36
37

38

39

40

41
42

43
44

45

46

47
48

Supplementary materials
SING: A Plug-and-Play DNN Training Technique

Anonymous Author(s)
Affiliation
Address

email

A Theorems & Proofs

Theorem 3.2. The iterates defined by (2) are invariant w.r.t. transformation (5), and preserve the
mean (6).

Proof. The first property is satisfied thanks to the normalization. Indeed, consider the iterates
R A2 (7))
L(o(VE(y:)))
where F is defined in (5). Hence,

Y41 = Yt — U—¢(VQF(yt))
L(¢(aVE(w)))’
Since ¢ and I" are both homogeneous operators,

yors = o —n—lVE@)) __, _, _$VFlw)
al'((VE(y:))) L(@(VF(yt)))
Therefore, we have the property y; = x; (2). Moreover, define the mean operator m(x) = % P

For z € RP, we have

o) N _1sn 1 o
m (F(¢(z))> o P kzﬂ o212 lez]% [(b()]l =0,

where the last inequality comes from the definition of the gradient centralization operation ¢. Hence,
since m(+) is a linear function,

o AT
m(Te1) = (t nl"(qb(VF(JCt)))) 7

=m(xy) —nm

=m(xy).
O

Theorem 3.3 (Convergence without gradient centralization). Let assumptions (7) and (8) hold.

. 2
Assume the gradient is computed across a mini-batch of size B = Z;. Let x4 be the sequence of
iterates (2) with ¢ = I. Then, we have

F(xo)

nLD
nT '

2

T-1
= S BIVEGa] < — 2+ (14 VD)e + ©
t=0

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

49
50
51

52

53

54

55

56

57

58

59

60
61

62

63

64

If we set 7~ U([0,T —1]),n = 2¢ and T = 50 we obtain E[[|VF(z,)|2] < (2+ VD + D)e.
Therefore, the iteration complexity and computatlon complexity to achieve an e-stationary point are
O(1/€?) and O(1/€*), respectively.

Before proving this theorem, we will introduce and prove two technical lemmas.

Lemma A.1. For every = € RP, the following equality holds

Proof. The function T' is block-wise constant such that

Vk € [1,D].Vi € I, L(2)]; = |z lla = [> [2]2.
JEI

Hence

Lemma A.2. For every x € RP, the following equality holds

(o 55) - Z||:cfk\\2dif).

In particular, we have
[z]2 < N(z).

Proof. The first part of the lemma can be derived directly using the same notation as for Lemma A.1:

i) Sy
T@)/ ST =5 el
N A
=> ” I'“H2 = e

Pl e 1 (P

The second part can be shown using the fact that ||z|| < ||z||; for every z € RP. We define z € R”
such that

Vk € [1,D], 2 = |21, |2,
then ||z|l; = N(z) and

2113 = Z ez, 15 = Z > = Z:: = [|=[13-

k=11ie€l}

Now, onto the proof of Theorem 3.3.

65
66

67

68

69

70
71

72

73

74
75

76

77

78

79

80
81

82

83
84

Proof. We note V f the stochastic approximation of the real gradient VF' and we assume that the
stochastic gradient has a o-bounded variance (o > 0) i.e.

Ve € RP,E [|[VF(z) — Vf(z)|3] < o2, (11)
and that the gradient of F' is L-Lipschitz such that

L
) SF($)+<VF($)’$+—$>+§||$+—$||§~ (12)

When ¢ = I, the gradient updates are given by
L YW
IRV @)
where the division is element-wise. Then, using (12) with the updates defined in (13):
- Vf() > 2 L H ’
Plan) < P - o{ VR0 i)+ e,
v \Y% 2LD

< F@) ~ 1 (VF@) - V1), jrags) = 1{ V@) o)+ 5

2
< F@) + VDIVF() - V@)l - N (Vi () + 52, (14)

13)

where the last inequality comes from the Cauchy-Schwartz inequality used with Lemma A.1 and the
first part of Lemma A.2. Using the second part of Lemma A.2, we get

IVE(2)|2 < [VF(z) = V(@) + IV (@)l2 < IVF(z) = Vf(2)lla + N(Vf(z)). (15
Upper-bounding N (V f(z)) using (14) gives us

F(z) — F(zy) L
n

IVE@)l2 < +A4VD) [VF@) - Vi@l + 52 (e

Then, if V f(z) is the average of B = % gradient approximations over a mini-batch, we get

E[|VF(z) — Vf(2)]2] < VE[IVF(x) - Vf(2)[]?] < % =e (17)

Taking the expectation in (16) for x4 = x;11 and z = z, for a given ¢ € N and (x4).y being the
updates defined by (13), we get

T—1 T—1
F(zo) — F(zr) 14D nLD
T Z IVF (il < =220+ S SRV @) - Vel + T
Flzo) 77 LD
< 1 o
ST +(1+VD)e+
The last inequality comes from (17) and the assumption that F' > 0. This shows the first part of the
theorem. Now, if we let n = 2‘ and T = LI;(ZC”) we get
- Z IVF(x)]2 < (24 VD + D)e. (18)

O

Theorem 3.4 (Convergence with gradient centralization). Let assumptions (7) and (8) hold. Assume

. 2 .
the gradient is computed across a mini-batch of size B = Z;. Let x; be the sequence of iterates (2).

Then we have
T—

._.

1 F(x LD
E[[VE)]s < 20 4 (14 VD)et ML (10)
t:O nT 2
where || - Hi = (-, #(-))2 is a pseudo-norm. If we set 7 ~ U([0,T — 1]), n = 2 and T = LI;(§°),

we obtain E[||VF (x,)||4] < (24 VD + D)e. Therefore, the iteration complex1ty and computation
complexity to achieve an (e, ¢)-stationary point are O(1/€2) and O(1/e*), respectively.

85 As for the proof of Theorem 3.3, we start by introducing and proving two technical lemmas.
ss Lemma A.3. For every z € RP, the following equality holds

9(z) VD
=vD.
H L(o(x)) I,
87 Proof. The proof is direct using Lemma A.1 with z = ¢(2). O

ss Lemma A.4. For every « € RP, the following inequality holds

@) \ N~y g defy o
(= Tlay) = 2o el E vt

ss where || - Hidéf(-, @(+)) is pseudo-norm. In particular, we have

zlle < llzll2, and [lz]s < Ny(z).
90 Proof. As for the other lemmas, the first part is direct

L 0@ \ Ny 9@ AN 9@
<’r<¢<x>>> i @, = 2 2 e,

k=1i€l},

D
1 ZMJ‘[‘?(%‘)L‘ = Z (e, ¢(xn))

Mot 2 2 To(ar)lz

D
Viwn, d(@n)) =Y llzrlle-
k=1

M=

1

<.
I

I
NE

k

Il
NE

=
Il
—

91 The penultimate inequality comes from the fact that ¢ is self-adjoint and such that ¢ o ¢ = ¢:

le(@)]13 = (6(x), d(2)) = (z, ¢(p(x))) = (x, $(x)).

92 The Cauchy-Schwartz inequality applied on the above equality gives us the second part of the lemma:

lo@)113 < llzll2 é(x)]l2,

hence ||¢(z)]]2 = ||z]|s < ||z||2. Finally, we use the fact that ||z||2 < ||z||; for every z € RP to
show the last inequality. We define z € R” such that

Vk € [1,D], 2z = [|lz1, || o,

93 and we have ||z]|; = Zszl |z, |l¢ = Ng(z). Furthermore,

D D
1205 =Y llnlls = (@, ¢@n))
k=1 k=1
D d
=3 i@ = _[al;le(x));
k=1i€l} j=1
= (z,¢(x)) = [|=[l3.
94 O]

95 Now, we can prove Theorem 3.4.

Proof. Under the same assumptions as for Theorem 3.3, and with the gradient updates defined in (2),

we have
. P(Vf(z))
L(g(V ()

Ty =T —

96
97

98
99

100

101

102
103

104
105
106

107

108

109

110

111

112
113

114

115

The gradient centralization operator is linear, self-adjoint and such that ¢* = ¢. We note || - ||
(-, &(+))2 the pseudo-norm induced by ¢. Using (12) with the iterates of (2) gives us

F(ay)
(GoVA@) \ | 2L| 6oV
< Flo)=n <VF($)’ Togo Vf)(x)> Ty H ooV

(poVf)(x) (poVf)(x) n?LD
< Flo) =0 (P =160 750)~ e)

F(x) = VD |VF(z) = Vf(@)ll2 = nNs(V f(2)) +

n?’LD

2)
where the last inequality comes from Lemma A.3 and the first part of Lemma A.4. We can derive the
following upper-bound using the second and third parts of Lemma A.4:

IVE()]lg < [I[VF(x) = Vf(@)lls + [IVF(@)e
SIVE(z) = Vf(@)ll2 + No(V (). (20)

Finally, we use (19) to upper-bound Ny (V f(x)) and inject it in (20) to get
Fz) - Foy)
n

19)

LD

IVE(2)s < +(1+ VD) |VF(x) = Vf(z)ll2 + 772 21

We can conclude the proof using the same argument as for Theorem 3.3. O

Theorem 3.1 (Escaping from narrow local minima). Let x; be the sequence of iterates defined by (2)
and y; the sequence of iterates of gradient descent,

Yt+1 = Yt — nGDVF(yt)~ 3)

Assume that z; € B(x*) (resp. y: € B(x*)) i.e. the ball contained in the basin of attraction of x*,
defined in Definition 3.1. Also, assume that x, (resp. y;) is not a critical point i.e. VF'(x;) # 0 (resp.
V F(y:) # 0). If the stepsize is sufficiently large,

S 2r S 2r @)
NSING Z —F7=> N6 Z TS/ 0
vD IVE(ye)ll2
then the iterates 411 (resp. y:+1) is outside the set B(x™*).
Proof. Let us consider the more general setting
Tey1 = Tt — NGt (22)

Provided g; # 0, we can note |lz; 1 — 2*||3 is a degree two polynomial in 7:

2 2
e — 21 = loull (n—<g$—x>> +||a:t—a:*||§—< gt > e
Tl Tocle

Cauchy-Schwartz inequality ensure the term outside the square is always positive. Hence

”‘< "k ””>‘ 29

Therefore, for 7 > <ﬁ,xt x*> + g5 We have that if z; € A(x*)\{z*}, 2141 ¢ A(z*). In
t115 t

the worst case, the RHS is equal to 2r/||g¢||2. We can further simplify this bound by considering the
expression of g;:

lzer1 — 2|2 > |lgell2

=VF(x:), g2 = IVF(z1)ll2, (25a)
VF(xt)

NGD _ NGD|| 25b

SING __ ¢(VF(93t)) ”gtSINGHQ -vD (25¢)

I T T(G(VF ()

116
117

118
119

120

121

122

123
124
125
126
127
128
129
130
131
132

133

134

135
136
137
138
139

140
141
142
143
144

Learning rate Weight decay ~ Test loss (x1073) Accuracy

AdamW + SING 5x 1072 5x 1072 0.34 96.56%
Lamb [15] 1x 1072 5x 104 0.50 93.50%
NAdam [4] 1x 1073 5x 107° 28.3 0.02%
Yogi [16] 1x 1072 5x 1075 243 0.24%
AdamW [5, 7] 1x1073 5 x 1072 1.70 78.13%
AdaBelief [17] 1x 1073 5x 1074 3.73 60.26%
AdaFactor [10] 1x 1072 5x 107 1.87 74.98%
RAdam [6] 1x 1073 5x 107° 20.1 0.75%
AdaBound [8] 1x1073 5x 1075 38.2 0.03%

Table 1: List of the performance and best-performing hyper-parameters for the training of a ViT-S on
RDE using different optimizers. As suggested by the ablation study, normalization is the main reason
why SING works but doesn’t fully explain its success.

where NGD stands for normalized gradient descent. Therefore, to ensure x;41 ¢ A(x™*) it is sufficient
to have

2r

DT NI (26a)
10 =V F(@)llz
TNGD = 2T, (26b)
> 2 (26¢)
TISING = \/1—)
O

B Additional experiments

B.1 Comparison against other optimizers

We compared other optimizers on the RDE dataset for depth estimation (Section 5.2). We chose this
dataset to make the comparison because training a ViT-S on this task using Adam is unstable, and
most competing methods try to fix Adam’s instabilities. For all the optimizers, we carefully tuned the
learning rate and weight decay using the same methodology as for the classification task in ImageNet
(see Section 5.1). We set other hyper-parameters to their default value. The results are available in
Table 1. Notably, we found that most optimizers simply do not converge: the combination of AdamW
and SING sometimes outperform competitors by a factor of 100 in terms of test loss. Notably, most
of the competitors do not use decoupled weight decay [7]. We claim this is part of the reason why
AdamW, AdaBelief and AdaFactor (which include it by default) outperform their counterparts by a
factor of ten.

C Training details

C.1 Depth Estimation

The metric we used to measure accuracy consists in averaging the prediction given for each visible
pixel of each rectangle. Then a prediction counts as 1 if every rectangle within the image was
attributed a correct depth. Examples of images of the dataset can be seen in Figure 1, as well as
predictions when trained with AdamW and AdamW+SING. Each training lasts for one hour and a
half on one Tesla V100 GPU with 32GB of VRAM.

For the evaluation of SING when combined with other optimizers, we carefully tuned each method
using the same method as for ImageNet. We then reported the result corresponding to the best test loss.
All the hyper-parameters can be found in Table 2. In particular, while training AdaFactor [10] we
disabled the option to train with Adaptive Step Size (see [10]) as we found it to lower the performance
with and without SING.

145
146
147
148

149

150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165

Figure 1: Example of predictions on the RDE [3] dataset. From left to right: input to the network,
associated ground truth, prediction using AdamW + SING, prediction using AdamW. The mean
squared error for AdamW + SING is 3 x 10~% and 5 x 1072 for AdamW.

w/ softplus [12] Learning rate Weight decay = Accuracy

SGD N/A 5x 107! 5x 107° 0.02%
SGD + SING N/A 5x 107! 5x 1073 94.25%
AdamW X 1x 1073 5x 1072 78.13%
AdamW + SING ve 5x 1072 5x 1072 96.56%
AdamW + SING X 5x 1073 5x 1072 89.38%
AdaBelief X 1x10°3 5x 1074 60.26%
AdaBelief + SING ve 5x 1072 5x 1072 96.70%
AdaBelief + SING X 1x 1073 5x 1071 94.31%
AdaFactor X 1x 1072 5x 1074 74.98%
AdaFactor + SING ve 1x 1072 5x 1072 73.06%
AdaFactor + SING X 1x 1072 5x 1074 76.26%

Table 2: List of the best hyper-parameters for the training of a ViT-S on RDE using different
combinations of optimizers and SING. N/A stands for Not Applicable.

To use a ViT for an image-to-image task, we simply got rid of the classification token and instead
reverted the patchification of the input: each output token is used to output a patch of the output
image. This can create discontinuities on the image at the patch borders, but for the piece-wise
constant images of the RDE dataset we didn’t find this to be an issue.

C.2 Classification

As the FFCV library we used had already tuned SGD, we didn’t modify the hyper-parameters. Indeed,
when we tried other configurations the performance dropped. For AdamW + GC and AdaBelief, we
kept the same hyper-parameters than those found for AdamW. We tested other configurations but
found them to be sub-optimal. The best hyper-parameters found for each network are reported in
Table 3. Notably, we found as a rule of thumb that the best learning rate of SING was ten times the
best for AdamW, and the weight decay to be ten times lower. For AdamW and SING, no weight
decay was applied to the biases of the network and to the normalization layers.

For CIFAR100, the training was very cumbersome due to the large tendency to overfitting. We
used label smoothing [11] with a value of 0.1 and small batch sizes of 128 to increase the variance.
The best learning rate found was also 10~! but the best weight decay was 5 x 102, probably
due to the large chance of overfitting. For AdamW, the best learning rate was 10~3 and the best
weight decay was 5 x 1071, We also froze the learning of the batch normalization’s parameters.
We carefully verified that these choices benefited all optimizers. The data were augmented using
random crops, random horizontal flips and random rotations of maximum 15 degrees. We tuned the
hyper-parameters the same way we did for ImageNet. Notably, the optimal weight decay we found
for AdamW was 5 x 10! and 5 x 102 for AdamW+SING.

166

167
168
169
170
171
172
173
174
175
176
177
178
179

180
181
182
183

Learning rate Weight decay

ResNetl8 SGD 5x 1071 5x 1075
ResNetl8 AdamW 1072 5x 1072
ResNetl8 AdamW + SING 10—t 5x 1073
ResNet34 SGD 5x 1071 5x 1075
ResNet34 AdamW 1072 5x 1072
ResNet34 AdamW + SING 10—t 5x 1073

Table 3: For each configuration, the list of the best hyper-parameters when training on ImageNet.

SGD W + SING AdamW

ResNetl8 75.63% 78.24% (£ 0.21%) 77.95% (£ 0.15%)

Table 4: Top-1 accuracy on CIFAR100. The results are averaged across five runs and the values are
reported in the format mean =+ std.

C.3 Natural language processing

For the training on IWSLT 14, we used the code of [14] which is a fork of the FAIRSEQ [9] library.
As stated, we took the code as is and launched it but found the BLUE score to be one point lower
than the reported one (for AdamW and AdaHessian [14]). We therefore re-tuned AdamW but found
the hyper-parameters reported in [13] to be the best. During training, we found the LayerNorm [1] to
be the cause of an increasing gradient norm throughout training. We therefore froze the layers and
recovered a normal dynamic. Notably, we found our optimizer to generalize better than AdamW,
see Figure 2 for more details. For SING, the best learning rate found was 102 and the best weight
decay was 5 x 10~2. The learning rate is decreased using a cosine decay. For AdamW and for the
rest of the hyper-parameters, we copied the setting of [13]: a dropout of 0.3, a cross-entropy loss with
Label Smoothing [11] of 0.1, the gradient is accumulated for four iterations, the maximum number of
tokens is 4096, the beam size is five and the length penalization is one. The networks are trained for
200 epochs. Notably, the learning rate of AdamW is decayed using an invert square-root scheduler.
We tested using a cosine decay but it lowered the final performance.

For the fine-tuning tasks, we used the code provided by the HuggingFace library as is and launched
the trainings, only to find the performance to be lower than suggested. We suspect the numerous
changes in the library since the scripts were made to be the cause of it. We trained SING by freezing
the LayerNorm layers and tuned the hyper-parameters. For SQuAD, we found the performance to be

—A— W+SING
—&— AdamW

~ o] ©o

Test loss

o

w

4 i S L o Lag s ——a |
1 50 100 150 200
Epochs

Figure 2: Test losses on the IWSLT14 dataset. We see that the combination of AdamW + SING
outperforms AdamW at the end of the training. For AdamW, an inverse square-root scheduling is
used as we found it performed best. For AdamW + SING, we used a cosine decay. Overall, it seems
SING generalizes better than its counterpart.

10

184
185
186
187
188

189

190
191
192
193
194
195

196

197

198
199
200
201

202

203
204
205

207

208

210

211
212

reached in three epochs instead of just two for AdamW. This suggests SING overfits less rapidly than
AdamW. Since the trainings were very fast, we could afford to tune more our hyper-parameters: the
best learning rate found was 8 x 10~* and the weight decay 3 x 10~3. For AdamW, it was 3 x 107>
and 0. For both optimizers, the best batch size was 12. For SWAG, the best batch size is 32, the
number of epochs is four, the best learning rate is 2 x 10~* and the best weight decay is 3 x 1073,

C.4 On the learning rate scheduler

Theorem 3.1 suggests that the learning rate must be as high as possible to escape narrow local minima.
Therefore, it would make sense to consider a learning rate scheduling that keeps the learning rate
constant to a high value for as long as possible. Then, once all the narrow local minima have been
escaped and a large one has been found, the learning rate can be decreased to converge. While this
strategy works, we found in practice that using a cosine decay to be working slightly better. We argue
this strategy is to be preferred as it doesn’t involve any tuning.

D Other properties

D.1 Invariant to gradient clipping

The update given by (2) cancels most clipping strategies. Indeed, most clipping strategies amount to
multiplying the gradient by a certain factor (for instance o/ ||V f(x)||2 or a||z||2/||V f(x)]|2)- Since
¢ and I are both homogeneous operators, the normalization cancels any layer-wise multiplication of
the gradient by a scalar.

E Broader impact

The goal of our technique is to improve the stability of the training of neural networks. This may
open the door to further improvements in neural networks as the architecture of tomorrow might be
difficult to train with the today’s optimizers. Our technique also allows for faster trainings, which
reduces the amount of energy needed to train one network. Furthermore, our method allows the usage
of light hyper-parameter-search strategies which further reduces the need in resources.

There are risks associated with easier and better training of neural networks, as these aspects will
also benefit applications that can be detrimental to society. In addition, better learning on a biased
dataset might result in networks with stronger biases (e.g. [2]). While such biases are considered to
be caused by the dataset, they could be exacerbated by the model capacity and the effectiveness of
the training algorithm.

11

2

3

214
215

216
217
218

219
220
221

222

223
224

225
226
227

228
229

244

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[2] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in
commercial gender classification. In Conference on fairness, accountability and transparency,
pages 77-91. PMLR, 2018.

[3] Adrien Courtois, Jean-Michel Morel, and Pablo Arias. Investigating neural architectures by
synthetic dataset design. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4890-4899, 2022.

[4] Timothy Dozat. Incorporating nesterov momentum into adam. ICLR 2016 Workshop, 2016.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, Int. Conf. on Learning Representations, 2015.

[6] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,
and Jiawei Han. On the variance of the adaptive learning rate and beyond. arXiv preprint
arXiv:1908.03265, 2019.

[7] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[8] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

[9] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038, 2019.

[10] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning, pages 4596-4604. PMLR, 2018.

[11] Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818-2826, 2016.

[12] Qiangian Tong, Guannan Liang, and Jinbo Bi. Calibrating the adaptive learning rate to improve
convergence of adam. Neurocomputing, 481:333-356, 2022.

[13] Haoran Xu, Benjamin Van Durme, and Kenton Murray. Bert, mbert, or bibert? a study on
contextualized embeddings for neural machine translation. arXiv preprint arXiv:2109.04588,
2021.

[14] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the
AAAI conference on artificial intelligence, volume 35, pages 10665-10673, 2021.

[15] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for
deep learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

[16] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive
methods for nonconvex optimization. Advances in neural information processing systems, 31,
2018.

[17] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon
Papademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in
observed gradients. Advances in neural information processing systems, 33:18795-18806,
2020.

12

