as gradient ascending, x would eventually leave current activated cone where θi < 0 for i ∈
{q + 1, ..., n} (see Figure 3 for an illustration). Since for any dimension index i ∈ {q + 1, ..., n}, all
entries of A′j and −ek (j ∈ J, k ∈ K) are non-negative, we know that θi ≥ 0, ∀i ∈ {q + 1, ..., n}.
To further relax the objective F and derive the lower bound, we will assume r + q = n in the rest of
the paper; if r ≥ n− q, we can simply ignore all A′j in the max operator with j > n− q.

Given the signs of θ, we next derive a lower bound of F with respect to any given A′j and set of k.
Now we relax F by setting all entries of A′j to 0, except for the entries with index {1, 2, ..., q} and sj
to get A′′j , where {sj}(j ∈ {q + 1, ..., n}) is a permutation of {q + 1, q + 2..., n}. We have:

F ≥ min
θ

max
j∈{1,..,r},k∈{1,..,q}

{A′′Tj θ,−eTk θ} (Relaxing within the max operator; note the sign of θ)

≥ min
θ

max
j∈{1,..,r},k∈{1,..,q}

{
q∑
i=1

A′j,iθi +A′j,sjθsj ,−θk}

≥ min
θ

max
sj∈{q+1,n},k∈{1,..,q}

{
q∑
i=1

θi + α0θsj ,−θk}

(16)
where ||θ||2 = 1, α0 is the smallest non-zero entry among A′j,sj (and note that A ≥ 0 and θsj ≥ 0,
which means α0θsj ≥ 0). The inequalities hold for the relaxation within the max operator. Note
that the last line of inequality assumes θ∗i ≤ 0 for i ∈ {1, 2, ..., q} for the optimal θ∗; otherwise, we
can scale further, ignore the index i of the optimal point θ∗ where θ∗i > 0 and proceed with n− 1
dimensions for the following two facts:

1.
∑q
i=1 θi + α0θsj term becomes smaller after ignoring such dimension;

2. θ ∈ K, which means for any θ and any vector y of the cone we have θT y ≥ 0, and the last
line still corresponds to a cone. Therefore the optimal value of last line is no less than 0; the
removal of −θk term given θk > 0 will not affect the optimal value.

Then, according to the property of minimax,
∑q
i=1 θi + α0θsj should be equal to −θk; Otherwise,

if
∑q
i=1 θi + α0θsj is larger than −θk, we can adjust the value of

∑q
i=1 |θi| and

∑n
j=q+1 |θj | =∑n

j=q+1 θj by a small amount such that the result is better and ||θ||2 = 1 is still satisfied, which can

17

be repeated until no optimization is possible, and vice versa. With
∑q
i=1 |θi| and

∑n
j=q+1 θj fixed,

the entries of θ are equal to each other within each group by symmetry.

Therefore, the solution θ should be in the form of (c1√
n
, c1√

n
, ..., c2√

n
, c2√

n
) where c1 < 0, c2 > 0, and

we have the following set of equations:

qc21 + (n− q)c22 = n

qc1 + α0c2 = −c1
(17)

With equations in Eq. 17, we get c2 = −(1 + α1q)c1/α0, c21(q + (n − q) (1+q)2

α2
0

) = n. As q ≤ n,
and as ||αj || = 1, α0 can be further relaxed to the sine of the smallest angle p0 between axes x ≥ 0
and the other inequality constraints, and thus we have the lower bound F ≥ c1√

n
= O(sin p/n1.5) for

the optimization problem listed in Equation 16, which is also the cosine lower bound to the nearest
normal vector A′j and −ek of the activated cone. This is the denominator of the desired result; the
final result follows as we apply such bound to Lemma 1.

A.5 Corollary 4

Corollary 4. For binary constraints where the entries of A (before normalization) are either 0 or 1,
the utility gain R of violating x ≥ 0 constraint is bounded by O(n1.5E

∑
i max(wi, 0)), where w is

the same as Theorem 3.

Proof. The proof of Corollary 4 is almost the same with Theorem 3, except that if the constraint A is
cardinal, then each entry of A is either 0 or 1. Thus, as all the non-zero entry are the same, we shall
replace the third line in Equation 16 with

min
θ

max
j
{
∑q
i=1 θi√
hj

+
θsj√
hj
,−θk} (18)

where hj is the number of non-zero entry of A′j , each entry being 1√
hj

as normalized ||A′j ||2 = 1.

By substituting hj with n6, this optimization problem can be further relaxed to

min
θ

max
j
{
∑q
i=1 θi√
n

+
θsj√
n
,−θk} (19)

and we can change Equation 17 to

qc21 + (n− q)c22 = n

qc1 + c2 = −
√
nc1

(20)

Therefore, similar to the proof of Theorem 3, we get c1√
n

=
√

1
q+(n−q)(

√
n+q)2

, which leads to the

bound O(n1.5E
∑
i max(wi, 0)), removing the sin p in the denominator.

A.6 Theorem 5

Theorem 5. If there is only one equality constraint BTx = c (e.g.
∑
i xi = 1) and special

inequality constraints x ≥ 0, Ix ≤ b, then the utility gain R from violating constraints is bounded by
O(

n1.5E
∑

i max(wi,0)

sin p), where p is the same with theorem 3, w is the union of active BTx − c and
−x.7

Proof. We first prove the situation where the inequality constraint is only x ≥ 0. If we only have one
equality constraint, then it can be seen as two separate inequality constraints, which are BTx ≤ c
and −BTx ≤ −c; for any non-degraded activated cone, as BTx < c and BTx > c cannot hold
simutaneously, there is at most one normal vector of constraint in the activated cone.

6Note in Theorem 3 we have already mentioned the non-positivity of θi where i ∈ {1, 2, ..., q}, thus bigger
hj brings smaller objective.

7See Theorem 3 for the meaning of union.

18

If BTx ≤ c is active (i.e., this constraint is violated, now we have BTx > c), then with B ≥ 0,
the case is exactly the same with Theorem 3. Otherwise, if −BTx ≤ −c (i.e., BTx ≥ c) is active
(i.e., BTx ≥ c is violated, now BTx < c), then the normal vector of the current active constraint
−BTx ≤ −c is −B ≤ 0. Note that all other normal vectors of active constraints are −ek ≤ 0
(which is the same situation as that in Equation 15 in the proof of Theorem 3, except that A′j is
substituted with −BT ≤ 0); this indicates that the condition of Lemma 7 is satisfied under such
scenario. Therefore, we can apply the proof of Theorem 2 in this case and get a better bound than
that in the first scenario.

Then, the full theorem is proved as follows: consider any activated cone K. For any i ∈ {1, 2, ..., n},
xi ≤ bi and xi ≥ 0 cannot be active simultaneously. If the former is activated, we replace xi with
bi − xi; if the latter (or neither) is active, we remain xi as normal. Then, for this activated cone,
the scenario is exactly the same with the situation where the inequality constraints are only x ≥ 0.
Similarly, if the equality constraint is cardinal, with the same proof of Corollary 4, we can remove
the sin p in the denominator.

A.7 Theorem 6

Theorem 6. Given constraints Ax ≤ b, x ≥ 0, and Bx = c, where A,B, b, c ≥ 0, the utility gain R
obtained from violating constraints is bounded by O(

√
nλmax

∑
i max(wi, 0)), where λmax is the

upper bound for eigenvalues of PTP (P : x→ Px is an orthogonal transformation for an n-sized
subset of normalized row vectors in A,B and −I), and w is the union of all active constraints from
Ax ≤ b, x ≥ 0, Bx ≤ c and −Bx ≤ −c.

Proof. For any non-degraded activated cone K, we have the following optimization problem (it
is worth noting that reformulating our original problem to this optimization one is inspired by
Equation 11 in Lemma 1):

F = min
θ

max
j∈J,k∈K

{ max
i∈D,ni∈Rn

{nTi θ}, A′jθ,−eTk θ}

s.t.||θ||2 = 1, θ ∈ K
d+ r + q ≥ n, ||ni||2 = 1 ∀i ∈ D = {1, 2, ..., d}, < B1, ..., Bd >=< n1, ..., nd >

(21)

where A′j is the normal vector of the j-th inequality constraints in Ax ≤ b, ni is the i-th normal
vector for the subspace of Bx = c (and thus represents the same subspace that is represented by the
rows of B). According to the assumption, we scale Ax ≤ b and Bx = c so that ||ni|| = ||A′j || = 1
for any i, j. Note that different from the optimization problem stated in Theorem 3, in this problem
q can be 0, which means that there can be no entry of x ≥ 0 active. To get the lower bound of
F , we may relax the function by keeping the normal vectors {ni} in their original direction B to
F ≥ G = minθ maxi∈D,j∈J,k∈K{B′iθ,A′jθ,−eTk θ} where the i-th row of B satisfies B′i = Bi or
B′i = −Bi (the sign of B′i is decided by the direction of θ), and thus B′i ≥ 0 or B′i ≤ 0 (i.e., any
pair of elements in B′i will not have opposite signs) for any i. Moreover, ||B′i||2 = 1. We denote the
positive B′i as Bpi1 , i1 ∈ D1 and the negative B′i as Bni2 , i2 ∈ D2. Then similar to Theorem 3,

G = min
θ

max
i1∈D1,i2∈D2,j∈J,k∈K

{Bni1θ,B
p
i2
θ,A′jθ,−eTk θ} (22)

where D1

⋂
D2 = ∅, D1

⋃
D2 = D. we aggregate A′, Bp and −ek, Bn into α, and get

G = min
θ

max
j∈S
{αTj θ} (23)

where |S| ≥ n, αj ≥ 0 or ≤ 0 for any j ∈ S. Therefore, we can further relax G by selecting n
linearly independent vectors that are the closest to the minimum product8 and ignore the others for
the max operator, and for the rest of the proof we may assume that |S| = n.

8The existence of such set of vectors comes from the non-degradation of the activated cone.

19

Figure 4: Empirical estimation of the max maximum eigenvalue over 1000 trials with D being
uniform. The x axis is n, and the y axis is λmax. The 2-degree polynomial fitting curve is 0.1282x2 +
2.392x− 32.89.

We will next consider a linear transformation P : x→ Px from Rn to Rn that transforms {αj} into
an orthogonal normal basis. Then we have

λmaxG = min
θ

max
j
λmaxα

T
j θ

≥ min
θ

max
i
αjP

TPθ

=
1√
n

n∑
k=1

αjP
TPαk

=
1√
n
αjP

TPαj

=
1√
n

(24)

where λmax is the maximum eigenvalue of PTP . The row vectors of A′′ are {α′i}. Therefore, our
problem G has a lower bound of 1√

nλmax
where λmax is the maximum eigenvalue for PTP ; A′′

consists of n of the vectors in A′ and has the largest maximum eigenvalue for PTP .

Though we do not derive the bound of λmax with respect to the number of dimension n and the angle
p0 between hyper-planes in the activation cone, we empirically evaluate the behavior of λmax with
respect to n on randomly generated data. We first generate a normal vector n ∈ Rn, with each entry
generated independently at random from the distribution D; then we generate n vectors {α1, ..., αn}
in Rn with their entries either all not smaller than 0 or all not greater than 0; the orthant is chosen
with probability 0.5. Each entry is independently generated from D and shifted by a constant to
enforce the signs. We ensure that ∀i, αTi n ≥ 0 by discarding the vectors that do not satisfy such
constraint. D can be uniform distribution U(0, 1), the distribution for absolute value of normal
distribution |N(0, 1)|, or beta distribution B(2, 2). The αi is then normalized, and we record the

largest eigenvalue of RTR, where A =

α
T
1

αT2
...
αTn

, A = RQ is the RQ decomposition of A. We repeat

1000 times for each n and record the mean and maximum eigenvalue for RTR. Below is the result of
our evaluation; it shows that the maximum eigenvalue λmax is approximately O(n2). See Figure 4,5,
and 6 for illustration.

20

Figure 5: Empirical estimation of the max maximum eigenvalue over 1000 trials with D being
Gaussian. The x axis is n, and the y axis is λmax. The 2-degree polynomial fitting curve is
0.2693x2 + 13.95x− 716.8.

Figure 6: The max maximum eigenvalue over 1000 trials with D being Beta(2, 2). The x axis is n,
and the y axis is λmax. The 2-degree polynomial fitting curve is 0.1325x2 + 3.403x− 69.95.

B Choices of Surrogate max Functions

The final goal of surrogate max function is to relax the objective with the term αT max(z =
Cx− d, 0), making it differentiable over Rn. Such objective is a piecewise function with respect to z
with two segments: one is constant 0 with derivative 0, the other is linear with a constant derivative.

At first glance, sigmoidal surrogates are seemingly the most straightforward candidate for modeling
the derivative of such a piecewise function. For a sigmoidal approximation of soft constraints, S(z)
should satisfy the following four conditions, among which the first two are compulsory, and the third
and fourth can be slightly altered (e.g. by setting ε2 = 0 and remove the fourth condition).

1. When z →∞, S′(z)→M− = (1 + ε1)−. ε1 > 0 should be a small amount, and it serves
as a perturbation since otherwise g′(z) would be always greater than 0. However, ε1 should
not be too small to let the optimal point be too far away from the original constraint (for the
gradient will reach α too late).

2. S must be differentiable, and must have a closed-form inverse function.

21

4 3 2 1 0 1 2 3 4
z

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S(
z)

S(z) for varing K
K=0.1
K=0.5
K=1.0
K=10.0
K=100.0

Figure 7: S(z), the proposed surrogate function of max(z, 0)

3. When z → −∞, S′(z) → ε+2 < 0, where ε2 is constant and very close to 0. The S′(z)
should cause as small impact as possible when z < 0 (when there is no waste), and
meanwhile it should (very slightly) encourage z to grow to the limit instead of discouraging.

4. When z = 0, S′(z) = 0, which means the penalty function S has no influence on the
clipping border. This condition is important for linear programming; it can be removed for
quadratic programming.

To satisfy the conditions above, we need a closed-form sigmoidal function with closed-form inverse
function to be S′(z), the derivative of the surrogate. Such function can be Sigmoid function (S′(z) =

1
1+e−z), Tanh/arctan function, or fractional function (S′(z) = 0.5(z√

z2+1
+ 1), or equivalently

S(z) = 0.5
√
z2 + 1 + 0.5z). With the form of S(z) confirmed, our function should look like9

L(x) = g(x, θ)− αTS(z), with the derivative ∂L
∂x = ∂g

∂x −
∂z
∂xS

′(z)α.

Take g(x) = θTx, S(z) = 0.5
√

1 + z2 + 0.5z as an example. The optimal point satisfies

θ = CT diag(
0.5z

(1 + z2)0.5
+ 0.5)α (25)

Let yi = (0.5z
(1+z2i)0.5

+ 0.5)αi, wi = (0.5x
(1+x2

i)0.5
+ 0.5), then θ = CT y. S(z) can be substituted by

any function with sigmoidal function (e.g. arctan, tanh, and sigmoid) as its derivative. However,
C is impossible to be invertible, for C includes an identity matrix representing x ≥ 0 and must
have strictly more rows than columns if C has any other constraint. Therefore, we cannot solve z
by first solving y exactly in a linear system; we need to solve the equation of fractional function, or
estimate y with pseudo-inverse. Hence, the closed-form solution with sigmoidal surrogate is at least
non-attractive.

To derive a closed-form solution x for the equation 0 = ∂L
∂x = ∂g

∂x −
∂z
∂xS

′(z)α, S′(z) should be in a
simple form (e.g. polynomial form with degrees lower or equal to 4 with respect to x). Unfortunately,
no basic function except the sigmoid function can satisfy the conditions listed above; the degree limit
makes higher-order Taylor expansion infeasible. Thus, our only choice left is to find a differentiable
piecewise function with linear parts on both sides; we shall first solve the optimal point of the
surrogate numerically, and extend the segment where the optimal point locates to Rn; the gradient
∂x
∂θ is correct due to the uniqueness of optimality (which requires a convex surrogate).

Therefore, we choose the function S(z) to be

S(z) =

0 if z < − 1

4K

K(z + 1
4K)2 if − 1

4K ≤ z ≤
1

4K

z if z ≥ 1
4K

(26)

9To satisfy the requirements above, the function needs scaling and translation; we omit them for the simplicity
of formulae by simply set α = 1, ε1 = ε2 = 0.

22

as illustrated in Figure 7, where K is a constant. The surrogate is chosen for its simplicity. Not only
does such choice satisfy our conditions with minimum matrix computation, but moreover, S′(z) is
linear, which means the equation can be solved in a linear system. The limitation of such method
is that it introduces a hyper-parameter K to tune: when K is large, if the predicted optimal point is
far from ground-truth, the gradient ∂f(x,θreal)

∂x will be too large, making the training process instable.
On the other hand, if K is small, the optimal point may deviate from the feasible region too far, as
the hard constraints are not fully enforced within the region z ∈ [−1/4K, 4K]. Fortunately, our
empirical evaluation shows that the effect of K is smooth, and can be tuned by a grid search.

C Learning and Inference Algorithm

In general, the learning and inference procedures based on our method have the same predic-
tion+optimization workflow as the computational graph we gave in Fig.1. In this section, we propose
the detailed algorithm with emphasis on the specific steps in our method.

Alg. 1 is the learning algorithm of stochastic gradient descent in mini-batch. For each sample (ξi, θi),
it predicts the context variables as θ̂i (Statement 3) and then solve the program f to get the optimal
decision variable as x̂∗i (Statement 4). Note that here f is solved by solvers such as Gurobi and
CPLEX that are capable to get the deterministic optimal solutions. With x̂∗i , the piece of S(z) is
determined, and thus the surrogate objective f̄ . From Statement 5 to 7, we decide the form of
surrogate f̄ for x̂∗i by first calculating ẑ∗i , then use ẑ∗i to decide Mi and Ui in the surrogate. [·] is
an element-wise indicator function. Specially, if C or d is the predicted parameter, ẑ∗i should be
calculated by the predicted value of C or d; moreover, in statement 8 we should calculate ∂r

∂x on the
estimated segment, but with ground-truth value of C or d. In Statement 8, we compute the gradient
by back-propagation. Specifically, we directly compute ∂x

∂θ and ∂r
∂x by their analytical forms, while

∂θ
∂ψ by auto-grad mechanism of end-to-end learning software such as PyTorch [17], which we use
throughout our experiments. Finally, in Statement 9, we update the parameters of ψ with accumulated
gradients in this mini-batch.

Algorithm 1: SGD Learning with the surrogate f̄

Input :dataset D = {(ξi, θi)}Ni=1
Input :optimization settings {A, b, C, d, α}
Input :derived hyper parameters {K}
Input : learning rate a and batch size s
Output : the predictive model Φψ with parameters ψ
begin

1 Sample mini-batch Dk ∼ D;
2 foreach (ξi, θi) ∈ Dk do

// Estimate θi with the model Φψ.
3 θ̂i ← Φψ(ξi);

// Solve the original f with θ̂i.
4 x̂∗i ← arg maxx f(x, θ̂i);

// decide surrogate f̄ for x̂∗i by calculating Mi and Ui
5 ẑ∗i ← Cx̂∗i − d;
6 Mi ← diag([−1/4K ≤ ẑ∗i ≤ 1/4K]);
7 Ui ← diag([ẑ∗i ≥ 1/4K]);

// Compute ∂r̂∗i
∂ψ , where r̄∗i = f̄(x̂∗i , θi)

8
∂r̄∗i
∂ψ ←

∂θ̂i
∂ψ ×

∂x̂∗i
∂θ̂i
× ∂r̄∗i

∂x̂∗i
|θi, θ̂i, x̂∗i

// Update ψ with ascent gradients

9 ψ ← ψ + a× 1
s ×

s∑
i=1

∂r̄∗i
∂ψ

23

Alg. 2 is the program with context variable prediction for inference; it is the same with the traditional
predict-then-optimize paradigm. Note that the surrogate is no longer needed in this phase.

Algorithm 2: optimization with predictive variables

Input :dataset D = {ξi}Ni=1
Input :optimization settings {A, b, C, d, α}
Input :derived hyper parameters {K}
Input : learned predictive model Φψ
Output :Solutions {(x̂∗i , r̂

∗
i)}

begin
1 foreach ξi ∈ D do

// Estimate θi with the model Φψ.
2 θ̂i ← Φψ(ξi);

// Solve f with the estimated θ̂i.
3 x̂∗i ← arg maxx f(x, θ̂i);

// Evaluate f with the real θi.
4 r̂∗i ← f(x̂∗i , θi);

D Derivation of Gradients

In this section, we will show the derivation process of the gradient with respect to the three problems
stated in the main paper.

D.1 Linear Programming with Soft Constraints

The problem formulation is:

max
x

θTx− αT max(Cx− d, 0), s.t. Ax ≤ b (27)

where α ∈ Rn ≥ 0, A ∈ Rm1×n ≥ 0, b ∈ Rm1 ≥ 0, and θ ∈ Rn is to be predicted. In this
formulation and the respective experiment (synthetic linear programming), we assume that there is
no equality constraint.

Let C ′ =

[
C
A
−I

]
, d′ =

[
d
b
0

]
, γ =

 α

O(n
1.5E
sin p)

O(n
1.5E
sin p)

, where E is the upper bound of ||θ||2, p is the

minimum angle between hyper-planes of Ax ≤ b and the axes. Then, we can write the surrogate as

γTS(z) = γT (0.5M(z +
1

4K
)2 + Uz) (28)

Calculating the derivative of θTx− γTS(z) at the optimal point, we get

θ = C ′T (M(diag(z) +
1

4K
I) + U)γ = C ′TMdiag(γ)(C ′x− d′) + C ′T (

1

4K
M + U)γ (29)

This equation gives us the analytical solution of x:

x = (C ′TMdiag(γ)C ′)−1(θ + C ′TMdiag(γ)d′ − C ′T (
1

4K
M + U)γ) (30)

Based on such derivative solution of x, we differentiate with respect to θ on both sides:

∂x

∂θ
= (C ′TMdiag(γ)C ′)−1 (31)

On the other hand, given real parameter θreal, we calculate the derivative of f(x, θreal):

∂f(x, θreal)

∂x
= θreal − C ′TMdiag(γ)(C ′x− d′)− C ′T (

1

4K
M + U)γ (32)

24

D.2 Portfolio Selection with Soft Constraints

We consider minimum variance portfolio ([16]) which maximizes the return while minimizes risks of
variance. The problem formulation is:

max
x

θTx− xTQx− αT max(Cx− d, 0)

s.t. xT1 = 1, x ≥ 0, Q ≥ 0, α ≥ 0
(33)

where x ∈ Rn is the decision variable vector – equity weights, θ ∈ Rn is the equity returns, the
semi-definite positiveQ ∈ Rn×n is the covariance matrix of returns θ ∈ Rn. Equivalently, we rewrite

the constraints of x to fit our surrogate framework, as Ax ≤ b where A =

[−11×n
11×n
−I

]
, b =

[−1
1
0

]
.

Let C ′ =

[
C
A

]
, d′ =

[
d
b

]
, γ =

[
α

O(n1.5E)1

]
, and we have surrogate γTS(z) = γT (0.5M(Z +

1
4K)2 + Uz). Then, we may derive the optimal solution x and the gradient of f(x, θreal, Qreal) with
real data with respect to x as

x = (2Q+ C ′TMdiag(γ)C ′)−1(θ + C ′TMdiag(γ)d′ − C ′T (U +
M

4K
)γ)

∂f(x, θreal, Qreal)

∂x
= θreal − 2Qrealx− C ′TMdiag(γ)(C ′x− d′)− C ′T (

1

4K
M + U)γ

(34)

Differentiating on both sides of the analytical solution of x, we get:
∂x

∂θ
= (2Q+ C ′TMdiag(γ)C ′)−1

∂x

∂Q
= (θ + C ′TMdiag(γ)d′ − C ′T (U +

M

4K
)γ)

∂(2Q+ C ′TMdiag(γ)C ′)−1

∂Q

(35)

To derive a simplified norm of ∂x
∂Q , let R = (2Q + C ′TMdiag(γ)C ′)−1, S = C ′TMdiag(γ)C ′,

β = θ + C ′TMdiag(γ)d′ − C ′T (U + M
4K)γ. With such notations, we can simplify the previous

results to

x = (2Q+ S)−1β = Rβ,
∂x

∂θ
= RT = R,

∂f(x, θreal, Qreal)

∂x
= βreal −R−1

realx (36)

and the derivative ∂xi

∂Qj,k
and ∂f(x,θreal,Qreal)

∂Qj,k
can be derived as follows:

∂xi
∂Qj,k

=
∑
x

∑
y

∂Rx,y
∂Qj,k

∂xi
∂Rx,y

=
∑
y

∂Ri,y
∂Qj,k

βy

=
∑
y

βy
∑
p

∑
q

∂(2Q+ S)p,q
Qj,k

∂Ri,y
∂(2Q+ S)p,q

=
∑
y

2βy
∂Ri,y

∂(2Q+ S)j,k

= −
∑
y

2βyRi,jRk,y

(37)

∂f(x, θreal, Qreal)

∂Qj,k
= −

∑
i

(
∑
y

2βyRi,jRk,y)(βreal,i − (R−1
realx)i)

= 2
∑
i

((R−1
realx)i − βreal,i)Ri,j

∑
y

βyRk,y

(38)

Let pj =
∑
iR

T
j,i((R

−1
realx)i − βreal,i), tk =

∑
y βyRk,y (p = RT (R−1

realx−βreal), t = x), and finally

∂f(x, θreal, Qreal)

∂Qj,k
= 2pjxk,

∂f(x, θreal, Qreal)

∂Q
= 2pxT (39)

25

D.3 Resource Provisioning

The problem formulation of resource provisioning is

min
x
αT1 max(Cx− d, 0) + αT2 max(d− Cx, 0), s.t. xT1 = 1, x ≥ 0 (40)

Let C ′

C
−C
−I
11×n
−11×n

, d′ =

d
−d
0
1
−1

, γ =

α1

α2

O(n1.5E)1
O(n1.5E)
O(n1.5E)

, P = (C ′TMdiag(γ)C ′)−1, β =

(C ′TMdiag(γ)d′ − C ′T (M4K + U)γ), η = Mdiag(γ)d′ − (M4K + U)γ. Then for the derivative
∂f(x,C′real)

∂x and the analytical solution of x, we have

∂f(x,C ′real)

∂x
= −C ′TrealMrealdiag(γ)(C ′realx− d′)− C ′

T
real(

1

4K
Mreal + Ureal)γ

x = (C ′TMdiag(γ)C ′)−1(C ′TMdiag(γ)d′ − C ′T (
M

4K
+ U)γ) = Pβ

(41)

According to the analytical solution of optimal point x, the derivative ∂xi

∂C′k,l
is

∂xi
∂C ′k,l

=
∑
j

∂Pi,j
∂C ′k,l

βj +
∑
j

Pi,j
∂βj
∂C ′k,l

(42)

For the first term of the derivative above, we have:

∂Pi,j
∂C ′k,l

=
∂(C ′TMdiag(γ)C ′)−1

i,j

C ′k,l

=
∑
p

∑
q

∂(C ′TMdiag(γ)C ′)p,q
∂C ′k,l

Pi,j

P−1
p,q

=
∑
p

∑
q

∂
∑
x

∑
y C
′
x,pMdiag(γ)x,yC

′
y,q

∂C ′k,l
(−Pi,pPq,j)

=
∑
q

∑
y

[p == l]Mdiag(γ)k,yC
′
y,q(−Pi,pPq,j) +

∑
p

∑
x

[q == l]Mdiag(γ)x,kC
′T
p,x(−Pi,pPq,j)

=
∑
q

−Pi,l(Mdiag(γ))k,∗C
′
∗,qPq,j +

∑
p

−Pl,jC ′Tp,∗(Mdiag(γ))∗,kPi,p

= −(Pi,l(Mdiag(γ))k,∗C
′P∗,j + Pl,jPi,∗C

′T (Mdiag(γ))∗,k)

= −(Pi,l(Mdiag(γ)C ′P)k,j + Pl,j(PC
′TM(diag(γ)))i,k)

(43)
Therefore, the simplified result for the first term of the derivative in Equation 42 is:∑

j

∂Pi,j
∂C ′k,l

βj = −((Mdiag(γ)C ′Pβ)kPi,l + (Pβ)l(PC
′TMdiag(γ))i,k) (44)

For the second term, we have:

∂βj
∂C ′k,l

=
∂(C ′T η)j
C ′k,l

=
∂
∑
p C
′
p,jηp

∂C ′k,l
= ηk[j == l] (45)

The simplified second term is thus ∑
j

Pi,j
∂βj
∂C ′k,l

= Pi,lηk (46)

Finally, the derivative can be written as
∂xi
∂C ′k,l

= −((Mdiag(γ)C ′Pβ)kPi,l + (Pβ)l(PC
′TMdiag(γ))i,k) + Pi,lηk (47)

26

E Benchmark Details : Dataset and Problem Settings

Our code is public in the repo: https://github.com/PredOptwithSoftConstraint/PredOptwithSoftConstraint.

E.1 Synthetic Linear Programming

E.1.1 Prediction Dataset

We generate the synthetic dataset {ξi, θi}Ni=1 under a general structural causal model ([21]). In the
original form, it is like:

z ∼ N(0,Σ)

ξ = g(z) + ε1
θ = h(z) + ε2

(48)

where z is the latent variable, ξ observed features of z, and θ the result variable caused by z.
According to physical knowledge, h can be a process of linear, quadratic, or bi-linear form. However,
it is difficult to get an explicit form of reasonable g. Instead, g−1 can be well-represented by deep
neural networks.

Thus, alternatively, we use the following generative model:

ξ∗ ∼ N(0,Σ)

z = m(ξ∗)

θ = h(z) + ε2
ξ = ξ∗ + ε1

(49)

where m behaves as g−1. In our experiment settings, Σ = I + QQT , where each element of Q
is generated randomly at uniform from (0, 1). We set m(x) = sin(2πxB), where B is a matrix
whose elements are generated randomly at uniform in {0, 1}, and sin is applied element-wisely. We
implement h(z) as a MLP with two hidden layers, and the output is normalized to (0, 1] for each
dimension through different data points. Finally, we add a noise of 0.01εx to x, where εx ∼ N(0, 1);
and 0.01εθ to θ, where εθ follows a truncated normal distribution which truncates a normal distribution
N(0, 1) to [0, 1.5].

The dataset is split into training, validation and test sets with the proportions 50%, 25%, 25% in
respect. The batch size is set to 10 for N = 100, 50 for N = 1000, and 125 for N = 5000.

E.1.2 Problem Settings

We generate hard constraint Ax ≤ b, and soft constraint Cx ≤ d. Each element of A or C is first
generated randomly at uniform within (0, 1), then set to 0 with probability of 0.5. We generate b, d
as b = 0.5A1 and d = 0.25C1. The soft constraint coefficient α is generated randomly at uniform
from (0, 0.2) for each dimension.

E.2 Portfolio Optimization

E.2.1 Dataset

The prediction dataset is daily price data of SP500 from 2004 to 2017 downloaded by Quandl API
[24] with the same settings in [3]. Most settings are aligned with those in [3], including dataset
configuration, prediction model, learning rate (initial 0.01 with scheduler), optimizer (Adam), gradient
clip (0.01), the number of training epochs (20), and the problem instance size (the number of equities
being {50, 100, 150, 200, 250}).

E.2.2 Problem Settings

We set the number of soft constraints to 0.4 times of n, where n is the number of candidate equities.
For the soft constraint αT max(Cx− d, 0), α = 15

n v, where each element of v is generated randomly
at uniform from (0, 1); the elements of matrix C are generated independently from {0, 1}, where the
probability of 0 is 0.9 and 1 is 0.1. K is set as 100.

27

https://github.com/PredOptwithSoftConstraint/PredOptwithSoftConstraint

E.3 Resource Provisioning

E.3.1 Dataset

The ERCOT energy dataset [25] contains hourly data of energy output from 2013 to 2018 with
52535 data points. We use the first 70% as the training set, the middle 10% as the valida-
tion set, and the last 20% as the test set. We normalize the dataset by dividing the labels
by 104, which makes the typical label becomes value around (0.1, 1). We train our model
with a batch size of 256; each epoch contains 144 batches. We aim to predict the matrix
C ∈ R24×8, where 24 represents the following 24 hours and 8 represents the 8 regions, which
are {COAST, EAST, FWEST, NCENT, NORTH, SCENT, SOUTH, WEST}. The data is drawn
from the dataset of the corresponding region. the decision variable x is 8-dimensional, and
d = 0.51 + 0.1N(0, 1).

E.3.2 Problem Settings

We test five sets of (α1, α2), which are (50× 1, 0.5× 1), (5× 1, 0.5× 1), (1,1), (0.5× 1, 5× 1),
and (0.5 × 1, 50 × 1), against two-stage with L1-loss, L2-loss, and weighted L1-loss. We use
AdaGrad as optimizer with learning rate 0.01, and clip the gradient with norm 0.01. The feature is
a (8 × 24 × 77)-dimensional vector for each matrix C; we adopted McElWee’s Blog [26] for the
feature generation and the model. Weighted L1-loss has the following objective:

αT2 max(Cx− d, 0) + αT1 max(d− Cx, 0) (50)

Note that α2 and α1 are exchanged in the objective. Intuitively, this is because an under-estimation of
entries of C will cause a larger solution of x, which in turn makes Crealx− d larger at test time, and
vice versa. Another thing worth noting is that SPO+ cannot be applied to the prediction of the matrix
C or vector d, for it is designed for the scenario where the predicted parameters are in the objective.

F Supplementary Experiment Results

F.1 Linear Programming with Soft Constraints

The effect of K. Table 4 provides the mean and standard deviation of regrets under varying values
of K. we can see that our method performs better than all other methods with most settings of K.

Empirically, to find an optimal K for a given problem and its experimental settings, a grid search
with roughly adaptive steps suffices. For example,in our experiments, we used a proposal where
neighbouring coefficient has 5x difference (e.g. {0.2, 1, 5, 25, 125}) works well. Quadratic objective,
as in the second experiment, usually requires larger K than linear objective as in the first and the
third experiment.

Regret
N Problem Size ours(K = 0.2) K = 1.0 K = 5.0 K = 25.0 K = 125.0

100 (40, 40, 0) 2.423±0.305 2.378±0.293 2.265±0.238 2.301±0.325 2.258±0.311
(40, 40, 20) 2.530±0.275 2.574±0.254 2.384±0.277 2.321±0.272 2.350±0.263
(80, 80, 0) 5.200±0.506 5.529±0.307 5.610±0.351 5.563±0.265 5.502±0.353

(80, 80, 40) 4.570±0.390 4.747±0.470 4.758±0.531 4.780±0.450 4.796±0.624
1000 (40, 40, 0) 1.379±0.134 1.387±0.130 1.365±0.147 1.346±0.144 1.352±0.140

(40, 40, 20) 1.587±0.112 1.553±0.114 1.523±0.109 1.507±0.102 1.506±0.102
(80, 80, 0) 3.617±0.125 3.431±0.100 3.540±0.105 3.513±0.097 3.507±0.117

(80, 80, 40) 2.781±0.165 2.817±0.167 2.819±0.155 2.820±0.157 2.826±0.197
5000 (40, 40, 0) 1.041±0.094 1.065±0.098 1.045±0.099 1.038±0.102 1.037±0.100

(40, 40, 20) 1.278±0.072 1.248±0.076 1.223±0.075 1.220±0.071 1.221±0.074
(80, 80, 0) 3.074±0.098 2.845±0.064 2.884±0.100 2.889±0.083 2.864±0.086

(80, 80, 40) 2.217±0.123 2.222±0.111 2.172±0.098 2.174±0.113 2.177±0.105
Table 4: The mean and standard deviation of the regret of all K in our experiment.

Prediction error. Table 5 and Table 6 are the mean and standard deviation of prediction MSE for
all methods. We can find that two-stage methods have an advantage over end-to-end methods on

28

MSE of θ
N Problem Size L1 L2 SPO+ DF ours (K = 0.2)

100 (40, 40, 0) 0.062±0.006 0.063±0.008 0.079±0.150 14.592±9.145 0.094±0.039
(40, 40, 20) 0.061±0.005 0.062±0.006 0.071±0.006 6.414±4.451 0.061±0.007
(80, 80, 0) 0.058±0.004 0.059±0.004 0.066±0.011 28.768±13.90 0.247±0.009

(80, 80, 40) 0.059±0.004 0.059±0.004 0.085±0.008 8.98± 9.99 0.061±0.005
1000 (40, 40, 0) 0.031±0.001 0.031±0.001 0.034±0.002 34.931±14.309 0.036±0.003

(40, 40, 20) 0.031±0.001 0.031±0.001 0.033±0.001 9.255±8.497 0.033±0.001
(80, 80, 0) 0.030±0.001 0.029±0.001 0.032±0.002 90.590±35.298 0.222±0.009

(80, 80, 40) 0.030±0.001 0.029±0.001 0.033±0.001 1.060±2.395 0.033±0.002
5000 (40, 40, 0) 0.022±0.000 0.022±0.000 0.025±0.001 72.083±46.685 0.025±0.001

(40, 40, 20) 0.022±0.000 0.022±0.000 0.238±0.001 235.789±842.939 0.243±0.001
(80, 80, 0) 0.021±0.000 0.021±0.000 0.023±0.001 147.144±51.101 0.196±0.011

(80, 80, 40) 0.020±0.000 0.020±0.000 0.022±0.001 0.372±0.311 0.024±0.001
Table 5: The mean and standard deviation of the MSE loss of the predicted variable θ in the synthetic
experiment on the test set. The two-stage methods have better performance on the accuracy of
prediction.

MSE of θ
N Problem Size ours(K = 1.0) ours(K = 5.0) ours(K = 25.0) ours(K = 125.0)

100 (40, 40, 0) 0.068±0.008 0.091±0.037 0.188±0.089 0.204±0.079
(40, 40, 20) 0.094±0.031 0.204±0.074 0.244±0.105 0.343±0.200
(80, 80, 0) 0.129±0.049 0.257±0.182 0.641±0.476 0.816±0.351

(80, 80, 40) 0.094±0.013 0.151±0.035 0.172±0.091 0.177±0.042
1000 (40, 40, 0) 0.036±0.002 0.056±0.010 0.143±0.048 0.195±0.095

(40, 40, 20) 0.060±0.010 0.127±0.051 0.172±0.071 0.193±0.078
(80, 80, 0) 0.114±0.070 0.220±0.097 1.124±0.341 1.407±0.439

(80, 80, 40) 0.039±0.002 0.060±0.006 0.078±0.010 0.080±0.008
5000 (40, 40, 0) 0.026±0.001 0.033±0.004 0.076±0.025 0.089±0.037

(40, 40, 20) 0.036±0.004 0.073±0.019 0.110±0.038 0.113±0.026
(80, 80, 0) 0.152±0.079 0.097±0.040 0.703±0.177 0.895±0.205

(80, 80, 40) 0.026±0.001 0.032±0.003 0.038±0.004 0.040±0.007
Table 6: The mean and standard deviation of the MSE loss of the predicted variable θ in the synthetic
experiment for different values of K.

prediction error. however, as demonstrated in our experiments, such advantage does not necessarily
lead to the advantage on the regret performance. Surprisingly, although DF[9] works generally on
par with other baselines in regret performance, it generates a very large MSE error compared with
our method; closer examination suggests that there are some outlier cases where the prediction
loss is magnitudes higher than others. Also, the prediction error of DF gets much higher when no
soft constraint exists, which is probably because the optimal solution remains the same when all
parameters to predict are scaled by a constant factor.

Detailed behaviour of SPO+. As mentioned in the main paper, SPO+ quickly becomes overfited in
our experiments, shown by Table 7 as empirical evidence. In our experiments, early stopping starts at
epoch 8, and maximum number of run epochs is 40; the results show that SPO+ stops much earlier
than other methods under most settings. Figure 8 plots the timely comparison of test performance
during training, where SPO+ get overfited quickly, although it performs better in the earlier period of
training.

Statistical significance tests. Table 9 shows the results of significance test (one-tailed paired t-test),
with the assumption that the means of two distributions are the same. The results show that our
method is significantly better than other methods under almost all settings.

29

Figure 8: The average regret on test set of K = 25.0, training set size 5000 and problem size
(80, 80, 0) with respect to the number of epochs (methods other than ours does not reach 40 in this
figure, for all runs are early-stopped before epoch 40). While SPO+ is better than two-stage in the
best performance, it overfits rather quickly.

Average Episode
N Problem Size L1 L2 SPO+ DF ours (K = 0.2)

100 (40, 40, 0) 20.46±10.20 12.53±3.00 19.6±8.58 29.53±10.24 20.53±10.39
(40, 40, 20) 21.47±9.58 14.13±4.47 17.8±9.98 25.46±11.41 22.47±10.29
(80, 80, 0) 22.6±5.78 22.6±8.52 20.07±7.23 30.87±8.83 24.53±8.02

(80, 80, 40) 25.2±8.38 24.73±8.88 19.33±764 24±9.06 28.33±8.89
1000 (40, 40, 0) 14.67±2.61 13.2±1.74 10±2.04 27.93±7.42 13.6±2.53

(40, 40, 20) 13.2±2.37 13.4±2.50 10.33±1.40 24.6±8.14 10.67±1.23
(80, 80, 0) 19.07±2.25 18.07±1.83 11.87±2.00 25.2±6.41 24.27±11.02
(80, 80, 40) 19.93±2.66 19±1.31 12.33±1.95 25.4±9.22 17.73±4.08

5000 (40, 40, 0) 16.47±2.59 16.27±1.33 11.87±2.10 23.33±7.34 11.8±2.60
(40, 40, 20) 17.13±2.59 15.27±1.79 12.8±2.88 21.67±7.95 13.4±2.77
(80, 80, 0) 20.67±3.20 20.8±2.18 13.7±2.16 29.33±7.22 30.07±9.48

(80, 80, 40) 20.47±2.64 21±2.88 12.2±1.61 17.6±6.84 18.53±5.26
Table 7: The mean and standard deviation of the number of epochs run in each instance (capped at
40). Note that SPO+ is significantly more prone to overfitting in our experiment settings.

F.2 Portfolio Optimization

Statistical significance tests. Table 10 shows the result of significance test (one-tailed paired t-test),
with the assumption that the means of two distributions are the same. The results show that our
method is significantly better than other methods under every setting.

F.3 Resource Provisioning

Statistical significance tests. Table 11 shows the result of significance test (one-tailed paired t-test),
with the assumption that the means of two distributions are the same.

G Computing Infrastructure

All experiments are conducted on Linux Ubuntu 18.04 bionic servers with 256G memory and 1.2T
disk space with no GPU, for GPU does not suit well with Gurobi.10 Each server has 32 CPUs, which
are Intel Xeon Platinum 8272CL @ 2.60GHz.

For the first experiment, we use a few minutes to get one set of data 11 with training set size 100, and
about 4−5 hours to get one set of data with training set size 5000. For the second experiment, we use

10see Gurobi’s official support website: https://support.gurobi.com/hc/en-us/articles/360012237852-Does-
Gurobi-support-GPUs-

11Running all methods simultaneously under one particular parameter setting.

30

t-value
N Problem Size L1 L2 SPO+ DF

100 (40, 40, 0) 3.884 4.615 5.194 1.614
(40, 40, 20) 5.173 5.248 6.836 1.569
(80, 80, 0) 6.024 5.661 4.523 3.610

(80, 80, 40) 2.308 1.724 3.622 1.936
1000 (40, 40, 0) 8.438 5.271 4.860 1.115

(40, 40, 20) 6.547 6.212 8.562 2.620
(80, 80, 0) 12.620 10.925 7.979 2.751

(80, 80, 40) 7.116 4.465 6.223 8.230
5000 (40, 40, 0) 7.130 7.808 7.546 1.175

(40, 40, 20) 10.410 10.238 6.555 2.382
(80, 80, 0) 8.361 7.502 6.874 0.869

(80, 80, 40) 6.550 4.388 5.066 11.620
Table 8: The t-value of the one-tailed paired t-test between all other methods and our methods under
optimal K.

p-value
N Problem Size L1 L2 SPO+ DF

100 (40, 40, 0) 8.272 ×10−4 2.006×10−4 6.809 ×10−5 0.058
(40, 40, 20) 7.076×10−5 6.162×10−5 4.054×10−6 0.064
(80, 80, 0) 1.561×10−5 2.936×10−5 2.388×10−4 5×10−4

(80, 80, 40) 0.018 0.053 0.001 0.032
1000 (40, 40, 0) 3.662×10−7 5.917×10−5 1.263 ×10−4 0.137

(40, 40, 20) 6.489×10−6 1.133×10−5 3.078×10−7 0.007
(80, 80, 0) 2.444×10−9 1.544×10−8 7.064×10−7 0.005

(80, 80, 40) 2.600×10−6 2.667×10−4 1.114×10−5 2.937×10−9

5000 (40, 40, 0) 2.545×10−6 9.074×10−7 1.342×10−6 0.125
(40, 40, 20) 2.834×10−8 3.487×10−8 6.406×10−6 0.012
(80, 80, 0) 4.082×10−7 1.435×10−6 3.818×10−6 0.196

(80, 80, 40) 6.460×10−6 3.097×10−4 8.606×10−5 1.585×10−12

Table 9: The p-value of the one-tailed paired t-test between all other methods and our methods under
optimal K.

about an hour to get one set of data with N = 50, and 2− 3 days to get one set of data with N = 250.
For the third experiment, we use around 6− 7 hours to obtain one set of data. Though our method is
slower to train than two-stage methods, it is 2-3x faster to train than KKT-based decision-focused
method.

31

t-value p-value
#Equities L1 L2 DF L1 L2 DF

50 10.329 10.628 6.141 3.213×10−8 2.186×10−8 1.279×10−5

100 21.414 23.995 6.200 2.125×10−12 4.495×10−13 1.157×10−5

150 13.402 14.503 5.690 1.119×10−9 3.971×10−10 2.789×10−5

200 13.617 13.104 4.329 9.086×10−10 1.500×10−9 3.465×10−4

250 13.904 14.483 3.205 6.915×10−10 4.044×10−10 0.003
Table 10: The t-value and p-value of the one-tailed paired t-test between all other methods and our
methods.

t-value p-value
α1/α2 L1 L2 Weighted L1 L1 L2 Weighted L1

100 13.133 9.357 6.429 2.914×10−9 2.115×10−7 1.576×10−5

10 12.484 14.231 10.897 5.622×10−9 1.493×10−6 3.190 ×10−8

0.1 1.184 5.073 11.001 0.127 8.486 ×10−5 1.416 ×10−8

0.01 0.535 1.998 5.083 0.300 0.032 8.33×10−5

Table 11: The t-value (p-value) of the one-tailed paired t-test between all other methods and our
methods.

32

	Mathematical Proofs
	Lemma 1
	Lemma 7
	Theorem 2
	Theorem 3
	Corollary 4
	Theorem 5
	Theorem 6

	Choices of Surrogate max Functions
	Learning and Inference Algorithm
	Derivation of Gradients
	Linear Programming with Soft Constraints
	Portfolio Selection with Soft Constraints
	Resource Provisioning

	Benchmark Details : Dataset and Problem Settings
	Synthetic Linear Programming
	Prediction Dataset
	Problem Settings

	Portfolio Optimization
	Dataset
	Problem Settings

	Resource Provisioning
	Dataset
	Problem Settings

	Supplementary Experiment Results
	Linear Programming with Soft Constraints
	Portfolio Optimization
	Resource Provisioning

	Computing Infrastructure

