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A APPENDIX

A.1 IMPLEMENTATION DETAILS

All experiments are implemented using the Pytorch framework Paszke et al. (2019) and trained on 4
NVIDIA GTX 3090Ti GPUs. Without additional explanation, the backbone of the feature extractor
is ResNet-50 He et al. (2016) pretrained on ImageNet Deng et al. (2009), which is followed by
previous works Luo et al. (2023); Dong et al. (2023); Pei et al. (2022). The parameters of the
training phase are as follows. The batch size is configured as 4, and an Adam optimizer Kingma &
Ba (2015) is chosen for training with an initial learning rate of 0.0001 for 100,000 iterations. The
expert number of Mixture-of-Queries is 2 in each decoder layer, the query number of each expert is
configured as 10, and the number of decoder layers is set as 6 by default.

A.2 THE DETAILS OF PIXEL DECODER

To acquire fine-grained features for more accurate segmentation, we use multi-scale features
{Fi}, i ∈ {2, 3, 4, 5} from different stage of the backbone. We feed the feature maps
(F2,F3,F4,F5) into the Pixel Decoder for fused features respectively. Specifically, our Pixel De-
coder is based on the classical FPN Lin et al. (2017) and its details are illustrated in Figure 8.
Thus, we can gradually upsample the features in a top-down pathway from lowest-resolution fea-
tures, meanwhile aggregate features with the same resolution by lateral connections, and generate
the high-resolution pixel-level features at 1/4 scale of input image, which is used for final mask
prediction.

Figure 8: Details of Pixel Decoder. Our Pixel Decoder is based on the classical FPN Lin et al.
(2017).

Figure 9: Visualization Results of CRM and CEM
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A.3 MORE VISUALIZATIONS

Visualization of CRM and CEM. To further explore the effectiveness of CRM and CEM in
enhancing the influence of contours and eliminating the interference of colors, we present some
visualization results for each module, as shown in Figure 9. With the help of both modules, our
network can remove the confusing colors and localize the contours and textures (see 4th and 5th
columns), which can facilitate final accurate segmentations.

More qualitative results of various methods. As presented in Figure 10, we provide more vi-
sualization results on predicted masks of various methods, including OSFormer Pei et al. (2022),
DCNet Luo et al. (2023) and Ours. In terms of qualitative visualizations, our method performs the
best among all methods.

Figure 10: More Visualization Results on Mask Prediction of Various Methods.

Visualization of failure cases and no camouflaged instances. We present some extra visualiza-
tions about the failure cases, as shown in Figure 11 and no camouflaged instances 12. When the
scene is very complex, our method fails to camouflaged instances. Because the camouflaged in-
stances hide themselves heavily, our model and even humans can not distinguish them. And in the
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Figure 11: Visualization of failure cases.

Figure 12: Visualization results on no camouflaged instances.

test set, there are some scenes can be recognized at a glance, not enough to be called camouflaged.
And our model performs well on this no camouflaged instances.
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Figure 13: Visualization of various experts.

Name OSFormer DCNet UQFormer CamoFourier MoQT

Query-based 
strategy

DETR-like queries DETR-like 
queries

Two sets of DETR-
like queries

Mixture-of-Queries 
(cooperation of multiple 
queries )

Frequency 
components

Amplitude Amplitude Amplitude, phase

Insights • First one-stage 
CIS work

• Corase-to-fine 
fusing

• Difference 
attention

• Reference 
attention

• Region and edge 
unified learning

• Joint learning

• Amplitude 
swapping

• Data 
augmentation

• Color removal and 
contour enhancement

• Revealing the 
relationship of  
Frequency  and 
camouflage

• First attempt of MoE 
in query-based 
transformer

Figure 14: Comparison of our MoQT and other CIS methods

Visualization of various experts. we provide visualizations of various experts in Figure 13. It
can be found that with MoQ, the predicted masks are more accurate. And various experts focus on
various regions (the 1st expert focusing on green circle and the 2nd expert focusing on red circle)
can be combined for accurate prediction masks.

A.4 MORE DISCUSSIONS ON CIS METHODS

We further discuss the difference between our method and other CIS methods, the comparison details
are presented in Figure 14. Difference from existing 4 methods (OSFormer, DCNet, UQFormer
and CamoFourier), our proposed MoQT adopts color removal and contour enhancement in FEFE
for mining camouflaged clues. Besides, the MoQ decoder in our method is used to imitate the
human habit of segmenting camouflaged instances, where in each layer we initialize new experts
for cooperation and queries refining with MoE mechanism. In summary, our method reveals the
relationship of Frequency and camouflage, and it is the first attempt of using MoE mechanism in
query-based transformer for segmentation.
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