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FKA-Owl: Advancing Multimodal Fake News Detection
through Knowledge-Augmented LVLMs

Anonymous Author(s)

ABSTRACT
The massive generation of multimodal fake news involving both
text and images exhibits substantial distribution discrepancies,
prompting the need for generalized detectors. However, the in-
sulated nature of training restricts the capability of classical de-
tectors to obtain open-world facts. While Large Vision-Language
Models (LVLMs) have encoded rich world knowledge, they are not
inherently tailored for combating fake news and struggle to com-
prehend local forgery details. In this paper, we propose FKA-Owl,
a novel framework that leverages forgery-specific knowledge to
augment LVLMs, enabling them to reason about manipulations
effectively. The augmented forgery-specific knowledge includes
semantic correlation between text and images, and artifact trace in
image manipulation. To inject these two kinds of knowledge into
the LVLM, we design two specialized modules to establish their
representations, respectively. The encoded knowledge embeddings
are then incorporated into LVLMs. Extensive experiments on the
public benchmark demonstrate that FKA-Owl achieves superior
cross-domain performance compared to previous methods. Code
will be made publicly available.

CCS CONCEPTS
• Social and professional topics; • Security and privacy →
Human and societal aspects of security and privacy; Social
aspects of security and privacy; Usability in security and privacy;

KEYWORDS
Multimodal Fake News Detection, Large Vision-Language Model,
Knowledge Augmentation

1 INTRODUCTION
The wide spread of fake news has become an important social issue,
posing threats to politics [11], finance [10], and public health [36].
Misusing advanced generative models to create misinformation
further exacerbates these issues, manifested in the rise of both text
fake news [50] and also visual deepfakes [60]. Furthermore, mul-
timodal forgery media through convergence disseminates more
expansive information with greater impact to mislead readers. De-
tecting such fake news poses a unique challenge due to the existence
of manipulations in both image and text modalities.
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Figure 1: Illustration of the effect of forgery-knowledge aug-
mentation. (a) An example of a manipulated image-text pair
in which Trump’s face is swapped with another person and
the positive words “accept an award” is replaced with the
negative “lost an argument”. (b) Existing LVLMs struggle to
correctly judge the news veracity. (c) Incorporating forgery-
specific knowledge (i.e., semantic correlation and artifact
trace) into LVLM helps the model make accurate predictions.

Faced with this challenge, current multimodal fake news detec-
tion (MFND) methods [42, 47, 57] primarily focus on incorporating
cross-modal features. While some progress has been made, the ac-
quisition of broad world information remains challenging due to
the confinement of training to given domains (i.e., closed systems).
However, open-world fake news exhibits substantial distribution
discrepancies [63], termed domain shift [38, 64], which is mani-
fested in abundant forgery methods and diverse real-world context.
The existence of domain shift increases the difficulty of understand-
ing and characterizing open-world fake news in MFND tasks.

To address this problem, we propose to leverage Large Vision-
Language Models (LVLMs) [31, 62] which possess rich world knowl-
edge for fake news detectors. This knowledge encompasses a wide
array of world facts [4] about public celebrities, social events etc,
which enables a comprehensive understanding of agnostic fake
news. However, despite their proficiency in recognizing common
instances, the performance of applying off-the-shelf LVLMs to the
MFND task is not always satisfying. On the one hand, since LVLMs
are not inherently tailored forMFND tasks, they are still challenging
to understand and discover the subtle cross-modal differences [41].
For example, in detecting manipulated image-text pair in Fig. 1-(a),
the model must discern the sentiment tendencies of both image
and text, which are typically not present in LVLMs’ training data.
On the other hand, LVLMs lack sensitivity to localized spatial de-
tails [58]. As shown in Fig. 1-(a), when swapping Trump’s face with
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another person, there exists intrinsic image discrepancies between
edited regions and pristine backgrounds, which is hard to perceive
with existing LVLMs. Therefore, it is important to augment LVLMs
with external information, referred to as forgery-specific knowledge,
which is absent from model parameters yet useful for manipulation
reasoning.

We identified two types of forgery-specific knowledge essen-
tial for manipulation reasoning [61]: semantic correlation and ar-
tifact trace. Firstly, manipulated media often disrupt the natural
coherence between different modalities, resulting in semantic dis-
crepancies [47]. Secondly, alterations in images usually produce
distinctive artifact traces, such as irregular blending boundaries
and inconsistencies in color sources, among others [51]. As a result,
it would be beneficial to incorporate these two types of knowledge
into the training and inference of large vision-language models for
multimodal fake news detection.

In this paper, we present a novel framework, namely FKA-Owl
which augments LVLMs with forgery-specific knowledge to en-
hance cross-domain performance for multimodal fake news detec-
tion. This framework leverages the rich world knowledge of LVLMs,
supplementing it with domain-specific knowledge crucial for iden-
tifying multimodal fake news. As shown in Fig. 1-(c), to achieve
that, we establish representations of the aforementioned two kinds
of forgery-specific knowledge with two specialized modules. The
cross-modal reasoning module applies dual cross-attention mech-
anisms to integrate visual and textual information from frozen
encoders, aiming to identify semantic inconsistencies. Meanwhile,
the visual-artifact localization module focuses on detecting precise
visual artifacts at multiple levels of detail, using sparse bounding
boxes and detailed mask regions to trace artifacts. Subsequently,
the encoded knowledge representation embeddings are mapped to
the language space of LVLMs with projectors. We devise MFND
instruction-following data for fine-tuning and employ both candi-
date answer heuristics and soft prompts to unleash the extensive
knowledge of language models.

Our contributions are summarized as follows:
• We pioneer leveraging rich world knowledge from large

vision-language models (LVLMs) and enhancing them with
forgery-specific knowledge, to tackle the domain shift issue
in multimodal fake news detection. Our proposed method,
FKA-Owl, serves as a general detector to bridge the gap.

• FKA-Owl augments LVLMs with forgery-specific knowl-
edge for manipulation reasoning. We propose two light-
weight modules: the cross-modal reasoning module and
the visual-artifact localization module to extract semantic
correlations and artifact traces, respectively.

• The extensive experiments demonstrate the effectiveness of
our proposed method under multiple cross-domain settings.

2 RELATEDWORK
2.1 Fake News Detection
Fake news detection works can be categorized into unimodal
(image-based and text-based) and multimodal methods. Image-
basedmethod [5] proposes to exploit edited traces to verify the truth
of visual content. One group of CNN-based methods focus on the
spatial domain to capture artifact traces, such as blending [25, 51],

multiple instance learning [26] patch consistency [59], reconstruc-
tion [18, 27], and local mining [9]. The other works transformed
images into the frequency domain by applying DCT [43], combining
phase spectrum [32], and extracting high-frequency noises [33].

Text-based methods primarily delve into various aspects.
Ghanem et al. [13] proposes to incorporate topic and affective in-
formation extracted from text. Some social context-based methods
leverage user feedback [35], news environment [49], propaganda
techniques [17] and temporal patterns [16]. Recently, Nan et al. [38]
and Zhu et al. [64] all discover the domain shift issue caused by
the word frequency and emotion etc, and propose domain gate and
domain memory bank to enrich domain information, respectively.

In contrast to unimodal methods, multimodal methods adhere
to incorporate cross-modal features to extract semantic represen-
tations [19]. Sabir et al. [46] and Wang et al. [55] both propose
to combine with the external knowledge base to provide comple-
mentary semantics information. Qi et al. [40] proposes to extract
visual entities to understand the high-level semantics of news. Co-
attention network [56] and contextual attention network [42] are
both designed to better fuse textual and visual features. Moreover,
Ying et al. [57] proposes improved Multi-gate Mixture-of-Expert
networks (iMMoE) to refine and fuse features extracted from mul-
tiple views. Ambiguity learning [6] and causal reasoning [7] are
separately introduced to address the issue of modal disagreement
decisions and spurious correlation in data bias. A recent work [47]
presents HAMMER, a powerful model that combines contrastive
learning and cross-modal aggregation. However, all these methods
are typically trained and deployed within closed systems, overlook-
ing the potential benefits of accessing world knowledge.

2.2 Large Vision-Language Models
Large language models (LLMs) such as GPT-3 [3], LLaMA [53] and
Vicuna [8], have showcased remarkable performance on various
linguistic tasks. More recently, researchers are exploring extend-
ing the capability of LLMs to perceive visual signals. LLaVA [31]
and Mini-GPT4 [62] first facilitate image-text feature alignment fol-
lowed by visual instruction tuning. Visual instruction tuning entails
additional training of pre-trained models using curated instruction-
formatted datasets to enhance models’ generalization to unseen
tasks. PandaGPT [52] employs a simple linear layer as a bridge
between ImageBind [14] and the Vicuna model, allowing for the
multimodal input. The success of LVLMs in the general domain has
led to the growth of communities such as medical [24], video un-
derstanding [21] and image editing [12]. In this work, we leverage
the world knowledge inherent in LVLMs for a better understanding
of open-world fake news.

2.3 Knowledge Augmented Language Models
Utilizing external knowledge to augment language models (LMs)
has emerged as a promising solution in knowledge-intensive
tasks [22]. One line of works is retrieval-augmented LMs which re-
trieve relevant passages and incorporate them into LMs. Borgeaud et
al. [2] proposes a chunked cross-attention module to incorpo-
rate the retrieved text as explicit memory. A lightweight retrieval-
augmented dual fine-tuning [29] is introduced to retrofit any LLM.
Asai et al. [1] introduces self-reflection on retrieved passages to
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Figure 2: Architecture of our proposed FKA-Owl, which is built upon the off-the-shelf LVLM consisting of an image encoder
and the LLM. Given a manipulated image-text pair, the cross-modal reasoning module (a) first extracts cross-modal semantic
embeddings and visual patch features. Then, these visual patch features are processed by the visual-artifact localization module
(b) to encode precise artifact embeddings. Finally, the semantic and artifact embeddings are incorporated into the forgery-aware
vision-language model (c) combined with image features and the human prompt for deep manipulation reasoning.

enhance LM’s quality and factuality. Nevertheless, the potential of
LVLMs augmented with forgery-specific knowledge in multimodal
fake news detection remains unexplored.

3 PROPOSED METHOD
In this section, we present a unified framework named FKA-Owl
which incorporates forgery-specific knowledge into LVLMs for
manipulation reasoning. We first introduce the overall framework
architecture. Then, we elaborate on our proposed multi-level cross-
modal reasoning module, dual-branch visual-artifact localization
module, and forgery-aware vision-language model. Finally, we de-
tail the loss function for training.

3.1 The Overall Framework
The comprehensive architecture of FKA-Owl is illustrated in Fig. 2.
FKA-Owl consists of an image encoder (ImageBind [14]), a cross-
modal reasoningmodule, a visual-artifact localizationmodule, and a
large language model (Vicuna [8]). Given a manipulated image-text
pair (𝐼 ,𝑇 ), we design two lightweight modules to extract seman-
tic correlations and artifact traces as forgery-specific knowledge
representations, respectively. Specifically, the cross-modal reason-
ing module utilizes dual-branch cross-attention mechanisms to
guide cross-modal interactions, facilitating the encoding of seman-
tic embeddings. Concurrently, the visual-artifact localization mod-
ule gathers local spatial information to establish artifact embeddings
through supervised localization. Then, the forgery-aware vision-
language model leverages both the forgery-specific knowledge and
inherent world knowledge for deep manipulation reasoning.

3.2 Multi-level Cross-modal Reasoning
The input image and text are encoded first by the frozen pre-trained
encoders, denoted as 𝐸𝑣 for the image and 𝐸𝑡 for the text. Both 𝐸𝑣
and 𝐸𝑡 originate from the ImageBind, which is aligned with the
Vicuna in the off-the-shelf LVLM [52]. To obtain both low-level ele-
ments and high-level semantic cues, we partition the image encoder
into multiple layers with layer index 𝑙 , enabling the integration of
intermediate patch-level features. As shown in Fig. 2-(a), the image
features 𝑓𝑣 and text features 𝑓𝑡 are separately represented as:

𝑓𝑣 =
∑︁
𝑙

𝐸𝑙𝑣 (𝐼 ), 𝑓𝑡 = 𝐸𝑡 (𝑇 ) . (1)

Both features contain information of object instances within a
single modality but lack prior insight into objects referenced by
the other modality. This absence of complementary information
between modalities may hinder cross-modal semantic reasoning.
To this end, we devise the dual-branch cross-attention to guide the
interaction between visual and textual features, enabling the extrac-
tion of semantic correlations. Attention function [54] is performed
on normalized query (𝑄), key (𝐾 ), and value (𝑉 ) features as:

Attention(𝑄,𝐾,𝑉 ) = Softmax(𝐾
𝑇𝑄
√
𝐷

)𝑉 . (2)

In dual-branch cross-attention, each modal feature (e.g., image)
is allowed to serve as queries 𝑄 , while keys 𝐾 and values 𝑉 can be
taken from the other modality (e.g., text):

𝑢𝑣 = Attention (𝑓𝑣, 𝑓𝑡 , 𝑓𝑡 ) , (3)

𝑢𝑡 = Attention (𝑓𝑡 , 𝑓𝑣, 𝑓𝑣) , (4)
3
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where 𝑢𝑣 = {𝑢cls𝑣 , 𝑢
pat
𝑣 }, 𝑢𝑡 = {𝑢cls𝑡 , 𝑢

pat
𝑡 }. Here, 𝑢cls𝑣 and 𝑢cls𝑡

are [CLS] tokens from visual/textual embeddings interacted with
text/image information. 𝑢pat𝑣 and 𝑢pat𝑡 are corresponding patch em-
beddings.

Based on the cross-modal interaction described above, the [CLS]
tokens𝑢cls𝑣 and𝑢cls𝑡 can naturally focus on the inter-modal semantic
correlations. We concatenate these two [CLS] tokens {𝑢cls𝑣 , 𝑢cls𝑡 }
as a joint representation of semantic embedding. Then we use a
learnable linear layer to project this generated knowledge into the
word embedding space of LVLMs, facilitating profound semantic
reasoning aided by world factual knowledge.

3.3 Dual-branch Visual-artifact Localization
In addition to extracting semantic correlations between visual and
textual features, mining artifact traces is also crucial for distin-
guishing fake news. Unlike [CLS] token, visual patch tokens with
position encoding [54] contain richer local spatial information.
Given visual patch tokens 𝑢pat𝑣 , we propose a visual-artifact local-
ization module to encode them into artifact embeddings, guided by
grounding annotations.

As depicted in Fig. 2-(b), the upper branch which comprises a text
encoder and a pixel decoder, is designed to utilize language-driven
contrastive learning for pixel-wise localization. Dense features with
good language alignment can provide complementary benefits for
fine-grained segmentation [15, 20]. Specifically, two class prompts
are initially encoded by the text encoder to obtain corresponding
features 𝐹 𝑖𝑝 (𝑖 = 1, 2) ∈ R2×𝐶𝑡𝑒𝑥𝑡 , representing “natural” and “un-
natural” states. Detailed contrastive class prompts are presented in
the Supplementary Materials. To restore local spatial details, the
pixel decoder with consecutive deconvolution layers converts low-
resolution features 𝑢pat𝑣 ∈ Rℎ𝑤×𝐶𝑖𝑚𝑔 into high-resolution features
𝐹ℎ ∈ R𝐻×𝑊 ×𝐶𝑖𝑚𝑔 . Since patch-level features are not aligned with
the textual space, we project both textual features 𝐹𝑝 and visual
features 𝐹ℎ into a shared representation space. Subsequently, the
projected features 𝐹𝑝 ∈ R2×𝐶 and 𝐹ℎ ∈ R𝐻×𝑊 ×𝐶 are employed to
compute similarity scores𝑤 ∈ R𝐻×𝑊 ×2:

𝑤𝑖 = 𝐹ℎ · 𝐹𝑇𝑝 , (𝑖 = 1, 2) . (5)

By applying the scores𝑤 spatially, we can establish the manipulated
segmentation map𝑀𝑠 ∈ R𝐻×𝑊 ×2 to achieve per-pixel prediction:

𝑀
𝑗
𝑠 = softmax (𝑤) = log

(
𝑒𝑤

𝑗∑2
𝑖=1 𝑒

𝑤𝑖

)
, ( 𝑗 = 1, 2) . (6)

To enrich the representation of artifact traces withmultiple levels
of details, the lower branch employs multi-head attention for patch-
level localization. We utilize a learnable token 𝑞tok ∈ R1×𝐶𝑖𝑚𝑔

serving as a query, while visual features 𝑢pat𝑣 act as both the key
and value. Through the multi-head attention mechanism, local
information related to artifacts is aggregatedwithin𝑢agg ∈ R1×𝐶𝑖𝑚𝑔

under the supervision of bounding box grounding:

𝑢agg = Attention
(
𝑞tok, �̃�

pat
𝑣 , �̃�

pat
𝑣

)
. (7)

To leverage the artifact knowledge contained in the two-branch
features (i.e., the manipulated segmentation map𝑀𝑠 and the aggre-
gated token 𝑢agg), we separately devise multiple convolution layers
and a simple linear layer as projectors. In this manner, both 𝑀𝑠

and𝑢agg are converted into continuous artifact embeddings aligned
with the final vision-language model.

3.4 Forgery-aware Vision Language Model
With the extraction of two types of forgery-specific knowledge,
merging this external knowledge into LVLMs becomes imperative.
Both the obtained semantic embeddings and artifact embeddings
have been refined to lie in the embedding space for compatibility
with language models. Moreover, the introduction of MFND in-
struction data along with answer heuristics and soft prompts can
further activate the capacity of LVLMs.

Due to the lack of instruction-follow data in the MFND task, we
carefully design an instruction template following the conversa-
tional format of the Vicuna model [8], as shown below:

###Human: <Img><ImageFeature></Img><ForgeryFeature>[Human
Prompt] ###Assistant:

In this prompt, <ImageFeature> represents the visual tokens
produced by the image encoder and <ForgeryFeature> is the com-
bination of semantic and artifact embeddings. The human prompt
adopts the multiple choice question answering format, as shown in
the dialog box of Fig. 2-(c).

To unleash the potential knowledge of LVLMs in solving MFND
tasks, we devise two prompt strategies to serve as more informa-
tive inputs in Fig. 2-(c). On the one hand, we utilize candidate
answer heuristics [45, 48] to present both the question and answer
options to LVLMs and make them predict the symbol (e.g., “A”)
associated with the selected answer. This approach enables the
language models to explicitly compare different candidate answers
showcasing more accurate responses. On the other hand, we imple-
ment soft prompt tuning to introduce learnable continuous vectors
while freezing the language models. These vectors combined with
semantic embeddings facilitate the extraction of additional seman-
tic information. Meanwhile, this approach reduces the burden of
LVLMs to learn forgery-aware alignment, thereby mitigating the
catastrophic forgetting problem.

3.5 Loss Function
Two groups of loss functions are employed in our training proce-
dure: cross-entropy loss, and two-branch localization losses.

3.5.1 Cross-entropy Loss. In the training of languagemodels, cross-
entropy loss is employed to measure the disparity between the text
sequence predicted by the models and the target text sequence. The
formula is computed according to:

Lce = −
𝑛∑︁
𝑖=1

𝑦𝑖 log(𝑝𝑖 ), (8)

where 𝑛 denotes the token count, 𝑦𝑖 is the true label for token 𝑖 and
𝑝𝑖 is the corresponding predicted probability.

3.5.2 Dual-branch Localization Loss. Two-branch localization
losses are designed for the precise encoding of artifact traces
guided by pixel-wise and patch-level localization, respectively. Pixel-
wise localization introduces focal loss [28] and dice loss [34] to
enable supervision for the manipulated segmentation map 𝑀𝑠 :
Lpixel = Lfocal +Ldice. Patch-level localization involves regressing

4
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the final bounding box with the aggregated token 𝑢agg and comput-
ing the regression losses with the ground-truth box by introducing
L1 loss and GIoU loss [44]:Lpatch = LL1 +Lgiou. More details about
localization losses are provided in the Supplementary Materials.

Finally, the overall loss function is defined as:

L = Lce + Lpixel + Lpatch . (9)

4 EXPERIMENTS
In this section, we first introduce the overall experimental setup and
then provide comprehensive experimental results to demonstrate
the superiority of our proposed method.

Table 1: The statistics of the four subsets within the DGM4

dataset categorized by the news sources.

Domain BBC Guardian USA Wash.

Train
# Real 20436 55459 15472 12725
# Fake 20375 54244 16339 13134
Total 40811 109703 31811 25859

Test
# Real 3156 9109 2533 2078
# Fake 6214 17919 5393 4303
Total 9370 27028 7926 6381

4.1 Experimental Setup
4.1.1 Dataset. We evaluate the proposed method on DGM4

dataset1 [47] and Fakeddit dataset2 [37].
DGM4. DGM4 dataset is the recently released large-scale mul-

timodal manipulation dataset which comprises 230K image-text
paired samples with over 77K pristine pairs and 152K manipulated
pairs. In the DGM4 dataset, image manipulation involves face swap-
ping and facial emotion editing while text manipulation includes
sentence replacement and textual sentiment editing. The construc-
tion of the DGM4 dataset is based on the VisualNews dataset [30],
which is collected from multiple news agencies. Different agencies
cover diverse regional perspectives, thematic focus, and language
styles (see SupplementaryMaterials for the analysis of word clouds),
resulting in substantial distribution discrepancies. To simulate the
open-world domain-shift scenarios, we partition the DGM4 dataset
into four subsets based on news sources: BBC, The Guardian, USA
TODAY (USA), and The Washington Post (Wash.). The statistics of
four subsets are listed in Table 1.

Fakeddit. Fakeddit dataset is curated from multiple subreddits
of the Reddit platform where data varies in its content, ranging
from political news stories to simple everyday posts. We follow the
official dataset partition to only use multimodal samples and use the
2-way categorization for this dataset. Furthermore, we preprocess
the data by removing excessively short tweets based on their text
length. Short texts often lack sufficient information for semantic
1https://github.com/rshaojimmy/MultiModal-DeepFake
2https://github.com/entitize/Fakeddit

inconsistency detection. For our task, we only use the test set data
for the cross-dataset evaluation.

4.1.2 Evaluation Metrics. We treat the multimodal fake news de-
tection problem as a binary classification task. Following previous
works [39, 47], we apply the Area Under the Receiver Operating
Characteristic Curve (AUC), Equal Error Rate (EER), the Accuracy
Score (ACC) as our evaluation metrics.

4.1.3 Baselines. The proposed FKA-Owl is compared with the
following strong baseline models: 1) PandaGPT [52]: The off-the-
shelf PandaGPT model effectively aligns visual features with the
text space of LLMs, enabling it to perform complex multimodal
tasks in a zero-shot manner. 2) PandaGPT+SPT: This model inte-
grates PandaGPT with soft prompt tuning [23] by using the prede-
fined question prompt along with learnable continuous vectors to
fine-tune the LVLM during the instruction tuning phase. 3) HAM-
MER [47]: HAMMER employs two unimodal encoders to encode
image and text embeddings with contrastive learning for align-
ment, and then summarize multimodal information through the
multimodal aggregator.

4.1.4 Implementation Details. We utilize the visual encoder and
text encoder sourced from ImageBind-Huge [14] as the backbone
for our image and text feature extractors. Moreover, we employ
Vicuna-7B [8] as the inferential LLM, connected through a linear
layer. The model is initialized from the instruction-tuned check-
point provided by PandaGPT. All training images are resized to
224 × 224 and subjected to random horizontal flipping, as well as
random perturbation techniques such as JPEG compression and
Gaussian Blur following [47]. The multi-level cross-modal reason-
ing module extracts intermediate patch features from the 8th, 16th,
24th, and 32nd layers of the image encoder. We set the learning rate
as 1.5e-5 with a batch size of 16 and a maximum of 10 epochs when
trained on the BBC subset. Linear warm-up and the one-cycle co-
sine learning schedule are adopted. All experiments are conducted
on four NVIDIA GeForce 3090 GPUs with PyTorch. More details
about hyperparameter settings are provided in the Supplementary
Materials.

4.2 Performance Comparison
We evaluate the cross-domain performance of our FKA-Owl with
baselines in single-domain, multiple-domain, and cross-dataset set-
tings respectively.

4.2.1 Single-domain Setting. Table 2 presents the performance of
our method and other baseline models in the challenging scenario
where a single domain is available. We randomly select one subset
of the DGM4 dataset as the source domain for training and the
remaining subsets as the target domains for testing. From the results,
we make the following observations:
• The performance of the existing MFND method drops signifi-

cantly when tested on the unknown subsets, which verifies the
existence of domain shift caused by the deviation in propagation
contents.

• FKA-Owl yields substantial improvement on recent LVLMs,
PandaGPT, and PandaGPT with soft prompt tuning, in both
intra-domain and cross-domain testing. Such huge improvement
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Table 2: Single-domain performance (%) comparison of baseline models on DGM4 dataset. Specifically, we use one subset for
training and the remaining subsets for testing. SPT denotes the utilization of soft prompt tuning. ( ) indicates the intra-domain
performance. The better results in each group are in boldface.

T
ra
in

Method
Test

BBC Guardian USA Wash.
AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑

PandaGPT 49.99 50.06 66.31 49.58 50.19 66.30 49.47 50.37 68.04 49.51 50.47 67.43

BB
C

PandaGPT+SPT 54.93 47.01 48.29 53.89 47.23 54.33 51.19 49.72 55.96 52.43 48.07 54.91
HAMMER 87.35 21.40 79.98 80.82 26.81 76.46 65.16 39.40 69.02 67.01 37.92 68.28
FKA-Owl 89.61 18.61 81.55 84.95 23.55 77.08 73.10 33.91 70.50 74.81 32.29 71.52

G
ua
rd
ia
n PandaGPT+SPT 54.66 46.91 46.04 56.57 45.21 50.37 55.99 45.85 50.41 55.58 46.11 50.15

HAMMER 73.74 31.53 66.74 93.90 13.38 87.45 65.34 39.61 69.23 63.24 41.17 68.50
FKA-Owl 82.65 25.11 74.92 93.93 13.38 86.60 74.32 32.65 71.06 73.15 33.13 70.16

U
SA

PandaGPT+SPT 50.01 50.31 59.12 52.88 47.94 59.49 56.50 45.29 58.98 53.89 47.76 60.27
HAMMER 68.44 35.32 69.81 74.71 30.46 74.35 85.11 22.68 79.08 81.60 25.17 76.90
FKA-Owl 74.17 31.23 72.91 78.82 27.63 76.66 89.64 18.69 80.96 87.76 20.25 80.68

W
as
h. PandaGPT+SPT 51.22 49.50 53.43 53.03 47.43 55.15 54.67 47.05 54.88 53.93 47.09 56.43

HAMMER 71.29 33.54 70.59 76.78 29.40 74.21 82.11 25.66 77.35 83.30 24.26 77.64
FKA-Owl 78.56 28.52 73.47 81.97 25.31 76.29 87.07 21.19 79.06 87.94 19.81 80.16

Table 3: Multiple-domain performance (%) comparison of baseline models on DGM4 dataset. Specifically, we use two subsets
from the identical country for training and the remaining subsets for testing. SPT denotes the utilization of soft prompt tuning.
The better results in each group are in boldface.

Method
BBC & Guardian USA &Wash.

USA Wash. BBC Guardian
AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑

PandaGPT+SPT 50.59 49.56 54.44 51.95 48.68 52.55 52.38 48.09 52.54 51.74 48.75 53.13
HAMMER 63.45 39.81 69.19 62.59 40.34 68.64 73.95 32.48 71.86 80.04 27.54 76.06
FKA-Owl 75.17 33.35 71.42 75.15 32.85 70.52 81.06 26.21 75.26 85.88 22.41 78.87

demonstrates the effectiveness of forgery-specific knowledge
augmentation in our framework.

• Compared with the state-of-the-art method, HAMMER, our ap-
proach shows more remarkable improvement in cross-domain
testing. For instance, for models trained on the BBC subset, FKA-
Owl achieves a 7.7% increase in AUC when testing on the Wash-
ington Post subset. This may be credited to the effective utiliza-
tion of inherent world knowledge from LVLMs in mitigating
distribution discrepancies. The combination of forgery-specific
knowledge and world knowledge facilitates profound manipula-
tion reasoning in FKA-Owl.

4.2.2 Multiple-domain Setting. The inclusion of domestic news
such as the BBC and The Guardian from British, as well as USA
TODAY and The Washington Post from America, increases dataset
diversity in practical scenarios. We select two subsets from identi-
cal countries for training and the remaining two for testing. The
results are summarized in Table 3. Our FKA-Owl exhibits signif-
icant superiority over both PandaGPT using soft prompt tuning
and HAMMER by a large margin. This reveals the effectiveness of
our framework in instance-wise domain generalization guided by
world knowledge derived from LVLMs, even when jointly learning
multiple source domains.
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Table 4: Cross-dataset performance (%) comparison of baseline models on the Fakeddit dataset when trained on DGM4 dataset.
Specifically, we use one subset from the DGM4 dataset for training and the Fakeddit dataset for testing. The better results in
each group are in boldface.

Te
st Method

Train

BBC Guardian Usa Today Washington Post

AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑

Fa
ke
dd

it

HAMMER 35.61 60.68 40.45 44.81 53.72 44.82 36.09 60.58 39.80 35.76 61.14 38.55

FKA-Owl 44.96 53.54 46.44 57.17 44.13 55.47 43.07 55.30 43.53 40.20 57.33 43.31

Table 5: Ablation study of component modules. We evaluate the AUC (in %), EER (in %), and ACC (in %) of variant models on the
remaining three subsets when trained on the BBC subset. ML: the extraction of multi-level patch features in the cross-modal
reasoning (CR) module. DB: the extraction of dual-branch artifact features in the visual-artifact (VA) Localization module. Avg.
denotes the mean value on the three testing subsets.

Componet Module Test

ML&CM
Reasoning

DB&VA
Localization

Guardian USA Wash. Avg.
AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑

53.89 47.23 54.33 51.19 49.72 55.96 52.43 48.07 54.91 52.50 48.34 55.07
✓ 83.53 23.95 77.03 67.64 36.45 69.52 70.97 34.60 70.33 74.05 31.67 72.29

✓ 81.79 26.76 73.98 66.59 39.02 65.96 69.60 36.67 67.25 72.66 34.15 69.06
✓ ✓ 84.95 23.55 77.08 73.10 33.91 70.50 74.81 32.29 71.52 77.62 29.92 73.03

FKA-Owl w/o ML 81.27 26.70 75.49 65.25 39.71 69.20 68.97 36.54 69.21 71.83 34.32 71.30
w/o DB (upper) 83.70 23.92 77.29 62.85 40.05 70.00 67.73 36.27 70.49 71.43 33.41 72.59
w/o DB (lower) 84.12 23.88 76.74 70.37 36.36 69.66 73.50 32.87 70.30 76.00 31.04 72.23

4.2.3 Cross-dataset Setting. To comprehensively represent the con-
textual diversity inherent in multimodal fake news detection tasks,
We select one subset from DGM4 for training and evaluate the
performance on the Fakeddit dataset. As shown in Table 4, the
performance of all methods notably decreases when tested on the
Fakeddit dataset, which implies that the difference in the distribu-
tion of different datasets does exist. Furthermore, we can observe
that our method outperforms the state-of-the-art model HAMMER
when trained on different subsets, confirming the generalizability
of our approach.

4.3 Ablation Study
We perform several ablation experiments to explore the necessity of
the proposed component modules, prompt strategies, and LVLMs
knowledge respectively, and analysis of potential module choices.
In the following experiments, all ablation results are evaluated on
the remaining three subsets when trained on the BBC subset.

Table 6: Ablation study of prompt strategies. AUC (in %) of
variant models is reported on the remaining three subsets
when trained on the BBC subset. SPT denotes soft prompt
tuning, whereas CAH refers to candidate answer heuristics.

Strategy Guardian USA Wash. Avg.

w/o SPT 84.76 71.98 74.29 77.01
w/o CAH 83.14 67.38 70.55 73.69

w/o SPT & CAH 83.32 66.12 69.94 73.13
FKA-Owl 84.95 73.10 74.81 77.62

4.3.1 The Effect of the Component Modules. In Table 5, we conduct
a comprehensive ablation study on the proposed component mod-
ules to verify their effectiveness. The first row of Table 5 shows our
baseline model that only performs soft prompt tuning, achieving an
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Figure 3: Ablation study of the world knowledge inherent in
large vision-language models.

average AUC of 52.5%. Based on this baseline, we further introduce
two separate modules: a multi-level cross-modal (ML&CM) reason-
ing module and a dual-branch visual-artifact (DB&VA) localization
module, with 21.55% and 20.16% improvement in average AUC, re-
spectively. This implies that forgery-specific knowledge augmenta-
tion is indispensable for our framework. Comparatively, our model
with complete two modules obtains the best performance increas-
ing by 25.12%, indicating the effectiveness and complementarity of
these two modules. Moreover, we test the performance of FKA-Owl
removing the multi-level features (w/o ML), and FKA-Owl remov-
ing any one of the dual-branch features (w/o DB). These variant
models lack rich features to represent forgery-specific knowledge
leading to a great decrease in cross-domain performance.

4.3.2 The Effect of the Prompt Strategies. The prompt strategies
designed in the alignment process and the corresponding results
for each case are tabulated in Table 6. First, when removing con-
tinuous prompt vectors (w/o SPT), the performance drops a little
bit. In addition, after removing the candidate answer options (w/o
CAH) in the human instruction prompt, the average performance
decreases from 77.62% to 73.69%. In particular, the third row of
Table 6 represents that none of both strategies is employed in our
proposed framework. Our method substantially outperforms this
variant model, implying both two strategies enable the introduction
of implicit information to fully activate the capacity of LVLMs.

4.3.3 The Effect of the LVLMs Knowledge. To analyze the impact
of world knowledge derived from LVLMs, we compare our method
with the common practice of processing fused embeddings in a
supervised classification manner [47]. This variant model (w/o
World Knowledge) replaces the Vicuna model in FKA-Owl with
a binary classifier to predict true/fake labels. As shown in Fig. 3,
harnessing the inherent knowledge in LVLMs improves an average
performance by 9.92 points over the variant model. Furthermore,
for target domains from distinct countries exhibiting huge distribu-
tion differences, FKA-Owl yields more significant improvements in

Figure 4: Ablation study of the potential module choice of
using pre-trained artifact detector to replace visual-artifact
localization module.

13.26% and 12.15%. This could be attributed to the fact that world
knowledge from LVLMs can effectively guide the representation of
agnostic instances.

4.3.4 Analysis on Potential Module Choice. We replace the arti-
fact extractor module in our framework for other design choices.
This variant model (w/ Pre-trained Artifact Detector) replaces the
visual-artifact localization module in FKA-Owl with the off-the-
shelf pre-trained detector [47] to obtain the artifact embeddings.
The pre-trained detector employs the VIT backbone with super-
vised training by grounding annotations. As depicted in Fig. 3, our
visual-artifact localization module brings a significant improvement
over the variant model. This could be attributed to the fact that Our
designed module leverages the intrinsic visual encoder in LVLMs
to extract artifact traces, thereby alleviating the burden of aligning
forgery-specific knowledge with LVLMs.

5 CONCLUSION
Our work presents FKA-Owl, a novel framework that leverages rich
world knowledge from LVLMs and enhances them with forgery-
specific knowledge, to tackle the domain shift issue in multimodal
fake news detection. Two types of critical forgery-specific knowl-
edge are augmented in FKA-Owl: semantic correlation between text
and images and artifact trace in image manipulation. To inject this
knowledge into the LVLM, we first propose two lightweight spe-
cialized modules to learn their representations respectively. Then,
we transform the generated knowledge into refined embeddings
for alignment with language space. The candidate answer heuris-
tics and soft prompts are introduced as supplementary inputs to
unleash the extensive knowledge of LVLMs. Extensive experiments
verify that FKA-Owl shows superior cross-domain performance
compared to the state-of-the-art methods.
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