
Supplementary materials
SING: A Plug-and-Play DNN Training Technique

Anonymous Author(s)
Affiliation
Address
email

A Theorems & Proofs35

Theorem 3.2. The iterates defined by (2) are invariant w.r.t. transformation (5), and preserve the36

mean (6).37

Proof. The first property is satisfied thanks to the normalization. Indeed, consider the iterates38

yt+1 = yt − η
ϕ(∇F̃ (yt))

Γ(ϕ(∇F̃ (yt)))
,

where F̃ is defined in (5). Hence,39

yt+1 = yt − η
ϕ(∇αF (yt))

Γ(ϕ(α∇F (yt)))
,

Since ϕ and Γ are both homogeneous operators,40

yt+1 = yt − η
αϕ(∇F (yt))

αΓ(ϕ(∇F (yt)))
= yt − η

ϕ(∇F (yt))

Γ(ϕ(∇F (yt)))
.

Therefore, we have the property yt = xt (2). Moreover, define the mean operator m(x) = 1
p

∑p
i=1 xi.41

For z ∈ Rp, we have42

m

(
ϕ(z)

Γ(ϕ(z))

)
=

1

p

D∑
k=1

1

∥ϕ(zIk)∥2

∑
l∈Ik

[ϕ(z)]l = 0,

where the last inequality comes from the definition of the gradient centralization operation ϕ. Hence,43

since m(·) is a linear function,44

m(xt+1) = m

(
xt − η

ϕ(∇F (xt))

Γ(ϕ(∇F (xt)))

)
,

= m (xt)− η m

(
ϕ(∇F (xt))

Γ(ϕ(∇F (xt)))

)
,

= m (xt) .

45

Theorem 3.3 (Convergence without gradient centralization). Let assumptions (7) and (8) hold.46

Assume the gradient is computed across a mini-batch of size B = σ2

ϵ2 . Let xt be the sequence of47

iterates (2) with ϕ = I . Then, we have48

1

T

T−1∑
t=0

E[∥∇F (xt)∥2] ≤
F (x0)

ηT
+ (1 +

√
D)ϵ+

ηLD

2
. (9)

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



If we set τ ∼ U([[0, T − 1]]), η = 2ϵ
L and T = LF (x0)

2ϵ2 , we obtain E[∥∇F (xτ )∥2] ≤ (2+
√
D+D)ϵ.49

Therefore, the iteration complexity and computation complexity to achieve an ϵ-stationary point are50

O(1/ϵ2) and O(1/ϵ4), respectively.51

Before proving this theorem, we will introduce and prove two technical lemmas.52

Lemma A.1. For every x ∈ Rp, the following equality holds53 ∥∥∥∥ x

Γ(x)

∥∥∥∥
2

=
√
D.

Proof. The function Γ is block-wise constant such that54

∀k ∈ [[1, D]],∀i ∈ Ik, [Γ(x)]i = ∥xIk∥2 =

√∑
j∈Ik

[x]2j .

Hence55 ∥∥∥∥ x

Γ(x)

∥∥∥∥2
2

=

d∑
j=1

[
x

Γ(x)

]2
j

=

D∑
k=1

∑
i∈Ik

[x]2i
[Γ(x)]2i

=

D∑
k=1

∑
i∈Ik

[x]2i
∥xIk∥22

=

D∑
k=1

∥xIk∥22
∥xIk∥22

= D.

56

Lemma A.2. For every x ∈ Rp, the following equality holds57 〈
x,

x

Γ(x)

〉
=

D∑
k=1

∥xIk∥2
def
= N(x).

In particular, we have58

∥x∥2 ≤ N(x).

Proof. The first part of the lemma can be derived directly using the same notation as for Lemma A.1:59 〈
x,

x

Γ(x)

〉
=

d∑
j=1

[x]2j
[Γ(x)]j

=

D∑
k=1

∑
i∈Ik

[x]2j
∥xIk∥2

=

D∑
k=1

∥xIk∥22
∥xIk∥2

=

D∑
k=1

∥xIk∥2.

The second part can be shown using the fact that ∥z∥2 ≤ ∥z∥1 for every z ∈ RD. We define z ∈ RD60

such that61

∀k ∈ [[1, D]], zk = ∥xIk∥2,

then ∥z∥1 = N(x) and62

∥z∥22 =

D∑
k=1

∥xIk∥22 =

D∑
k=1

∑
i∈Ik

[x]2i =

d∑
j=1

[x]2j = ∥x∥22.

63

Now, onto the proof of Theorem 3.3.64

4



Proof. We note ∇f the stochastic approximation of the real gradient ∇F and we assume that the65

stochastic gradient has a σ-bounded variance (σ > 0) i.e.66

∀x ∈ Rp,E
[
∥∇F (x)−∇f(x)∥22

]
≤ σ2, (11)

and that the gradient of F is L-Lipschitz such that67

F (x+) ≤ F (x) + ⟨∇F (x), x+ − x⟩+ L

2
∥x+ − x∥22. (12)

When ϕ = I , the gradient updates are given by68

x+ = x− η
∇f(x)

Γ(∇f(x))
, (13)

where the division is element-wise. Then, using (12) with the updates defined in (13):69

F (x+) ≤ F (x)− η

〈
∇F (x),

∇f(x)

Γ(∇f(x))

〉
+ η2

L

2

∥∥∥∥ ∇f(x)

Γ(∇f(x))

∥∥∥∥2
2

≤ F (x)− η

〈
∇F (x)−∇f(x),

∇f(x)

Γ(∇f(x))

〉
− η

〈
∇f(x),

∇f(x)

Γ(∇f(x))

〉
+

η2LD

2

≤ F (x) + η
√
D∥∇F (x)−∇f(x)∥2 − ηN(∇f(x)) +

η2LD

2
, (14)

where the last inequality comes from the Cauchy-Schwartz inequality used with Lemma A.1 and the70

first part of Lemma A.2. Using the second part of Lemma A.2, we get71

∥∇F (x)∥2 ≤ ∥∇F (x)−∇f(x)∥2 + ∥∇f(x)∥2 ≤ ∥∇F (x)−∇f(x)∥2 +N(∇f(x)). (15)

Upper-bounding N(∇f(x)) using (14) gives us72

∥∇F (x)∥2 ≤ F (x)− F (x+)

η
+ (1 +

√
D) ∥∇F (x)−∇f(x)∥2 +

ηLD

2
. (16)

Then, if ∇f(x) is the average of B = σ2

ϵ2 gradient approximations over a mini-batch, we get73

E[∥∇F (x)−∇f(x)∥2] ≤
√

E[∥∇F (x)−∇f(x)∥2] ≤ σ

B
= ϵ. (17)

Taking the expectation in (16) for x+ = xt+1 and x = xt for a given t ∈ N and (xt)t∈N being the74

updates defined by (13), we get75

1

T

T−1∑
t=0

∥∇F (xt)∥2 ≤ F (x0)− F (xT )

ηT
+

1 +
√
D

T

T−1∑
t=0

E[∥∇F (xt)−∇f(xt)∥2] +
ηLD

2

≤ F (x0)

ηT
+ (1 +

√
D)ϵ+

ηLD

2
.

The last inequality comes from (17) and the assumption that F ≥ 0. This shows the first part of the76

theorem. Now, if we let η = 2ϵ
L and T = LF (x0)

2ϵ2 we get77

1

T

T−1∑
t=0

∥∇F (xt)∥2 ≤ (2 +
√
D +D)ϵ. (18)

78

Theorem 3.4 (Convergence with gradient centralization). Let assumptions (7) and (8) hold. Assume79

the gradient is computed across a mini-batch of size B = σ2

ϵ2 . Let xt be the sequence of iterates (2).80

Then we have81

1

T

T−1∑
t=0

E[∥∇F (xt)∥ϕ] ≤
F (x0)

ηT
+ (1 +

√
D)ϵ+

ηLD

2
, (10)

where ∥ · ∥2ϕ = ⟨·, ϕ(·)⟩2 is a pseudo-norm. If we set τ ∼ U([[0, T − 1]]), η = 2ϵ
L and T = LF (x0)

2ϵ2 ,82

we obtain E[∥∇F (xτ )∥ϕ] ≤ (2 +
√
D +D)ϵ. Therefore, the iteration complexity and computation83

complexity to achieve an (ϵ, ϕ)-stationary point are O(1/ϵ2) and O(1/ϵ4), respectively.84

5



As for the proof of Theorem 3.3, we start by introducing and proving two technical lemmas.85

Lemma A.3. For every x ∈ Rp, the following equality holds86 ∥∥∥∥ ϕ(x)

Γ(ϕ(x))

∥∥∥∥
2

=
√
D.

Proof. The proof is direct using Lemma A.1 with x = ϕ(z).87

Lemma A.4. For every x ∈ Rp, the following inequality holds88 〈
x,

ϕ(x)

Γ(ϕ(x))

〉
=

D∑
k=1

∥xIk∥ϕ
def
= Nϕ(x),

where ∥ · ∥2ϕ
def
= ⟨·, ϕ(·)⟩ is pseudo-norm. In particular, we have89

∥x∥ϕ ≤ ∥x∥2, and ∥x∥ϕ ≤ Nϕ(x).

Proof. As for the other lemmas, the first part is direct90 〈
x,

ϕ(x)

Γ(ϕ(x))

〉
=

d∑
j=1

[x]j
[ϕ(x)]j

[Γ(ϕ(x))]j
=

D∑
k=1

∑
i∈Ik

[x]i
[ϕ(x)]i

[Γ(ϕ(x))]i

=

D∑
k=1

1

∥ϕ(xIk)∥2

∑
i∈Ik

[x]j [ϕ(x)]j =

D∑
k=1

⟨xIk , ϕ(xIk)⟩
∥ϕ(xIk)∥2

=

D∑
k=1

√
⟨xIk , ϕ(xIk)⟩ =

D∑
k=1

∥xIk∥ϕ.

The penultimate inequality comes from the fact that ϕ is self-adjoint and such that ϕ ◦ ϕ = ϕ:91

∥ϕ(x)∥22 = ⟨ϕ(x), ϕ(x)⟩ = ⟨x, ϕ(ϕ(x))⟩ = ⟨x, ϕ(x)⟩.

The Cauchy-Schwartz inequality applied on the above equality gives us the second part of the lemma:92

∥ϕ(x)∥22 ≤ ∥x∥2 ∥ϕ(x)∥2,

hence ∥ϕ(x)∥2 = ∥x∥ϕ ≤ ∥x∥2. Finally, we use the fact that ∥z∥2 ≤ ∥z∥1 for every z ∈ RD to
show the last inequality. We define z ∈ RD such that

∀k ∈ [[1, D]], zk = ∥xIk∥ϕ,

and we have ∥z∥1 =
∑D

k=1 ∥xIk∥ϕ = Nϕ(x). Furthermore,93

∥z∥22 =

D∑
k=1

∥xIk∥2ϕ =

D∑
k=1

⟨xIk , ϕ(xIk)⟩

=

D∑
k=1

∑
i∈Ik

[x]i[ϕ(x)]i =

d∑
j=1

[x]j [ϕ(x)]j

= ⟨x, ϕ(x)⟩ = ∥x∥2ϕ.

94

Now, we can prove Theorem 3.4.95

Proof. Under the same assumptions as for Theorem 3.3, and with the gradient updates defined in (2),
we have

x+ = x− η
ϕ(∇f(x))

Γ(ϕ(∇f(x)))
.

6



The gradient centralization operator is linear, self-adjoint and such that ϕ2 = ϕ. We note ∥ · ∥2ϕ =96

⟨·, ϕ(·)⟩2 the pseudo-norm induced by ϕ. Using (12) with the iterates of (2) gives us97

F (x+)

≤ F (x)− η

〈
∇F (x),

(ϕ ◦ ∇f)(x))

(Γ ◦ ϕ ◦ ∇f)(x)

〉
+ η2

L

2

∥∥∥∥ (ϕ ◦ ∇f)(x)

(Γ ◦ ϕ ◦ ∇f)(x)

∥∥∥∥
≤ F (x)− η

〈
∇F (x)−∇f(x),

(ϕ ◦ ∇f)(x)

(Γ ◦ ϕ ◦ ∇f)(x)

〉
− η

〈
∇f(x),

(ϕ ◦ ∇f)(x)

(Γ ◦ ϕ ◦ ∇f)(x)

〉
+

η2LD

2

≤ F (x)− η
√
D ∥∇F (x)−∇f(x)∥2 − ηNϕ(∇f(x)) +

η2LD

2
, (19)

where the last inequality comes from Lemma A.3 and the first part of Lemma A.4. We can derive the98

following upper-bound using the second and third parts of Lemma A.4:99

∥∇F (x)∥ϕ ≤ ∥∇F (x)−∇f(x)∥ϕ + ∥∇f(x)∥ϕ
≤ ∥∇F (x)−∇f(x)∥2 +Nϕ(∇f(x)). (20)

Finally, we use (19) to upper-bound Nϕ(∇f(x)) and inject it in (20) to get100

∥∇F (x)∥ϕ ≤ F (x)− F (x+)

η
+ (1 +

√
D) ∥∇F (x)−∇f(x)∥2 +

ηLD

2
. (21)

We can conclude the proof using the same argument as for Theorem 3.3.101

Theorem 3.1 (Escaping from narrow local minima). Let xt be the sequence of iterates defined by (2)102

and yt the sequence of iterates of gradient descent,103

yt+1 = yt − ηGD∇F (yt). (3)

Assume that xt ∈ B(x∗) (resp. yt ∈ B(x∗)) i.e. the ball contained in the basin of attraction of x∗,104

defined in Definition 3.1. Also, assume that xt (resp. yt) is not a critical point i.e. ∇F (xt) ̸= 0 (resp.105

∇F (yt) ̸= 0). If the stepsize is sufficiently large,106

ηSING ≥ 2r√
D
, ηGD ≥ 2r

∥∇F (yt)∥2
, (4)

then the iterates xt+1 (resp. yt+1) is outside the set B(x∗).107

Proof. Let us consider the more general setting108

xt+1 = xt − ηgt. (22)

Provided gt ̸= 0, we can note ∥xt+1 − x∗∥22 is a degree two polynomial in η:109

∥xt+1 − x∗∥22 = ∥gt∥22
(
η −

〈
gt

∥gt∥22
, xt − x∗

〉)2

+ ∥xt − x∗∥22 −
〈

gt
∥gt∥2

, xt − x∗
〉2

. (23)

Cauchy-Schwartz inequality ensure the term outside the square is always positive. Hence110

∥xt+1 − x∗∥2 ≥ ∥gt∥2
∣∣∣∣η −

〈
gt

∥gt∥22
, xt − x∗

〉∣∣∣∣ . (24)

Therefore, for η ≥
〈

gt
∥gt∥2

2
, xt − x∗

〉
+ r

∥gt∥2
we have that if xt ∈ A(x∗)\{x∗}, xt+1 /∈ A(x∗). In111

the worst case, the RHS is equal to 2r/∥gt∥2. We can further simplify this bound by considering the112

expression of gt:113

gGD
t = ∇F (xt), ∥gGD

t ∥2 = ∥∇F (xt)∥2, (25a)
114

gNGD
t =

∇F (xt)

∥∇F (xt)∥2
, ∥gNGD

t ∥2 = 1, (25b)
115

gSING
t =

ϕ(∇F (xt))

Γ(ϕ(∇F (xt)))
, ∥gSING

t ∥2 =
√
D, (25c)

7



Learning rate Weight decay Test loss (×10−3) Accuracy

AdamW + SING 5× 10−2 5× 10−2 0.34 96.56%
Lamb [15] 1× 10−2 5× 10−4 0.50 93.50%
NAdam [4] 1× 10−3 5× 10−5 28.3 0.02%
Yogi [16] 1× 10−2 5× 10−5 24.3 0.24%
AdamW [5, 7] 1× 10−3 5× 10−2 1.70 78.13%
AdaBelief [17] 1× 10−3 5× 10−4 3.73 60.26%
AdaFactor [10] 1× 10−2 5× 10−4 1.87 74.98%
RAdam [6] 1× 10−3 5× 10−5 20.1 0.75%
AdaBound [8] 1× 10−3 5× 10−5 38.2 0.03%

Table 1: List of the performance and best-performing hyper-parameters for the training of a ViT-S on
RDE using different optimizers. As suggested by the ablation study, normalization is the main reason
why SING works but doesn’t fully explain its success.

where NGD stands for normalized gradient descent. Therefore, to ensure xt+1 /∈ A(x∗) it is sufficient116

to have117

ηGD ≥ 2r

∥∇F (xt)∥2
, (26a)

118
ηNGD ≥ 2r, (26b)

119

ηSING ≥ 2r√
D
. (26c)

120

B Additional experiments121

B.1 Comparison against other optimizers122

We compared other optimizers on the RDE dataset for depth estimation (Section 5.2). We chose this123

dataset to make the comparison because training a ViT-S on this task using Adam is unstable, and124

most competing methods try to fix Adam’s instabilities. For all the optimizers, we carefully tuned the125

learning rate and weight decay using the same methodology as for the classification task in ImageNet126

(see Section 5.1). We set other hyper-parameters to their default value. The results are available in127

Table 1. Notably, we found that most optimizers simply do not converge: the combination of AdamW128

and SING sometimes outperform competitors by a factor of 100 in terms of test loss. Notably, most129

of the competitors do not use decoupled weight decay [7]. We claim this is part of the reason why130

AdamW, AdaBelief and AdaFactor (which include it by default) outperform their counterparts by a131

factor of ten.132

C Training details133

C.1 Depth Estimation134

The metric we used to measure accuracy consists in averaging the prediction given for each visible135

pixel of each rectangle. Then a prediction counts as 1 if every rectangle within the image was136

attributed a correct depth. Examples of images of the dataset can be seen in Figure 1, as well as137

predictions when trained with AdamW and AdamW+SING. Each training lasts for one hour and a138

half on one Tesla V100 GPU with 32GB of VRAM.139

For the evaluation of SING when combined with other optimizers, we carefully tuned each method140

using the same method as for ImageNet. We then reported the result corresponding to the best test loss.141

All the hyper-parameters can be found in Table 2. In particular, while training AdaFactor [10] we142

disabled the option to train with Adaptive Step Size (see [10]) as we found it to lower the performance143

with and without SING.144

8



Figure 1: Example of predictions on the RDE [3] dataset. From left to right: input to the network,
associated ground truth, prediction using AdamW + SING, prediction using AdamW. The mean
squared error for AdamW + SING is 3× 10−4 and 5× 10−2 for AdamW.

w/ softplus [12] Learning rate Weight decay Accuracy

SGD N/A 5× 10−1 5× 10−5 0.02%
SGD + SING N/A 5× 10−1 5× 10−3 94.25%

AdamW × 1× 10−3 5× 10−2 78.13%
AdamW + SING ✓ 5× 10−2 5× 10−2 96.56%
AdamW + SING × 5× 10−3 5× 10−2 89.38%

AdaBelief × 1× 10−3 5× 10−4 60.26%
AdaBelief + SING ✓ 5× 10−2 5× 10−2 96.70%
AdaBelief + SING × 1× 10−3 5× 10−1 94.31%

AdaFactor × 1× 10−2 5× 10−4 74.98%
AdaFactor + SING ✓ 1× 10−2 5× 10−2 73.06%
AdaFactor + SING × 1× 10−2 5× 10−4 76.26%

Table 2: List of the best hyper-parameters for the training of a ViT-S on RDE using different
combinations of optimizers and SING. N/A stands for Not Applicable.

To use a ViT for an image-to-image task, we simply got rid of the classification token and instead145

reverted the patchification of the input: each output token is used to output a patch of the output146

image. This can create discontinuities on the image at the patch borders, but for the piece-wise147

constant images of the RDE dataset we didn’t find this to be an issue.148

C.2 Classification149

As the FFCV library we used had already tuned SGD, we didn’t modify the hyper-parameters. Indeed,150

when we tried other configurations the performance dropped. For AdamW + GC and AdaBelief, we151

kept the same hyper-parameters than those found for AdamW. We tested other configurations but152

found them to be sub-optimal. The best hyper-parameters found for each network are reported in153

Table 3. Notably, we found as a rule of thumb that the best learning rate of SING was ten times the154

best for AdamW, and the weight decay to be ten times lower. For AdamW and SING, no weight155

decay was applied to the biases of the network and to the normalization layers.156

For CIFAR100, the training was very cumbersome due to the large tendency to overfitting. We157

used label smoothing [11] with a value of 0.1 and small batch sizes of 128 to increase the variance.158

The best learning rate found was also 10−1 but the best weight decay was 5 × 10−2, probably159

due to the large chance of overfitting. For AdamW, the best learning rate was 10−3 and the best160

weight decay was 5 × 10−1. We also froze the learning of the batch normalization’s parameters.161

We carefully verified that these choices benefited all optimizers. The data were augmented using162

random crops, random horizontal flips and random rotations of maximum 15 degrees. We tuned the163

hyper-parameters the same way we did for ImageNet. Notably, the optimal weight decay we found164

for AdamW was 5× 10−1 and 5× 10−2 for AdamW+SING.165

9



Learning rate Weight decay

ResNet18 SGD 5× 10−1 5× 10−5

ResNet18 AdamW 10−2 5× 10−2

ResNet18 AdamW + SING 10−1 5× 10−3

ResNet34 SGD 5× 10−1 5× 10−5

ResNet34 AdamW 10−2 5× 10−2

ResNet34 AdamW + SING 10−1 5× 10−3

Table 3: For each configuration, the list of the best hyper-parameters when training on ImageNet.

SGD W + SING AdamW

ResNet18 75.63% 78.24% (± 0.21%) 77.95% (± 0.15%)
Table 4: Top-1 accuracy on CIFAR100. The results are averaged across five runs and the values are
reported in the format mean ± std.

C.3 Natural language processing166

For the training on IWSLT14, we used the code of [14] which is a fork of the FAIRSEQ [9] library.167

As stated, we took the code as is and launched it but found the BLUE score to be one point lower168

than the reported one (for AdamW and AdaHessian [14]). We therefore re-tuned AdamW but found169

the hyper-parameters reported in [13] to be the best. During training, we found the LayerNorm [1] to170

be the cause of an increasing gradient norm throughout training. We therefore froze the layers and171

recovered a normal dynamic. Notably, we found our optimizer to generalize better than AdamW,172

see Figure 2 for more details. For SING, the best learning rate found was 10−2 and the best weight173

decay was 5× 10−2. The learning rate is decreased using a cosine decay. For AdamW and for the174

rest of the hyper-parameters, we copied the setting of [13]: a dropout of 0.3, a cross-entropy loss with175

Label Smoothing [11] of 0.1, the gradient is accumulated for four iterations, the maximum number of176

tokens is 4096, the beam size is five and the length penalization is one. The networks are trained for177

200 epochs. Notably, the learning rate of AdamW is decayed using an invert square-root scheduler.178

We tested using a cosine decay but it lowered the final performance.179

For the fine-tuning tasks, we used the code provided by the HuggingFace library as is and launched180

the trainings, only to find the performance to be lower than suggested. We suspect the numerous181

changes in the library since the scripts were made to be the cause of it. We trained SING by freezing182

the LayerNorm layers and tuned the hyper-parameters. For SQuAD, we found the performance to be183

1 50 100 150 200
Epochs

4

5

6

7

8

9

Te
st

 lo
ss

W+SING
AdamW

Figure 2: Test losses on the IWSLT14 dataset. We see that the combination of AdamW + SING
outperforms AdamW at the end of the training. For AdamW, an inverse square-root scheduling is
used as we found it performed best. For AdamW + SING, we used a cosine decay. Overall, it seems
SING generalizes better than its counterpart.

10



reached in three epochs instead of just two for AdamW. This suggests SING overfits less rapidly than184

AdamW. Since the trainings were very fast, we could afford to tune more our hyper-parameters: the185

best learning rate found was 8× 10−4 and the weight decay 3× 10−3. For AdamW, it was 3× 10−5186

and 0. For both optimizers, the best batch size was 12. For SWAG, the best batch size is 32, the187

number of epochs is four, the best learning rate is 2× 10−4 and the best weight decay is 3× 10−3.188

C.4 On the learning rate scheduler189

Theorem 3.1 suggests that the learning rate must be as high as possible to escape narrow local minima.190

Therefore, it would make sense to consider a learning rate scheduling that keeps the learning rate191

constant to a high value for as long as possible. Then, once all the narrow local minima have been192

escaped and a large one has been found, the learning rate can be decreased to converge. While this193

strategy works, we found in practice that using a cosine decay to be working slightly better. We argue194

this strategy is to be preferred as it doesn’t involve any tuning.195

D Other properties196

D.1 Invariant to gradient clipping197

The update given by (2) cancels most clipping strategies. Indeed, most clipping strategies amount to198

multiplying the gradient by a certain factor (for instance α/∥∇f(x)∥2 or α∥x∥2/∥∇f(x)∥2). Since199

ϕ and Γ are both homogeneous operators, the normalization cancels any layer-wise multiplication of200

the gradient by a scalar.201

E Broader impact202

The goal of our technique is to improve the stability of the training of neural networks. This may203

open the door to further improvements in neural networks as the architecture of tomorrow might be204

difficult to train with the today’s optimizers. Our technique also allows for faster trainings, which205

reduces the amount of energy needed to train one network. Furthermore, our method allows the usage206

of light hyper-parameter-search strategies which further reduces the need in resources.207

There are risks associated with easier and better training of neural networks, as these aspects will208

also benefit applications that can be detrimental to society. In addition, better learning on a biased209

dataset might result in networks with stronger biases (e.g. [2]). While such biases are considered to210

be caused by the dataset, they could be exacerbated by the model capacity and the effectiveness of211

the training algorithm.212

11



References213

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint214

arXiv:1607.06450, 2016.215

[2] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in216

commercial gender classification. In Conference on fairness, accountability and transparency,217

pages 77–91. PMLR, 2018.218

[3] Adrien Courtois, Jean-Michel Morel, and Pablo Arias. Investigating neural architectures by219

synthetic dataset design. In Proceedings of the IEEE/CVF Conference on Computer Vision and220

Pattern Recognition, pages 4890–4899, 2022.221

[4] Timothy Dozat. Incorporating nesterov momentum into adam. ICLR 2016 Workshop, 2016.222

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua223

Bengio and Yann LeCun, editors, Int. Conf. on Learning Representations, 2015.224

[6] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,225

and Jiawei Han. On the variance of the adaptive learning rate and beyond. arXiv preprint226

arXiv:1908.03265, 2019.227

[7] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint228

arXiv:1711.05101, 2017.229

[8] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic230

bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.231

[9] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,232

and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint233

arXiv:1904.01038, 2019.234

[10] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory235

cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.236

[11] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-237

thinking the inception architecture for computer vision. In Proceedings of the IEEE conference238

on computer vision and pattern recognition, pages 2818–2826, 2016.239

[12] Qianqian Tong, Guannan Liang, and Jinbo Bi. Calibrating the adaptive learning rate to improve240

convergence of adam. Neurocomputing, 481:333–356, 2022.241

[13] Haoran Xu, Benjamin Van Durme, and Kenton Murray. Bert, mbert, or bibert? a study on242

contextualized embeddings for neural machine translation. arXiv preprint arXiv:2109.04588,243

2021.244

[14] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.245

Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the246

AAAI conference on artificial intelligence, volume 35, pages 10665–10673, 2021.247

[15] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,248

Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for249

deep learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.250

[16] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive251

methods for nonconvex optimization. Advances in neural information processing systems, 31,252

2018.253

[17] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon254

Papademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in255

observed gradients. Advances in neural information processing systems, 33:18795–18806,256

2020.257

12


