702 A APPENDIX

A.1 IMPLEMENTATION DETAILS

All experiments are implemented using the Pytorch framework Paszke et al. (2019) and trained on 4 NVIDIA GTX 3090Ti GPUs. Without additional explanation, the backbone of the feature extractor is ResNet-50 He et al. (2016) pretrained on ImageNet Deng et al. (2009), which is followed by previous works Luo et al. (2023); Dong et al. (2023); Pei et al. (2022). The parameters of the training phase are as follows. The batch size is configured as 4, and an Adam optimizer Kingma & Ba (2015) is chosen for training with an initial learning rate of 0.0001 for 100,000 iterations. The expert number of Mixture-of-Queries is 2 in each decoder layer, the query number of each expert is configured as 10, and the number of decoder layers is set as 6 by default.

A.2 THE DETAILS OF PIXEL DECODER

To acquire fine-grained features for more accurate segmentation, we use multi-scale features $\{\mathbf{F}^i\}, i \in \{2, 3, 4, 5\}$ from different stage of the backbone. We feed the feature maps $(\mathbf{F}^2, \mathbf{F}^3, \mathbf{F}^4, \mathbf{F}^5)$ into the Pixel Decoder for fused features respectively. Specifically, our Pixel De-coder is based on the classical FPN Lin et al. (2017) and its details are illustrated in Figure 8. Thus, we can gradually upsample the features in a top-down pathway from lowest-resolution features, meanwhile aggregate features with the same resolution by lateral connections, and generate the high-resolution pixel-level features at 1/4 scale of input image, which is used for final mask prediction.

Figure 9: Visualization Results of CRM and CEM

756 A.3 MORE VISUALIZATIONS

Visualization of CRM and CEM. To further explore the effectiveness of CRM and CEM in enhancing the influence of contours and eliminating the interference of colors, we present some visualization results for each module, as shown in Figure 9. With the help of both modules, our network can remove the confusing colors and localize the contours and textures (see 4th and 5th columns), which can facilitate final accurate segmentations.

More qualitative results of various methods. As presented in Figure 10, we provide more visualization results on predicted masks of various methods, including OSFormer Pei et al. (2022), DCNet Luo et al. (2023) and Ours. In terms of qualitative visualizations, our method performs the best among all methods.

768					
769			and a series	La Provent	
770			· Standard		A ALTER
771	Test Images				
772					
773					
774					
775					
776				A Real Prove	No. All and
777					
778	СТ		a material		SA SWEEDA
779	GI		50		ANT
780					
781					
782					A Mari
783	OSFormer				
784					
785		Contra			State State State
786		CALC DAY			1.54.4/
787		ALL MARKED AND		VECKI - X/	1. 1. 1. 1. 1.
788					
789			and the state		
790					AND SHE
791					S C M N S
792	DCNet	Carton			ALL NOT
793		and the state of the	Sec. 1		A MARK
794		AND ALLAND			1.1.8.5.1.4
795					
796					
797					
798	Ours				
799					
800					
801					
802		A CARLON AND AND AND AND AND AND AND AND AND AN	CALL CALL CALL		
803					

Figure 10: More Visualization Results on Mask Prediction of Various Methods.

804 805 806

Visualization of failure cases and no camouflaged instances. We present some extra visualizations about the failure cases, as shown in Figure 11 and no camouflaged instances 12. When the scene is very complex, our method fails to camouflaged instances. Because the camouflaged instances hide themselves heavily, our model and even humans can not distinguish them. And in the

test set, there are some scenes can be recognized at a glance, not enough to be called camouflaged. And our model performs well on this no camouflaged instances.

863

85		1	1		queries)
Frequency components	*	Amplitude	*	Amplitude	Amplitude, phase
Insights	 First one-stage CIS work Corase-to-fine fusing 	 Difference attention Reference attention 	 Region and edge unified learning Joint learning 	 Amplitude swapping Data augmentation 	 Color removal and contour enhancement Revealing the relationship of Frequency and camouflage First attempt of MoE in query-based transformer

Figure 14: Comparison of our MoQT and other CIS methods

Visualization of various experts. we provide visualizations of various experts in Figure 13. It can be found that with MoQ, the predicted masks are more accurate. And various experts focus on various regions (the 1st expert focusing on green circle and the 2nd expert focusing on red circle) can be combined for accurate prediction masks.

909 A.4 More discussions on CIS methods

We further discuss the difference between our method and other CIS methods, the comparison details are presented in Figure 14. Difference from existing 4 methods (OSFormer, DCNet, UQFormer and CamoFourier), our proposed MoQT adopts color removal and contour enhancement in FEFE for mining camouflaged clues. Besides, the MoQ decoder in our method is used to imitate the human habit of segmenting camouflaged instances, where in each layer we initialize new experts for cooperation and queries refining with MoE mechanism. In summary, our method reveals the relationship of Frequency and camouflage, and it is the first attempt of using MoE mechanism in query-based transformer for segmentation.