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A CONTRASTIVE CLASS PROMPTS
Fig. A1 presents a detailed list of prompts utilized for implementing
the contrastive class prompt. Following WinCLIP [1], we employ
the compositional prompt ensemble to generate texts represent-
ing natural and unnatural states. Specifically, we curate prompt
templates involving a photo of a [c] and a photo of the [c]. A
complete prompt can be composed by replacing the token [c] in the
template-level prompt with one of the state-level prompts, either
from the natural or unnatural states.

Figure A1: Lists of two state-level prompts considered in this
paper to construct contrastive class prompts.

B LOCALIZATION LOSS
B.1 Pixel-wise Localization Loss
The manipulated segmentation map𝑀𝑠 is utilized to calculate focal
loss [2] and dice loss [3] supervised by the grounding mask. In the
multimodal fake news detection task, where the majority of regions
in fake images remain pristine, employing focal loss can alleviate
the issue of class imbalance. The Focal loss is computed as follows:

Lfocal = − 1
𝑛

𝑛∑︁
𝑖=1

(1 − 𝑝𝑖 )𝛾 log(𝑝𝑖 ), (1)

where 𝑛 denotes the total number of pixels, 𝑝𝑖 represents the pre-
dicted probability of positive classes, and 𝛾 is a hyperparameter for
adjusting the weight of hard-to-classify samples. In our implemen-
tation, we set 𝛾 to 2.

Dice loss is based on the dice coefficient and can be computed
as follows:

Ldice = 1 −
2
∑𝑛
𝑖=1 𝑦𝑖𝑦𝑖∑𝑛

𝑖=1 𝑦
2
𝑖
+∑𝑛

𝑖=1 𝑦
2
𝑖

, (2)

where 𝑛 denotes the total number of pixels, 𝑦𝑖 is the pixel value in
the segmentation map and 𝑦𝑖 is the ground truth value.

B.2 Path-level Localization Loss
To regress the predicted bounding box, the aggregated token 𝑢agg
is fed into the BBox Detector 𝐷𝑣 , which comprises two multi-layer
perception (MLP) layers. Then we compute the patch-level Localiza-
tion loss by combining normal L1 loss and generalized Intersection
over Union (IoU) loss as follows:

𝑏 = 𝐷𝑣

(
𝑢agg

)
,

Lpatch = LL1 (𝑏, 𝑏) + Lgiou (𝑏, 𝑏),
(3)

where 𝑏 denote the predicted bounding boxes and 𝑏 denote the
ground-truth box.

C REAL-WORLD DISTRIBUTION
DIVERGENCE

In Fig. C2, we present word clouds to illustrate the distribution
divergence in real-world context across regional perspectives and
thematic focus. Notably, the BBC predominantly reports British
news, encompassing various subjects such as culture and enter-
tainment. Conversely, the Washington Post tends to emphasize
American political news. This disparity leads to variations in word
usage across distinct domains. For instance, the commonly used
words in BBC news include “prime minister", “children", and "fam-
ily" etc, while in the Washington Post news, prevalent terms are
“president", “Donald Trump", and “Obama", etc.

Figure C2: Word clouds of training data sourced from subsets
of BBC, The Guardian, USA Today, and TheWashington Post,
where the size of terms corresponds to the word frequency.

D IMPLEMENTATION DETAILS
Here we provide detailed implementation details for training on
the remaining three subsets: The Guardian, USA TODAY, and The
Washington Post. The hyperparameters are the same for all sub-
sets but differentiate the learning rate, batch size, and maximum
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epoch by dataset scale, detailed in Table D1. Additionally, to en-
sure a fair comparison, the hyperparameters for the PandaGPT
using soft prompt tuning are set to be consistent with the values
used in our method. For the state-of-the-art method HAMMER, the
hyperparameters are set to default values used in [4].

Parameters
Train set

Guardian USA Wash.

Optimizer AdamW AdamW AdamW
Learning Rate 4.1e-5 1.1e-5 1e-5
LR Scheduler Linear Linear Linear
Batch Size 128 16 16

Maximum Epoch 12 10 10
Table D1: Hyperparameters used in The Guardian, USA TO-
DAY, and The Washington Post subsets.

E CASE ANALYSIS
Fig. E3 and Fig. E4 depict cases from the testing set. The former illus-
trates comparisons between the vanilla LVLM and FKA-Owl, while
the latter showcases cases where either the compared methods or
the LVLM using soft prompt tuning predictions are incorrect.

In Fig. E3, Case 1 and Case 2 show cases where the vanilla LVLM
model predicts all labels as “Fake” while the FKA-Owl makes correct
predictions. This implies that the vanilla LVLM lacks the necessary
knowledge to effectively detect fake news when learning from the
general corpus, making it challenging to accurately characterize the
concept of forgery and provide precise responses. Consequently,
the vanilla LVLM relies heavily on common prompt words, such as
“face”, resulting in all labels being predicted as “Fake”.

Figure E4 illustrates comparisons between our method with the
state-of-the-art model HAMMER, and PandaGPT using soft prompt
tuning (PandaGPT+SPT). In Case 3, the absence of forgery-specific
knowledge impedes the ability of PandaGPT to perform manip-
ulation reasoning, especially when confronted with fake images
containing subtle artifacts. In Case 4, the powerful model HAM-
MER struggles to handle agnostic instances due to the lack of prior
information, resulting in incorrect judgments regarding unseen
fake news. Conversely, Case 5 demonstrates the effectiveness of
our FKA-Owl, which integrates inherent world knowledge from
LVLMs and incorporates forgery-specific information to make ac-
curate predictions.
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Figure E3: Cases in the testing set where vanilla LVLM and FKA-Owl confront with pristine news and fake news. ( ) indicates
wrong prediction and ( ) indicates correct prediction.
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Figure E4: Cases in the testing set where at least one in the Baseline and the LVLM using soft prompt tuning made incorrect
predictions. ( ) indicates wrong prediction and ( ) indicates correct prediction.
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