
Supplementary Material for
Diffused Task-Agnostic Milestone Planner

Anonymous Author(s)
Affiliation
Address
email

A Proof of Proposition 11

Recap We consider a goal-conditioned Markov decision process defined by a state space S, an2

action space A, a transition model p(s′|s, a), and a goal space G. We further consider an encoder3

fω : S → G which maps a goal state sgoal ∈ S into a goal vector g ∈ G. Goal-conditioned imitation4

learning is defined by training a goal-conditioned actor πψ : S × G → A to predict the most likely5

action that a behavior policy µ(a|s) will take for a given goal g ∈ G:6

maximizeψ logµ(a|s, g), for s ∈ S and a = πψ(s, g). (1)

Using Bayes’ rule, µ(a|s, g) = pµ(g|s,a)µ(a|s)
pµ(g|s) , where pµ(g|s, a) and pµ(g|s) are the finite horizon7

occupancy measures, the objective in (1) can be reformulated as:8

J(s, g;ψ) := − log pµ(g|s, a)− logµ(a|s), for a = πψ(s, g). (2)
In order to estimate the log-likelihood log pµ(g|s, a), we train a discriminative critic function Dϕ :9

S × A × G → [0, 1] to distinguish between states that are more likely to come after the current10

state-action pair, by minimizing the following loss function:11

Jcritic(s, a, s
+, s−;ϕ, ω) := − logDϕ(s, a, fω(s

+))− log (1−Dϕ(s, a, fω(s
−))),

where, s ∼ pµ(s), a ∼ µ(a|s), s+ ∼ pµ(s
+|s, a), s− ∼ pµ(s

−).‘
(3)

We now aim to prove the following proposition:12

Proposition A.1. The optimal critic function D∗
ϕ that minimizes the cross-entropy loss (3) satisfies13

the following equation for a given goal goal g = fω(sgoal).14

D∗
ϕ(s, a, g) =

pµ(g|s, a)
pµ(g|s, a) + pµ(g)

. (4)

Proof. We can rewrite the loss function (3) as,15

J(s, a;ϕ, ω) = −
∑
g̃∈G̃ω

[pµ(g̃|s, a) logDϕ(s, a, g̃) + pµ(g̃) log (1−Dϕ(s, a, g̃))] , (5)

where, G̃ω = {fω(s)|s ∈ S}. Then, by taking derivative of (5) with respect to Dϕ(s, a, g),16

∂J(s, a;ϕ, ω)

∂Dω(s, a, g)
= − pµ(g|s, a)

Dω(s, a, g)
+

pµ(g)

1−Dω(s, a, g)
. (6)

At Dϕ(s, a, g) = D∗
ϕ(s, a, g), the derivative in (6) becomes 0. Therefore,17

D∗
ϕ(s, a, g) =

pµ(g|s, a)
pµ(g|s, a) + pµ(g)

.

18

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



(a) Antmaze-medium (b) Antmaze-large

Figure 1: Each position marked by an ant illustrates a predefined target position.

B Experiment setting19

Multi-goal Antmaze experiments To evaluate DTAMP and baseline methods on multi-goal setting,20

we predefined three different target positions as shown in Figure 1. During the evaluation, a goal21

was randomly sampled from the three target positions for each rollout. The models were trained us-22

ing the same data (antmaze-medium-play, antmaze-medium-diverse, antmaze-large-play,23

antmaze-large-diverse) that was used for single-goal Antmaze experiments.24

CALVIN experiments We used the same data split and tasks used in Rosete-Beas et al. [13] to25

train and evaluate the model in the CALVIN experiment. We set time horizon of a rollout to 30026

timesteps when a goal image implies one or two tasks, and 450 timesteps when a goal image implies27

three tasks.28

C Source of baseline performance29

D4RL experiments The performances of CQL [11], IQL [10], and ContRL [3] are taken from their30

corresponding papers. The performance of DT [2] in Antmaze environments is taken from Janner31

et al. [7]. The performance of DD [1] in Kitchen environment is taken from its corresponding paper.32

To evaluate DD on Antmaze environments, DD is trained with three different random seeds using the33

author’s code1, and each trained model is evaluated with 30 rollouts (90 rollouts in total) for each34

task. While the performance of TT+IQL is presented in Janner et al. [7], it is inaccurate as only 1535

rollouts were used for evaluation. For more accurate evaluation, TT and IQL are trained with three36

different random seeds using the code2 provided by the author, and each model is evaluated with 3037

rollouts (90 rollouts in total) for each task.38

Multi-goal Antmaze experiments IQL+HER is implemented based on the author’s code3 by39

concatenating two-dimensional goal position on the original state vector. We train IQL+HER with40

three different random seeds and evaluate each model with 150 rollouts. As ContRL already learns a41

goal-conditioned policy, ContRL is trained with three different random seeds using the author’s code442

without modification. As also TT does not require a goal-specific training, we evaluate TT+IQL using43

the model trained for single-goal experiments while using the value functions trained by IQL+HER.44

CALVIN experiments The performances of CQL+HER, LMP [12], RIL [6], and TACO-RL [13]45

are taken from Rosete-Beas et al. [13] for the cases that one or two tasks are implied by a goal image.46

For the case that three tasks are implied by a goal image, we trained each model using the code547

provided by Rosete-Beas et al. [13], and evaluated each model with 1,000 rollouts.48

1https://github.com/anuragajay/decision-diffuser/tree/main/code
2The author thankfully provided a private github repository
3https://github.com/ikostrikov/implicit_q_learning
4https://github.com/google-research/google-research/tree/master/contrastive_rl
5https://github.com/ErickRosete/tacorl

2



D Implementation details49

Encoder The encoder consists of two neural networks one for each actor and critic. Each neural50

network has two hidden fully-connected layers with a size of 512, and an output layer. In addition,51

we normalized each output of the two neural networks, to provide consistent signal-to-noise ratio to52

the diffusion model during training process.53

Actor and critic Each actor and critic has two hidden fully-connected layers with a size of 512, and54

an output layer. We train five independent critic networks and use the smallest of the values predicted55

by critics to train actors, as done in Eysenbach et al. [3].56

Diffusion model The diffusion model for planning milestones is implemented based on the code57

provided by Ajay et al. [1], which consists of a temporal U-Net architecture with six residual 1-D58

convolutional blocks. To let the diffusion model predict milestones g1:K based on an initial state s059

and goal state sgoal, we fixed g0 = fω(s0) and gK+1 = fω(sgoal) during the denoising process, as60

done in Janner et al. [8].61

Image preprocessing Our image preprocessing method used for CALVIN experiment consists of62

three steps: 1) Resize RGB images size of 200× 200× 3 into 128× 128× 3. 2) Perform stochastic63

image shifts of 0-6 pixels. 3) Perform color jitter transform augmentation with a contrast of 0.1, a64

brightness of 0.1 and hue of 0.02. 4) Normalize value of each pixel to let it falls between −1 and 1.65

Visual perception For CALVIN experiments, we utilize a visual perception network consists of66

three convolutional layers and a spatial softmax layer. It is the same as the perception network used67

in Lynch et al. [12] and Rosete-Beas et al. [13].68

Skill encoder and decoder The skill encoder and decoder are trained using the code provided by69

Rosete-Beas et al. [13], and have the same architecture as LMP and TACO-RL.70

E Training details71

D4RL experiments We train the encoder, goal-conditioned actor, critic and diffusion model72

simultaneously using a unified loss function: Junified := Jactor + Jcritic + αJdiffusion, where the73

coefficient α is fixed to 0.001 for all the experiments. We train the models for 2.5M training steps for74

Antmaze environments and 1.0M steps for Kitchen environments. We utilize NVIDIA Geforce RTX75

3060 Ti graphics card for training our models, taking approximately 14 hours per 1.0M training steps.76

We use Adam optimizer [9], with a learning rate of 0.0001.77

CALVIN experiments We train our model for 1.0M training steps using the same graphics card78

used for D4RL experiments, taking approximately 40 hours per 1.0M training steps. We use the same79

optimizer and learning rate used in D4RL experiments.80

F Hyperparameter setting81

In this section, we describe hyperparameter details.82

• We set dimension of goal space G to 16 for Antmaze environments, and 32 for Kitchen and83

CALVIN environments.84

• We use the number of milestones K = 30 with maximum interval △max = 32 for Antmaze85

environments, and K = 14 with maximum interval △max = 16 for Kitchen and CALVIN86

environments.87

• We set λ in Equation (9) in the main paper to be adaptive to scale of estimated log-likelihood88

log p(g|s, a), by setting it as λ = λ̃
1

|B|
∑

(s,a,g)∈B | log p(g|s,a)| as done in Fujimoto and Gu [4],89

where B denotes a mini-batch. We use λ̃ of 2.5 for Antmaze environments, and 0.05 for90

Kitchen and CALVIN environments.91

• We use diffusion timestep N of 300, diffusion guidance coefficient β of 0.5, and target92

temporal distance △target of 0.5△max for the all experiments.93

• We use threshold δ of 0.1 to determine whether the agent has reached the targeted milestone.94

3



Figure 2: The figure shows t-SNE [15] embedding of the learned latent space. Each data point
represents a state in kitchen-mixed-v0 data. The black x’s indicate milestones planned by DTAMP,
and the black triangles indicate three states sampled from an arbitrary trajectory. The colors represent
state-values estimated using IQL.

G Visualization of the learned latent goal space95

In this section, we discuss about the ability of DTAMP to learn a latent goal space that captures96

the dynamics of an environment. We train the encoder along with the actor and critic, through97

goal-conditioned imitation learning. By doing so, we make the encoder capture useful information98

from states, to let the actor and critic distinguish the states and actions that can lead an agent to the99

goal. There are also similar methods that have been studied through prior work, such as learning100

forward or inverse dynamics model in a latent space [14, 5] or using contrastive learning based on101

state occupancy measures [3]. Figure 2 visualizes an example of latent goal space learned by DTAMP102

using kitchen-mixed-v0 data. The figure shows that the trained encoder can capture the dynamics103

of environment, and also let the milestone planner successfully predict milestones in the learned104

latent space.105

H Robustness against environment stochasticity106

In order to demonstrate the robustness against environment stocahsticity, we further evaluate DTAMP107

on maze2d-umaze-v1 environment of the D4RL benchmark, while adding stochasticity to the108

transition model. We also compare DTAMP against Diffuser [8], which predicts future states and109

actions using a diffusion model, and Decision Diffuser (DD) [1], which utilizes an inverse dynamics110

model to predict actions from the states planned by a diffusion model. In this experiment we let111

Diffuser and DD predict the whole trajectory only once at the beginning of each rollout as done in112

DTAMP.113

Setting We create three different levels of stochasticity by choice of p ∈ {0, 0.3, 0.5}. The114

environment either executes a random action a ∼ Unif(A) with probability p or executes the action115

given by the agent with probability (1 − p). Three sets of offline data were collected separately116

4



p Diffuser DD DTAMP Ref. max score

0.0 61.9 92.6 97.6 80.5
0.3 29.6 97.0 99.0 72.3
0.5 18.5 70.5 99.4 64.3

Table 1: Normalized average score with different levels of stochasticity.

according to the choice of p, and each set of data consists of one million transitions collected by117

a waypoint controller. We also note that the control frequency is reduced threefold by repeating118

the same action three times in this experiment. By doing so, we reduce the time horizon of the119

environment (300 timesteps to 100 timesteps) to let Diffuser and DD predict the whole trajectory120

only once at the beginning of each rollout.121

Result The normalized score of each model is shown in Table 1. The column named Ref. max122

score (reference max score) shows the average score of the waypoint controller, which represents the123

performance of an optimal agent. We note that even if an agent predicts optimal actions, stochasticity124

of environment causes inherent performance degradation. In order to neglect this effect and only125

compare the robustness of each model, the scores shown in Table 1 are normalized respect to the126

reference max scores (i.e., normalized score = 100× average score
ref. max score ).127

The result shows that DTAMP is robust against the environment stochasticity and does not show128

performance degradation in the terms of normalized score. On the other hand, Diffuser shows greater129

performance degradation as stochasticity increased. DD shows no performance degradation when the130

stochasticity is small (p = 0.3) while showing performance degradation when the stochasiticity is131

large (p = 0.5). The result indicates that our approach using a goal-conditioned actor makes DTAMP132

robust against environment stochasticity and allows to plan milestones only once for each rollout,133

while the other diffusion based planners do not.134

I Ablation study for CALVIN experiment135

We make two modifications for applying DTAMP on image-based manipulation tasks: 1) adding an136

observation decoder to reconstruct original images from encoded goal vectors 2) using skill-based137

policy as done in Lynch et al. [12] and Rosete-Beas et al. [13]. To investigate the effect of the138

modifications, we present ablation studies in this section. We evaluate the average success rates139

of DTAMP−Decoder which does not use the decoder and DTAMP−LMP which does not use the140

skill-based policy. In addition, we also evaluate a variation of DTAMP by allowing the agent to141

re-plan the remaining milestones if the agent has not reached a targeted milestone within a certain142

time limit6 (DTAMP+Replanning).143

The results shown in Table 2 indicate that not using decoder (DTAMP-Decoder) causes marginal144

degradation of the performance, while still outperforming the second-best method (TACO-RL [13]).145

In the meantime, not using skill-based policy (DTAMP-LMP) causes larger degradation of the146

performance. Furthermore, allowing re-planning results increasing the average success rate by a147

factor of 1.4.148

To take a closer look at the effect of the modifications, we further compare the success rates of149

the variants of DTAMP for each task (Figure 3). DTAMP−Decoder shows similar success rates150

to DTAMP for most tasks, while showing a great performance degradation in turn on/off led151

tasks. It is because that turn on/off led tasks are designated by the color change of the small152

LED, which is hard to be captured by the encoder. This result indicates that using decoder to153

reconstruct the original image helps the encoder to capture the visual features more accurately. In154

addition, DTAMP−LMP shows marginal degradation of the performance across most tasks. While155

DTAMP−LMP also shows large performance degradation in turn on/off led tasks, is is distinct156

from the case of DTAMP−Decoder. The agents trained by DTAMP−LMP tend to try to turn the157

LED on or off by pressing the button, while often failing to move the robot arm to the correct position158

of the button. From this investigation, we can conclude that the use of decoder helps encoder capture159

visual features, and the use of skill-based policy makes control more accurate.160

6We use time limit of 32 timesteps

5



Number of tasks TACO-RL DTAMP DTAMP DTAMP DTAMP
− Decoder − LMP + Replanning

1 67.9 82.4 80.2 55.9 87.4
2 27.0 52.4 49.4 24.3 62.6
3 0.4 29.7 23.0 15.2 38.1

Average 31.8 54.8 50.9 31.8 62.7

Table 2: The results of ablation study on the CALVIN benchmark. The values represent success rates
in percentage.

Figure 3: The figure shows the success rate of variants of DTAMP for each task.

References161

[1] Anurag Ajay, Abhi Gupta Yilun Du, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit162

Agrawal. Is conditional generative modeling all you need for decision-making. arXiv preprint163

arXiv:2211.15657, Dec 2022.164

[2] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter165

Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via166

sequence modeling. In Advances in Neural Information Processing Systems, Virtual conference,167

Dec 2021.168

[3] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Ruslan Salakhutdinov. Contrastive169

learning as goal-conditioned reinforcement learning. In Advances in Neural Information170

Processing Systems, New Orleans, US, Dec 2022.171

[4] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.172

In Advances in Neural Information Processing Systems, Virtual conference, Dec 2021.173

[5] Zhaohan Guo, Shantanu Thakoor, Miruna Pîslar, Bernardo Avila Pires, Florent Altché, Corentin174

Tallec, Alaa Saade, Daniele Calandriello, Jean-Bastien Grill, Yunhao Tang, et al. Byol-explore:175

Exploration by bootstrapped prediction. In Advances in neural information processing systems,176

New Orleans, US, Dec 2022.177

[6] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy178

learning: Solving long-horizon tasks via imitation and reinforcement learning. In Proceedings179

of the Conference on Robot Learning, Osaka, JP, Oct 2019.180

[7] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big181

sequence modeling problem. In Advances in Neural Information Processing Systems, Virtual182

conference, Dec 2021.183

6



[8] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion184

for flexible behavior synthesis. In Proceedings of the International Conference on Machine185

Learning, Baltimore, US, Jul 2022.186

[9] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In187

Proceedings of International Conference on Learning Representations, San Diego, US, May188

2015.189

[10] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit190

q-learning. In Proceedings of the International Conference on Learning Representations, Virtual191

conference, Apr 2022.192

[11] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for193

offline reinforcement learning. In Advances in Neural Information Processing Systems, Virtual194

conference, Dec 2020.195

[12] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and196

Pierre Sermanet. Learning latent plans from play. In Proceedings of the Conference on Robot197

Learning, Osaka, JP, Oct 2019.198

[13] Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard.199

Latent plans for task agnostic offline reinforcement learning. In Proceedings of the Conference200

on Robot Learning, Auckland, NZ, Dec 2022.201

[14] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal plan-202

ning networks. In Proceedings of International Conference on Machine Learning, Stockholm,203

SE, Jul 2018.204

[15] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine205

learning research, 9:2579–2605, Nov 2008.206

7


	Proof of Proposition 1
	Experiment setting
	Source of baseline performance
	Implementation details
	Training details
	Hyperparameter setting
	Visualization of the learned latent goal space
	Robustness against environment stochasticity
	Ablation study for CALVIN experiment

