
Published as a conference paper at ICLR 2024

DE NOVO PROTEIN DESIGN USING GEOMETRIC
VECTOR FIELD NETWORKS

Weian Mao1,2∗, Muzhi Zhu1∗, Zheng Sun3∗, Shuaike Shen1,
Lin Yuanbo Wu3, Hao Chen1, Chunhua Shen1,4

1 Zhejiang University, China 2 The University of Adelaide, Australia
3 Swansea University, UK 4 Ant Group

ABSTRACT

Innovations like protein diffusion have enabled significant progress in de novo
protein design, which is a vital topic in life science. These methods typically
depend on protein structure encoders to model residue backbone frames, where
atoms do not exist. Most prior encoders rely on atom-wise features, such as angles
and distances between atoms, which are not available in this context. Thus far, only
several simple encoders, such as IPA (Jumper et al., 2021), have been proposed for
this scenario, exposing the frame modeling as a bottleneck. In this work, we proffer
the Vector Field Network (VFN), which enables network layers to perform learnable
vector computations between coordinates of frame-anchored virtual atoms, thus
achieving a higher capability for modeling frames. The vector computation operates
in a manner similar to a linear layer, with each input channel receiving 3D virtual
atom coordinates instead of scalar values. The multiple feature vectors output
by the vector computation are then used to update the residue representations
and virtual atom coordinates via attention aggregation. Remarkably, VFN also
excels in modeling both frames and atoms, as the real atoms can be treated as
the virtual atoms for modeling, positioning VFN as a potential universal encoder.
In protein diffusion (frame modeling), VFN exhibits an impressive performance
advantage over IPA, excelling in terms of both designability (67.04% vs. 53.58%)
and diversity (66.54% vs. 51.98%). In inverse folding (frame and atom modeling),
VFN outperforms the previous SoTA model, PiFold (54.7% vs. 51.66%), on
sequence recovery rate. We also propose a method of equipping VFN with the ESM
model (Lin et al., 2023), which significantly surpasses the previous ESM-based
best result (62.67% vs. 55.65%), LM-Design (Zheng et al., 2023), by a substantial
margin. Code is available at https://github.com/aim-uofa/VFN

A B

Figure 1: Experimental results on protein diffusion and inverse folding. A) VFN-IF compared to PiFold with
varying numbers of layers, showcasing the trade-off between speed and sequence recovery rate. B) VFN-Diff
compared to FrameDiff (IPA) for designability across proteins of varying lengths.

∗WM, ZS and MZ contributed equally. Work was done when WM was visiting Zhejiang University. HC and
CS are the corresponding authors.

1

https://github.com/aim-uofa/VFN

Published as a conference paper at ICLR 2024

1 INTRODUCTION

The field of de novo protein design (Huang et al., 2016) represents a pivotal frontier in the realms of
bioengineering and drug development, holding the potential to bring about a revolutionary shift in the
creation of innovative therapeutic agents. Recent advancements in this domain have been driven by
a groundbreaking paradigm that combines protein structure diffusion models (Watson et al., 2023;
Yim et al., 2023) with inverse folding networks (Dauparas et al., 2022). Specifically, this paradigm
initiates by employing a protein diffusion model to stochastically generate the backbone structure
of a protein, represented by residue frames. Since the types of amino acids in the generated protein
are initially unknown, an inverse folding network is then utilized to design the protein sequences for
each residue based on the backbone residue frames. While this paradigm has shown great success for
protein design, it also brings challenges for deep learning-based protein structure encoders.

Methods like protein diffusion rely on protein structure encoders to model and sample protein
structures. However, prior structure encoders are unsuitable or severely limited in this case, primarily
because the representation of residues is highly specialized in methods like diffusion. Specifically,
in those methods, backbone frames are commonly employed to represent the spatial information
of residues, with atom-level representations typically absent. The absence of atoms has rendered
most previous encoders ineffective for protein design, as they typically rely on atom-level input
features such as interatomic angles and distances. Although a few basic encoders, such as IPA
(Jumper et al., 2021), were designed for frame modeling, they still faced significant limitations. For
instance, IPA simply performs distance pooling between frame-anchored virtual atoms as geometric
features. Obviously, such pooling operation and the single pooled distance value clearly lacks the
expressiveness required for representation. We refer to these limitations as the atom representation
bottleneck, which is explained in detail in §2.4. In response to this challenge, we propose a novel
structure encoder called the Vector Field Network (VFN).

The core idea of VFN revolves around the utilization of a vector-specific linear layer to extract
multiple geometric feature vectors by mapping the coordinates of frame-anchored virtual atoms.
Specifically, VFN introduces virtual atoms in Euclidean space for each amino acid, and these virtual
atoms move in conjunction with the frames, serving as dynamic representations of the frames. When
modeling the relationship between two amino acids, a module called the ‘vector field operator’ takes
the virtual atom coordinates of the two amino acids as vector inputs and performs operations similar
to a linear layer. Within the vector field operator, each vector is initially multiplied by a learnable
scalar weight, and these weighted vectors are accumulated to compute the output feature vector.
Like a linear layer, the vector field operator has multiple output channels, with each output channel
generating a Euclidean vector. Subsequently, these output feature vectors are directed into an MLP
layer for processing, facilitating the fusion of residue features and enabling the modeling of residue
frames.

VFN exhibits significant advantages over previous encoders in terms of its expressive power and
versatility, as VFN circumvents the atom representation bottleneck present in IPA. As previously
mentioned, IPA relies on a single scalar variable, which represents the sum of distances between
virtual atoms, serving as both geometric features and attention bias. This single scalar variable and
corresponding pooling operation limit the expressive capacity of IPA. In contrast, VFN can flexibly
extract multiple feature vectors through a vector field operator, thereby circumventing this bottleneck.
Please refer to §2.4 for more details.

In scenarios where frame and backbone atoms coexist, such as inverse folding, VFN maintains
excellent expressiveness while simultaneously offering enhanced generality and flexibility. This
is because real atoms can be treated as virtual atoms in VFN, and the coordinates of both real
and virtual atoms can be used to model the relationships between amino acids using the vector
field operator, naturally forming hierarchical representations. Compared to other atom-based inverse
folding methods, VFN achieves superior performance by potentially modeling frames more effectively.
Thus, VFN also surpasses the current SoTA in inverse folding. It is worth emphasizing that, IPA is
not suitable for treating the real atoms as the virtual atoms, since the IPA network cannot provide
learnable weights for the coordinates of each atom, facing the atom representation bottleneck.

To assess the performance of VFN for de novo protein design, we have implemented two models
based on VFN, namely VFN-IF and VFN-Diff, tailored for protein inverse folding and diffusion based
generative modeling, respectively. Experimental results consistently demonstrate the remarkable

2

Published as a conference paper at ICLR 2024

performance of VFN. For protein diffusion, VFN-Diff significantly outperforms the prior solid
baseline, FrameDiff (Yim et al., 2023), in terms of designability (67.04% vs. 53.58%) and diversity
(66.54% vs. 51.98%). It is important to emphasize that the key distinction between VFN-Diff and
FrameDiff lies in the replacement of the encoder—IPA, with VFN layers. This substantiates the
superior geometric feature extraction capability of VFN over the widely adopted IPA.

In the domain of inverse folding, VFN-IF exhibits a substantial performance boost over the current
state-of-the-art method, PiFold (54.74% vs. 51.66%, sequence recovery rate). Furthermore, we have
trained a larger-scale VFN-IF model on the entire PDB database, achieving an impressive sequence
recovery rate of 57.14%, underscoring the scalability of VFN-IF. Additionally, we propose a novel
variant of VFN-IF, called VFN-IFE, which is equipped with an external knowledge base, achieves
remarkable precision at 62.64%, surpassing SoTA approaches in this regard, LM-Design (Zheng
et al., 2023) (55.65%), by a substantial margin.

The main contributions of this work can be summarized as follows:

• We propose the Vector Field Network (VFN), which employs a vector field operator to
extract geometric feature vectors between frame-anchored virtual atoms, resembling a linear
layer. This approach overcomes the atom representation bottleneck, thereby enhancing
representational capabilities. Notably, VFN can also incorporate real atoms as the virtual
atoms for hierarchical modeling, positioning it as a potential universal encoder.

• For protein diffusion, VFN significantly enhances the designability(67.04% vs. 53.58%)
and diversity(66.54% vs. 51.98%) of protein generation compared to IPA.

• For inverse folding, VFN significantly surpasses the previous SoTA model, PiFold (54.74%
vs. 51.66%, sequence recovery rate). Additionally, we propose a method for equipping
VFN with an external knowledge base, achieving a substantial breakthrough over the SoTA
approach, LM-Design, in this regard, thus elevating model accuracy to next level (62.64%
vs. 55.65%).

2 RELATED WORK

2.1 DE NOVO PROTEIN DESIGN

De novo protein design, which involves the creation of proteins from scratch, holds paramount
significance in the fields of enzyme engineering and protein engineering. Traditional approaches
such as RosettaDesign (Liu & Kuhlman, 2006) were prevalent before the advent of machine learning-
based methods. In recent years, with the maturation of machine learning techniques, advanced deep
learning-based methods have emerged, exemplified by Huang et al. (2022) (Side Chain Unknown
Backbone Arrangement) and protein diffusion (Watson et al., 2023; Fu et al., 2023).

The paradigm of protein diffusion is regarded as one of the most promising methods in the realm
of protein design, which encompasses protein diffusion (Yim et al., 2023) and inverse folding (Gao
et al., 2022; Jendrusch et al., 2021; Wu et al., 2021; Ovchinnikov & Huang, 2021; Dauparas et al.,
2022; Ingraham et al., 2019; Hsu et al., 2022; Gao et al., 2024; Derevyanko et al., 2018). Specifically,
a protein diffusion model first generates the backbone structure of a protein, followed by an inverse
folding network that designs the corresponding sequence for this backbone. The feasibility of both
these steps has been experimentally validated through cryo-electron microscopy (Watson et al., 2023;
Dauparas et al., 2022), marking a significant breakthrough in the field of protein design. However,
while protein diffusion methods based on frame representation achieve significant success, in these
methods, atom representation is absent, rendering previous general purpose encoders unusable.

2.2 GENERAL PURPOSE ENCODER

In the past, numerous encoders (Hermosilla et al., 2020; Zhang et al., 2022; Hermosilla & Ropinski,
2022; Veličković et al., 2018; Baldassarre et al., 2021; Li et al., 2022; Shroff et al., 2019; Dumortier
et al., 2022; McPartlon et al., 2022; Cao et al., 2021; Anishchenko et al., 2021; Karimi et al., 2020;
Zhang et al., 2020; Wang et al., 2022b; Derevyanko et al., 2018) have been proposed for tasks such
as model quality assessment (Townshend et al., 2021) and fold classification (Hou et al., 2018),
where atomic information is available. However, these methods are not suitable for protein design
tasks where atomic representations of proteins are unavailable. For instance, GVP (Jing et al., 2020)

3

Published as a conference paper at ICLR 2024

transforms input atomic coordinates into vector and scalars variables as the network input, facilitating
the model’s SE(3) invariance. Meanwhile, Wang et al. (2022a); Jin et al. (2022) proposed efficient
approaches for modeling protein structures using hierarchical protein representations, enabling
GNNs to possess both residue-level and atom-level hierarchical representations. Nevertheless, such
approaches are evidently less applicable in the methods like protein diffusion, as atomic information
is unattainable.

2.3 FRAME-BASED ENCODER

The use of frame-based representations in protein structure encoders has been relatively unexplored,
with few existing encoders being rather rudimentary in nature. Historically, these encoders have
primarily served as auxiliary modules in protein structure prediction models, such as RoseTTAFold
(Baek et al., 2021) and AlphaFold2 (Jumper et al., 2021). In RoseTTAFold, the explicit concept of
frames is absent; instead, it employs the origin of frames to represent frames and employs SE(3)-
transformers (Fuchs et al., 2020) to model these frames. However, this approach conspicuously
neglects rotational information of frames, considering only positional offsets. AlphaFold2, on the
other hand, introduces the IPA structural encoding module to address this limitation. IPA represents
frames using framed-anchored virtual atoms and extracts geometric information between two frames
by computing the sum of distances between virtual atom pairs. This approach takes into account both
the coordinate offsets between frames and their rotational information.

2.4 ATOM REPRESENTATION BOTTLENECK

However, IPA still faces the atom representation bottleneck. Firstly, IPA does not incorporate learnable
weights when extracting features for virtual atoms; it directly applies a simple summation pooling
operation to the atom-pair distances, thereby lacking flexibility. Secondly, the sum of distances
between virtual atom pairs yields only a scalar variable, making it challenging to represent complex
geometric information, thus lacking expressiveness. In VFN, these issues have been successfully
resolved. VFN introduces an operator similar to a linear layer, characterized by the inclusion of
learnable weights associated with individual atom coordinates. These weights facilitate flexible vector
computations, effectively mitigating the flexibility challenges inherent in IPA’s pooling operation.
Furthermore, the operator in VFN can return multiple feature vectors, eliminating the expressiveness
bottleneck caused by the single scalar variable (the pooled distance) in the IPA. For further details
regarding the vector field operator, please refer to §3.2.

3 VECTOR FIELD NETWORK LAYERS

The Vector Field Network (VFN) is designed to extract geometric features between amino acids
using a module, named the vector field operator (refer to §3.2). In each layer of VFN, the protein’s
representation undergoes a sequential process including the vector field operator, node interactions
(§3.3), edge interactions (§3.4) and virtual atom updating (§3.4). The vector field operator is crucial
for extracting geometric features between pairs of amino acids through vector computations and
virtual atoms. Subsequently, these extracted geometric features are aggregated and employed to
update the representation of each amino acid through node and edge interactions. At the end of
each layer, the coordinates of the mentioned virtual atom are updated by aggregation or residue
representations. The mentioned modules and the overall pipeline are elucidated subsequently.

3.1 PROTEIN REPRESENTATION

In VFN, a protein consisting of n amino acids is represented as a graph denoted as G = (S, E , T ,Q).
Here, S = {si ∈ Rdv}i=1,...,n represents the set of node features. To encode the positional
information of each amino acid in space, we use a set of local frames, T = {Ti}i=1,...,n, to
represent the position of each amino acid. We introduce a set of frame-anchored virtual atoms, whose
coordinates are maintained by Eq. equation 8 or Eq. equation 9. Specifically, we denote all virtual
atom coordinates as Q = {Qi}i=1,...,n, with Qi = {q⃗k ∈ R3}k=1,...,dq

representing a set of virtual
atom coordinates associated with the i-th residue w.r.t. Ti. dq denotes the number of virtual atoms
in each residue. These virtual atom coordinates are treated as vectors in the vector field operator,
allowing for vector computations to extract geometric features. Additionally, we construct edges in
the graph based on specific rules, such as a complete graph or k-nearest neighbors. The complete
graph is taken by default, so the set of edge features can be denoted as E = {ei,j ∈ Rde}i,j=1,...,n.

4

Published as a conference paper at ICLR 2024

A B

1 0
0 1

−1 0
0 −1

Figure 2: Pipeline for the Vector Field Operator. A) Transforming the virtual atomic coordinates Qj

from frame Tj to frame Ti to obtain Kj . B) An example of vector computation involving vectors
Qi and Kj using learnable weights wa and wb as defined in Equation equation 2. When wa and wb

are specific weights (as shown in figure), the vector field can yield the Euclidean vector, h⃗1 and h⃗2,
between two particular atoms.

3.2 VECTOR FIELD OPERATOR

As shown in Figure 2, the vector field operator extracts geometric features between two amino acids
by performing learnable vector calculations on their virtual atom coordinates. Specifically, when
modeling the geometric relationship between two amino acids, such as the i-th and j-th amino acids,
the input to the vector field operator consists of virtual atom groups, Qi and Qj . To ensure that all
vectors are represented in the same local coordinate system, we first transform Qj from the local
frame Tj to Ti, and denote the transformed coordinates as Kj = {k⃗k ∈ R3}k=1,...,dq

, which can be
written as (as shown in Figure 2.A):

Kj = Ti←j ◦Qj , where Ti←j = T−1i ◦Tj (1)

Here, Ti←j represents the transformation matrix transforming the coordinates from Tj to Ti. Next,
to select specific virtual atoms for calculating feature vectors, similar to a linear layer, we introduce
two sets of learnable weights, wa = {wa

k,l ∈ R}k,l=1,...,dq and wb = {wb
k,l ∈ R}k,l=1,...,dq . Those

weights are then utilized to perform vector calculations between Qi and Kj , resulting in extracted
feature vectors Hi,j = {h⃗k ∈ R3}k=1,...,dq

(as shown in Figure 2.B). This can be expressed as
follows:

h⃗k =
∑
l

wa
k,lq⃗l +

∑
l

wb
k,lk⃗l (2)

where q⃗l ∈ Qi, k⃗l ∈ Kj , h⃗k ∈ Hi,j . Here, Hi,j serves as a vector representation for captured
geometric features. However, due to its large numerical range (ranging from −200Å to 200Å), it can
lead to instability during network training and requires further processing.

To avoid this issue, Hi,j is decomposed into two variables: unit direction vectors and vector lengths.
The vector lengths will be mapped using a radial basis function, RBF. This can be written as:

gi,j = concatk

(
h⃗k

∥h⃗k∥
,RBF(∥h⃗k∥)

)
, gi,j ∈ Rdg (3)

gi,j is a vector that represents the geometric relationship between two residues and is used in the
following module for aggregating and updating the features si and ei,j . The concatk represents the
concatenation of all the feature1 resulting from all the vectors in Hi,j = {h⃗k}k=1,...,dq . dg represents
the number of channels in gi,j .

3.3 NODE INTERACTIONS

Here, a MLP-based multi-head attention mechanism is designed to aggregate geometric features gi,j ,
node features si and sj , edge features ei,j , and update the node representations si. Specifically, the
pair-wise features mentioned above are first fed into an MLP, followed by a softmax operation to
obtain attention weights, denoted as:

ai,j = softmaxj(MLP(si, sj ,gi,j , ei,j)), (4)

1representing the flattened unit direction vectors and the values output by RBF

5

Published as a conference paper at ICLR 2024

where ai,j represents the attention weight for the interaction between nodes i and j. Next, another
MLP is employed to generate the values vi,j for the multi-head attention, which are subsequently
aggregated using the attention mechanism, expressed as follows:

oi =
∑
j

ai,jvi,j , where vi,j = MLP(sj ,gi,j , ei,j) (5)

Here, oi represents the aggregated features, which are utilized to update the features si after undergo-
ing an MLP layer, written as:

si ← si +MLP(oi) (6)
Up to this point, node features si have been updated and are utilized as the input for the subsequent
layer and following operations.

3.4 EDGE INTERACTIONS

Next, we introduce the edge interactions, which is designed to aggregate geometric information gi,j ,
node features si and sj , and edge features ei,j , to update the representation of the edge ei,j . This can
be written as follows:

ei,j ← ei,j +MLP(si, sj ,gi,j , ei,j) (7)

3.5 VIRTUAL ATOM COORDINATES UPDATING

In the final stage of each VFN layer, the coordinates of virtual atoms Qi are updated. We have devised
two different methods for updating these virtual atom coordinates, which are respectively referred to
as ‘node feature-based updating’ and ‘coordinate aggregating updating.’ These two approaches can
be selected based on the specific task, and their detailed methodologies are elucidated following.

Node Feature-Based Updating. Node features si are processed through a linear layer to generate a
set of virtual atom coordinates for updating Qi. This process can be represented as follows:

Qi ← Linear(si) (8)

Coordinate Aggregating Updating. For updating Qi, virtual atom coordinates Kj are firstly aggre-
gated through an attention mechanism to obtain the aggregated atom coordinates Qo

i . Subsequently,
Qo

i is fed into an MLP layer to update the coordinates Qi, denoted as follows:

Qi ← V-MLP(Qi,Q
o
i), where Qo

i =
∑
j

ai,jKj (9)

Here, V-MLP represents a dedicated MLP layer designed specifically for vectors, as described in
Appendix A.2.1; ai,j is computed in Eq. equation 4.

4 IMPLEMENTATION FOR DE NOVO PROTEIN DESIGN

A B

VFN-Diff FrameDiffESMFold

Figure 3: Visual Comparison of VFN-IF and Frame-Diff.
‘ESMFold’ represents protein structures recovered using Pro-
teinMPNN and ESMFold, with closer structural resemblance
being preferable.

To establish the recent paradigm in de novo
protein design, we have developed two dis-
tinct models, namely VFN-Diff and VFN-
IF, each dedicated to protein structure dif-
fusion and inverse folding, respectively. In
the protein diffusion part, the protein struc-
ture is designed and represented using back-
bone frames T . Subsequently, these back-
bone frames are fed into the inverse folding
network to obtain the corresponding pro-
tein sequence for the designed structure. In
the following subsections, we present an
overview of the implementations for VFN-
Diff and VFN-IF. For more implementation
details, please refer to Appendix A.2.2 and
Appendix A.2.3.

6

Published as a conference paper at ICLR 2024

4.1 PROTEIN DIFFUSION

We adopted the FrameDiff (Yim et al., 2023) paradigm, a diffusion model used to sample protein
backbone structures by updating residue frames T . In FrameDiff, a network called FramePred is
employed to model the protein backbone frames T during each diffusion step. This network relies on
invariant point attention (IPA), which consists of three components: node attention, edge attention,
and point attention. Importantly, the point attention module is the operation that causes the atom
representation bottleneck, as mentioned in §2.4. Therefore, to fairly evaluate whether VFN can
bypass this bottleneck, we replaced the point attention with our VFN attention mechanism. The
remaining parts of VFN-Diff remain consistent with FrameDiff.

4.2 INVERSE FOLDING

Figure 4: Visualization comparison, conducted on in-
verse folding and CATH 4.2, between sequence recov-
ery rate and protein length.

The purpose of the inverse folding task
is to map the frames T (generated by the
diffusion model) to amino acid categories
c ∈ {1, ..., 20}n, denoted as fif : T → c.
These predicted amino acid categories aim
to enable the protein to fold into the de-
signed structure. In this task, we adopt the
previous paradigm. Specifically, the VFN-
IF network is composed of 15 sequential
VFN layers, and it constructs edges in the
graph using a k-NN approach. The net-
work takes backbone frames and backbone
atoms as input. It’s important to note that
the coordinates of backbone atoms are used
to initialize some of the virtual atom coor-
dinates, enabling VFN to achieve higher
modeling capacity through hierarchical rep-
resentation. The prediction head of VFN-
IF follows the PiFold approach (Gao et al., 2022), directly predicting amino acid categories for each
node through a linear layer and supervising them using a cross-entropy loss function. Additionally,
we propose an approach to fine-tune the ESM model (Lin et al., 2023) with LoRA (Hu et al., 2021)
to correct the predictions of VFN-IF. We name this approach VFN-IFE, and the process can be
represented as fESM ◦ fif(T) : T → c, where fif represents VFN-IF, and fESM : co → c denotes the
ESM model fine-tuned with LoRA to correct the VFN-IF predictions co. For more VFN-IFE details,
please refer to Appendix A.2.4.

5 EXPERIMENTS

As mentioned, we comprehensively validated the superiority of VFN-IF and VFN-Diff through
experiments involving protein diffusion and inverse folding. The following sections will present the
main experimental results for these two tasks separately. Additionally, we have included experiment
details, extensive visual analyses and ablation studies based on inverse folding in Appendix A.4. We
encourage readers to refer to the appendix for more in-depth information.

5.1 INVERSE FOLDING

In inverse folding, we followed the settings of (Gao et al., 2022) and tested the sequence recovery
performance of VFN on the CATH 4.2 (Orengo et al., 1997), TS50, and TS500 datasets (Li et al.,
2014). Furthermore, we tested the structure recovery performance of VFN and compared it with
state-of-the-art models. Additionally, we demonstrated the superiority of VFN in trades-off between
speed and accuracy.

In this task, we have devised three variations of the VFN model, namely VFN-IF, VFN-IF+, and
VFN-IFE. VFN-IF represents the vanilla version of VFN, trained solely on the CATH 4.2 dataset.
VFN-IF+ is an extended version of VFN-IF, scaled up to incorporate the entire PDB dataset during
training. VFN-IFE denotes the version of VFN-IF equipped with an external knowledge base (ESM).

7

Published as a conference paper at ICLR 2024

Model Perplexity↓ Recovery(%) ↑
Short Single All Short Single All

w
/o

E
SM

StructGNN 8.29 8.74 6.40 29.44 28.26 35.91
GraphTrans 8.39 8.83 6.63 28.14 28.46 35.82
GCA 7.09 7.49 6.05 32.62 31.10 37.64
GVP 7.23 7.84 5.36 30.60 28.95 39.47
GVP-large† 7.68 6.12 6.17 32.60 39.40 39.20
AlphaDesign 7.32 7.63 6.30 34.16 32.66 41.31
ESM-IF† 8.18 6.33 6.44 31.30 38.50 38.30
ProteinMPNN 6.21 6.68 4.61 36.35 34.43 45.96
PiFold 6.04 6.31 4.55 39.84 38.53 51.66
VFN-IF 5.70 5.86 4.17 41.34 40.98 54.74

E
SM

ESM-IF† 6.05 4.00 4.01 38.10 51.50 51.60
LM-Design 6.77 6.46 4.52 37.88 42.47 55.65
VFN-IFE 4.92 4.22 3.36 50.00 52.13 62.67

Table 1: Experimental results comparison on the CATH dataset (inverse folding). Some results are
reproduced by Gao et al. (2022). “†” denotes that the version of CATH used is 4.3, while for the
remaining methods, the CATH version is 4.2.

Metric w/o ESM ESM

PiFold VFN-IF LM-Design VFN-IFE

scTM > 0.5 90.98% 92.37% 89.42% 93.29%
scRMSD < 2 60.35% 62.89% 58.41% 64.16%

Table 2: Experimental results on structure recovery (in-
verse folding). ‘scTM > 0.5’ represents the percentage
of designed proteins that exhibit a structural similarity ex-
ceeding 0.5 with the desired protein. The same applies to
’scRMSD < 2’.

Sequence recovery. The performance
of VFN on the CATH dataset and TS50,
TS500 is presented in Table 1, Table 3
and Figure 4, respectively. In these ex-
periments, VFN is compared to other
advanced models, such as StructGNN
(Ingraham et al., 2019), GraphTrans (In-
graham et al., 2019), GCA (Tan et al.,
2022), GVP (Jing et al., 2020), ESM-IF
(Hsu et al., 2022), ProteinMPNN (Dau-
paras et al., 2022), PiFold (Gao et al.,
2022), LM-design (Zheng et al., 2023), in terms of perplexity and sequence recovery performance.
Table 1 provides detailed results for various subsets. Among the subsets considered in our analysis,
the “Short” subset refers to proteins with a length of up to 100 amino acids, while the “Single” subset
exclusively includes single chain proteins. ‘w/o ESM’ and ‘ESM’ refer to methods without and with
the use of an external knowledge base (ESM), respectively.

Model TS50 TS500
Perp.↓ Rec.(%)↑ Perp.↓ Rec.(%)↑

w
/o

E
SM

StructGNN 5.40 43.89 4.98 45.69
GraphTrans 5.60 42.20 5.16 44.66
GVP 4.71 44.14 4.20 49.14
GCA 5.09 47.02 4.72 47.74
AlphaDesign 5.25 48.36 4.93 49.23
ProteinMPNN 3.93 54.43 3.53 58.08
PiFold 3.86 58.72 3.44 60.42
VFN-IF 3.58 59.54 3.19 63.65

E
SM

LM-Design 3.50 57.89 3.19 67.78
VFN-IFE 2.52 73.30 2.54 72.49

Table 3: Experimental results on TS50 and TS500 (inverse
folding).

Structure recovery. We compared
VFN’s performance in terms of pro-
tein structure recovery with several ad-
vanced methods on CATH 4.2, as shown
in Table 2. We followed standard eval-
uation procedures(Yim et al., 2023).
Specifically, we used ESMFold to pre-
dict whether sequences designed by in-
verse folding networks could fold pro-
teins into the desired structures, i.e., the
input structures of the inverse folding
network. We employed two metrics,
scTM↑ and scRMSD↓, to assess the sim-
ilarity between the desired protein struc-
tures and the structures of proteins de-
signed through inverse folding. Our experimental results demonstrate that VFN has a significant
advantage compared to state-of-the-art methods.

Speed and accuracy trade-off. In terms of the trade-off between speed and accuracy, we compared
VFN-IF with the SoTA model in this regard, PiFold. We conducted comparisons between different
layers of VFN and PiFold, as shown in Figure 1(A). Experimental results demonstrate that VFN-IF
achieves SoTA efficiency. Even with just 5 layers, VFN-IF achieves higher accuracy (52.68%) than a
10-layer PiFold while maintaining faster inference speeds. Furthermore, PiFold’s accuracy saturates
at 10 layers, whereas VFN-IF does not encounter this issue. For more details, please refer to Table 6a
in Appendix.

8

Published as a conference paper at ICLR 2024

5.2 PROTEIN DIFFUSION

We followed the settings and benchmarks of FrameDiff (Yim et al., 2023), conducting a detailed
comparison between VFN-Diff and FrameDiff in terms of designability and diversity. It is worth
emphasizing that FrameDiff and VFN-Diff differ only in the protein structure encoder (VFN vs. IPA).
All other settings are identical, and the parameter counts are similar (18.3M vs. 17.4M), making it an
ablation study. On the other hand, RFDiffusion (Watson et al., 2023) is a recent advance in the field.
However, as FrameDiff pointed out, RFDiffusion performs noticeably worse than FrameDiff in the
same setting (without pre-trained weights). Additionally, RFDiffusion has a larger number of parame-
ters and is trained on larger datasets (i.e., complex data). Therefore, comparing with RFDiffusion
is beyond the scope of this work. We leave these engineering implementations for future research.

Figure 5: Visualization of designability. Nseq repre-
sents the number of attempts when reconstructing
protein structures using Protein MPNN and ESM-
Fold.

Designability. As shown in Table 4 and Fig-
ure 5, we compare the protein designability of
VFN-Diff with that of FrameDiff. For evalua-
tion, Proteins generated by the diffusion model
are reconstructed using the inverse folding net-
work (ProteinMPNN) and structural prediction
network (ESMFold). The designability of the
generated proteins is then assessed by compar-
ing their structural similarity (scTM, scRMSD)
to the reconstructed proteins. Experimental re-
sults demonstrate that VFN-Diff outperforms
FrameDiff noticeably in terms of designability.
Diversity. Diversity is an important metric
for generative models. Similarly, we follow
FrameDiff’s relevant evaluation metrics, namely
‘diversity’ and ‘pdbTM’, to compare the diver-
sity of VFN-IF and FrameDiff. Specifically, ‘di-
versity’ represents the clustering center density
of generated samples. To be more specific, we first excluded undesignable proteins (scTM < 0.5).
Then, we used MaxCluster (Herbert & Sternberg, 2008) to cluster the remaining samples and ob-
tain clustering centers. Finally, clustering center density can be calculated as follows: (number of
clustering center) / (number of generated samples). ‘pdbTM’ represents the structural similarity of
generated samples to the most similar structures in the PDB database.

Metric

Setting Noise Scale 1.0 0.5 0.1 0.1 0.1

Num. Step 500 500 500 500 100

Num. Seq. 8 8 8 100 8

D
es

ig
na

bi
lit

y

scTM0.5 ↑
FrameDiff 53.58% 76.42% 77.41% 87.04% 76.67%
VFN-Diff 67.04% 81.23% 83.95% 92.84% 83.83%

scRMSD2 ↑
FrameDiff 10.62% 23.46% 28.02% 37.78% 26.42%
VFN-Diff 25.93% 40.00% 44.20% 56.30% 40.25%

D
iv

er
si

ty Diversity ↑ FrameDiff 51.98% 74.57% 75.56% 85.43% 74.94%
VFN-Diff 66.54% 80.49% 83.33% 90.61% 82.59%

pdbTM0.7 ↑
FrameDiff 5 30 37 86 35
VFN-Diff 9 47 54 102 48

Table 4: Experimental results on protein structure diffusion assessing
the designability and diversity of VFN-Diff. ‘scTM0.5’ and ‘scRMSD2’
represent the percentages of generated proteins with scTM > 0.5 and
scRMSD < 2, respectively. ‘pdbTM0.7’ signifies the count of generated
proteins with pdbTM < 0.7, measuring the novelty of the generated
protein. For more details on metrics, please refer to appendix A.4.3.

Visualization Comparison.
Through visualization, we
observed that FrameDiff
suffers from very low des-
ignability when designing
longer protein, while VFN-
Diff does not have this issue.
To illustrate, we selected
typical generated proteins
and compared the results
generated by VFN-Diff and
FrameDiff through visual-
ization, respectively. The
visualization results demon-
strate the superiority of
VFN-Diff in generating pro-
tein, as shown in Figure 3.

6 CONCLUSION

By introducing VFN, we address the atom representation bottleneck though the vector field oper-
ator, enhancing its capacity for modeling frames. We demonstrate VFN’s expressiveness through
comprehensive experiments in de novo protein design. Significant improvements or state-of-the-art
performance are achieved in protein diffusion and inverse folding tasks.

9

Published as a conference paper at ICLR 2024

Ethics Statement We do not foresee any obvious undesirable ethical or social impacts now.

ACKNOWLEDGEMENT

This work was supported by National Key R&D Program of China (No. 2022ZD0118700). The
authors would like to thanks Hangzhou City University for accessing its GPU cluster.

REFERENCES

Ivan Anishchenko, Samuel J. Pellock, Tamuka M. Chidyausiku, Theresa A. Ramelot, Sergey Ovchin-
nikov, Jingzhou Hao, Khushboo Bafna, Christoffer Norn, Alex Kang, and et al. Bera, Asim K. De
novo protein design by deep network hallucination. Nature, 600(7889):547–552, 2021. 3

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
Lee, Jue Wang, Qian Cong, Lisa N. Kinch, and et al. Schaeffer, R. Dustin. Accurate prediction of
protein structures and interactions using a three-track neural network. Science, 373(6557):871–876,
2021. 4

Federico Baldassarre, David Menéndez Hurtado, Arne Elofsson, and Hossein Azizpour. Graphqa:
protein model quality assessment using graph convolutional networks. Bioinformatics, 37(3):
360–366, 2021. 3

Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weissig, Ilya N.
Shindyalov, and Philip E. Bourne. The Protein Data Bank. Nucleic Acids Research, 28(1):235–242,
2000. 18

Stephen K. Burley, Helen M. Berman, Gerard J. Kleywegt, John L. Markley, Haruki Nakamura, and
Sameer Velankar. Protein data bank (pdb): the single global macromolecular structure archive.
Protein Crystallography: Methods and Protocols, pp. 627–641, 2017. 19

Yue Cao, Payel Das, Vijil Chenthamarakshan, Pin-Yu Chen, Igor Melnyk, and Yang Shen. Fold2seq:
A joint sequence (1d)-fold (3d) embedding-based generative model for protein design. In Proc. Int.
Conf. Mach. Learn., pp. 1261–1271, 2021. 3

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J. Ragotte, Lukas F. Milles,
Basile IM Wicky, Alexis Courbet, Rob J. de Haas, and et al. Bethel, Neville. Robust deep
learning–based protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022. 2, 3,
8

Georgy Derevyanko, Sergei Grudinin, Yoshua Bengio, and Guillaume Lamoureux. Deep convolu-
tional networks for quality assessment of protein folds. Bioinformatics, 34(23):4046–4053, 2018.
3

Baldwin Dumortier, Antoine Liutkus, Clément Carré, and Gabriel Krouk. PeTriBERT: Augmenting
bert with tridimensional encoding for inverse protein folding and design. bioRxiv, pp. 2022–08,
2022. 3

Cong Fu, Keqiang Yan, Limei Wang, Wing Yee Au, Michael McThrow, Tao Komikado, Koji
Maruhashi, Kanji Uchino, Xiaoning Qian, and Shuiwang Ji. A latent diffusion model for protein
structure generation, 2023. 3

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. SE(3)-transformers: 3d roto-
translation equivariant attention networks. Advances in Neural Information Processing Systems,
33:1970–1981, 2020. 4

Zhangyang Gao, Cheng Tan, and Stan Li. PiFold: Toward effective and efficient protein inverse
folding. Int. Conf. on Learning Representations, 2022. 3, 7, 8, 18, 19

Zhangyang Gao, Cheng Tan, and Stan Li. KW-Design: Pushing the limit of protein deign via
knowledge refinement. Proc. Int. Conf. Learning Representations, 2024. 3

10

Published as a conference paper at ICLR 2024

Alex Herbert and M. Sternberg. Maxcluster: a tool for protein structure comparison and clustering,
2008. URL http://www.sbg.bio.ic.ac.uk/˜maxcluster/. 9, 19

Pedro Hermosilla and Timo Ropinski. Contrastive representation learning for 3d protein structures.
arXiv preprint arXiv:2205.15675, 2022. 3

Pedro Hermosilla, Marco Schäfer, Matej Lang, Gloria Fackelmann, Pere-Pau Vázquez, Barbora
Kozlikova, Michael Krone, Tobias Ritschel, and Timo Ropinski. Intrinsic-extrinsic convolution
and pooling for learning on 3d protein structures. In Proc. Int. Conf. on Learning Representations,
2020. 3

Brian Hie, Salvatore Candido, Zeming Lin, Ori Kabeli, Roshan Rao, Nikita Smetanin, Tom Sercu,
and Alexander Rives. A high-level programming language for generative protein design. bioRxiv,
2022. 18

Jie Hou, Badri Adhikari, and Jianlin Cheng. Deepsf: deep convolutional neural network for mapping
protein sequences to folds. Bioinformatics, 34(8):1295–1303, 2018. 3

Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexander
Rives. Learning inverse folding from millions of predicted structures. In Int. Conf. on Machine
Learning, pp. 8946–8970, 2022. 3, 8

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021. 7

Bin Huang, Yang Xu, Xiuhong Hu, Yongrui Liu, Shanhui Liao, Jiahai Zhang, Chengdong Huang,
Jingjun Hong, Quan Chen, and Haiyan Liu. A backbone-centred energy function of neural networks
for protein design. Nature, 602(7897):523–528, 2022. 3

Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein design.
Nature, 537(7620):320–327, 2016. 2

John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph-
based protein design. Proc. Advances in Neural Information Processing Systems, 32, 2019. 3,
8

Michael Jendrusch, Jan Korbel, and Kashif Sadiq. AlphaDesign: A de novo protein design framework
based on AlphaFold. bioRxiv, pp. 2021–10, 2021. 3

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Antibody-antigen docking and design via
hierarchical equivariant refinement. arXiv preprint arXiv:2207.06616, 2022. 4

Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael Townshend, and Ron Dror. Learning from
protein structure with geometric vector perceptrons. Int. Conf. on Learning Representations, 2020.
3, 8, 18, 19

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, and et al. Potapenko, Anna. Highly
accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021. 1, 2, 4, 17

Mostafa Karimi, Shaowen Zhu, Yue Cao, and Yang Shen. De novo protein design for novel folds using
guided conditional wasserstein generative adversarial networks. Journal of Chemical Information
and Modeling, 60(12):5667–5681, 2020. 3

Jiahan Li, Shitong Luo, Congyue Deng, Chaoran Cheng, Jiaqi Guan, Leonidas Guibas, Jian Peng,
and Jianzhu Ma. Directed weight neural networks for protein structure representation learning.
arXiv preprint arXiv:2201.13299, 2022. 3

Zhixiu Li, Yuedong Yang, Eshel Faraggi, Jian Zhan, and Yaoqi Zhou. Direct prediction of profiles
of sequences compatible with a protein structure by neural networks with fragment-based local
and energy-based nonlocal profiles. Proteins: Structure, Function, and Bioinformatics, 82(10):
2565–2573, 2014. 7

11

http://www.sbg.bio.ic.ac.uk/~maxcluster/

Published as a conference paper at ICLR 2024

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, and Alexander Rives.
Evolutionary-scale prediction of atomic-level protein structure with a language model. Science,
2023. 1, 7

Yi Liu and Brian Kuhlman. RosettaDesign server for protein design. Nucleic Acids Research, 34:
W235–W238, 2006. 3

Matt McPartlon, Ben Lai, and Jinbo Xu. A deep SE(3)-equivariant model for learning inverse protein
folding. bioRxiv doi: 10.1101/2022.04.15.488492, 2022. 3

Christine Orengo, Alex Michie, Susan Jones, David Jones, Mark Swindells, and Janet Thornton.
Cath–a hierarchic classification of protein domain structures. Structure, 5(8):1093–1109, 1997. 7,
18

Sergey Ovchinnikov and Po-Ssu Huang. Structure-based protein design with deep learning. Current
Opinion in Structural Biology, 65:136–144, 2021. 3

Raghav Shroff, Austin Cole, Barrett Morrow, Daniel Diaz, Isaac Donnell, Jimmy Gollihar, Andrew
Ellington, and Ross Thyer. A structure-based deep learning framework for protein engineering.
bioRxiv, 2019. 3

Cheng Tan, Zhangyang Gao, Jun Xia, and Stan Li. Generative de novo protein design with global
context. Proc. Int. Conf. Acoustics, Speech, and Signal Processing, 2022. 8

Raphael John Lamarre Townshend, Martin Vögele, Patricia Adriana Suriana, Alexander Derry,
Alexander Powers, Yianni Laloudakis, Sidhika Balachandar, Bowen Jing, Brandon M Anderson,
Stephan Eismann, et al. Atom3d: Tasks on molecules in three dimensions. In Thirty-fifth Conf. on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. 3

Michel van Kempen, Stephanie S. Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,
Cameron L.M. Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein
structure search with foldseek. Nature Biotechnology, 2024. 20

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. Proc. Int. Conf. Learning Representations, 2018. 3

Limei Wang, Haoran Liu, Yi Liu, Jerry Kurtin, and Shuiwang Ji. Learning hierarchical protein
representations via complete 3d graph networks. In Proc. Int. Conf. Learning Representations,
2022a. 4

Limei Wang, Yi Liu, Yuchao Lin, Haoran Liu, and Shuiwang Ji. Comenet: Towards complete and
efficient message passing for 3d molecular graphs. Advances in Neural Information Processing
Systems, 35:650–664, 2022b. 3

Joseph Watson, David Juergens, Nathaniel Bennett, Brian Trippe, Jason Yim, Helen Eisenach, Woody
Ahern, Andrew Borst, Robert Ragotte, Lukas Milles, et al. De novo design of protein structure and
function with rfdiffusion. Nature, pp. 1–3, 2023. 2, 3, 9

Zachary Wu, Kadina E. Johnston, Frances H. Arnold, and Kevin K. Yang. Protein sequence design
with deep generative models. Current Opinion in Structural Biology, 65:18–27, 2021. 3

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. SE(3) diffusion model with application to protein backbone generation. Proc.
Int. Conf. Machine Learning, 2023. 2, 3, 7, 8, 9, 18, 19, 20

Yuan Zhang, Yang Chen, Chenran Wang, Chun-Chao Lo, Xiuwen Liu, Wei Wu, and Jinfeng Zhang.
Prodconn: Protein design using a convolutional neural network. Proteins: Structure, Function,
and Bioinformatics, 88(7):819–829, 2020. 3

Zuobai Zhang, Minghao Xu, Arian Rokkum Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel
Das, and Jian Tang. Protein representation learning by geometric structure pretraining. In Proc.
Int. Conf. Learning Representations, 2022. 3

12

Published as a conference paper at ICLR 2024

Zaixiang Zheng, Yifan Deng, Dongyu Xue, Yi Zhou, Fei Ye, and Quanquan Gu. Structure-informed
language models are protein designers. In Proc. Int. Conf. Machine Learning, 2023. 1, 3, 8

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng Zhang,
and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework. Proc. Int.
Conf. Learning Representations, 2023. 19

13

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 THE COMPARISON BETWEEN VFN AND IPA

In this section, we first present the pseudocode for IPA and VFN to provide an intuitive comparison,
as shown in Subsection A.1.1. Subsequently, we elaborate on the differences between IPA and VFN,
as outlined in Subsection A.1.2. In order to further elucidate the atom representation bottleneck, we
expound on how VFN addresses the bottleneck in Subsection A.1.3. Finally, in Subsection A.1.4,
we introduce the pipeline of IPA to facilitate our readers’ understanding of the specific processes
involved in IPA.

A.1.1 THE PSEUDO-CODE FOR VFN AND IPA

In this section, we initially compare IPA with VFN in the provided Algorithm 1 and 2 below
and explain the meaning of the notation. Please note that the following code is provided for the
convenience of our readers to distinguish between IPA and VFN’s core differences. The specific
implementation of VFN may vary across different tasks and may differ from Algorithm 2. Please
refer to the main text for the exact implementation.

Algorithm 1 The pseudo-code for the IPA mod-
ule.
1: def IPA({si}, {eij}, {Ti}):
2: qi,ki,vi = Linear(si)

3: q⃗il, k⃗il, v⃗il = Linear(si)

4: q⃗il, k⃗il, v⃗il ← Ti ◦ {q⃗il, k⃗il, v⃗il}
5: apoint

ij =
∑

l ∥q⃗il − k⃗jl∥
–

6: anode
ij = q⊤i kj

7: aedge
ij = Linear(eij)

8: ai,j = softmaxj(a
node
ij + aedge

ij + apoint
ij)

–

9: onode
ij =

∑
j ai,jvi

10: oedge
ij =

∑
j ai,jeij

11: o⃗point
il = T−1

i ◦
∑

j ai,j v⃗jl

12: si ← Linear(oedge
ij ,onode

ij , o⃗point
il)

–

13: return {si}

Algorithm 2 The pseudo-code for the VFN mod-
ule.
1: def VFN({si}, {eij}, {Ti←j}):

–

2: q⃗il = Linear(si)

3: k⃗jl = Ti←j ◦ q⃗jl

4: h⃗k =
∑

l w
a
klq⃗il +

∑
l w

b
klk⃗jl

5: gi,j = concatk(
h⃗k

∥h⃗k∥
,RBF(∥h⃗k∥))

–

–

6: ai,j = softmaxj(MLP(si, sj ,gi,j , ei,j))

7: vi,j = MLP(sj ,gi,j , ei,j)

8: oi =
∑

j ai,jvi,j

–

–

9: si ← si +MLP(oi)

10: ei,j ← MLP(si, sj ,gi,j , ei,j)

11: return {si}, {ei,j}

In the aforementioned pseudocode, we largely adhere to the notations used in the main text, with
some distinctions in certain notations. Specifically, q⃗il denotes the l-th feature vector of the i-th node,
and k⃗jl follows the same convention. Ti represents the transformation matrix from the i-th local
frame (residue frame) to the global frame, while T−1i signifies the transformation matrix from the
global frame to the i-th local frame. Ti←j denotes the transformation matrix from the j-th local
frame to the i-th local frame. si represents the representation of the i-th node, and eij represents
the representation of the edge between i-th and j-th nodes. wa

kl and wb
kl are learnable weights. The

specific process of VFN is detailed in the main text; the procedure for IPA is elaborated in Subsection
A.1.4. For the sake of conciseness in comparison, the pseudocode overlooks certain non-essential
factors. For instance, in the pseudocode, we illustrate a single-head attention mechanism, but in fact,
both IPA and VFN employ a multi-head attention mechanism.

14

Published as a conference paper at ICLR 2024

A.1.2 THE DIFFERENCES BETWEEN IPA AND VFN

As indicated in the pseudocode, the attention mechanism for virtual atoms in IPA and VFN is
fundamentally different. The most crucial distinction lies in the fact that, due to the constraints of
SE(3) invariance, IPA cannot directly employ an activation function when extracting features for
virtual atoms, as explained in Subsection A.1.3. In contrast, VFN circumvents this limitation and
utilizes a vector field operator to extract features, denoted as h⃗k, and complementing it with an MLP
(ReLU inside) for feature extraction. To accommodate this design choice, the overall architecture of
VFN diverges significantly from that of IPA.

A.1.3 BYPASSING IPA BOTTLENECKS

The design of IPA has led to the atom representation bottleneck, while the design of VFN avoids
this issue. Specifically, in IPA, qi and kj are with respect to the global frame, and the operator
corresponding to qi,kj needs to maintain SE(3) invariance. This constraint results in the inability to
directly apply activation functions on qi,kj , as doing so would compromise the SE(3) invariance.
Consequently, IPA can only employ operations similar to distance pooling. We refer to this limitation
as the atom representation bottleneck.

In VFN, we place these virtual atoms in the same local frame Ti, utilizing the local frame to ensure
SE(3) invariance, as proved in Subsection A.2.6. This eliminates the need to impose constraints on
operators to achieve SE(3) invariance. Operators in VFN can freely utilize activation functions without
disrupting SE(3) invariance. This characteristic allows VFN to circumvent the atom representation
bottleneck present in IPA.

A.1.4 THE PIPELINE OF IPA

As shown in Algorithm 1, IPA employs an attention mechanism. Unlike VFN, its attention mechanism
consists of three parts: node attention, edge attention, and point attention. Specifically, node attention
and edge attention utilize common methods. In particular, node attention employs a mechanism
similar to that of the transformer, obtaining attention weights anode

ij through dot product of qi and
kj . In edge attention, the representation of edges eij introduces attention bias aedge

ij through a linear
layer. Point attention is the core of IPA, where attention weights o⃗point

il are obtained through a distance
pooling operation on the virtual atomic distances (∥q⃗il− k⃗jl∥). Subsequently, these attention weights
are summed and normalized through softmax to obtain the final attention weights ai,j . These attention
weights ai,j are then used to calculate weighted averages for the corresponding representations
vi, eij , v⃗jl, producing the output for each type of attention. onode

ij ,oedge
ij , o⃗point

il . Finally, these outputs
are collectively updated for each node’s representation si through a linear layer, achieving the frame
modeling.

A.2 METHODOLOGY

A.2.1 MULTI-LAYER VECTOR PERCEPTRON MODULE

In this section, we elaborate on the process of the multi-layer vector perceptron module, V-MLP, as
illustrated in Algorithm 3:

15

Published as a conference paper at ICLR 2024

Algorithm 3 The pseudo-code for the multi-layer vector perceptron module.

1: def V-MLP(Qi,Q
o
i):

2: wc = {wc
k,l ∈ R}k,l=1,...,dq

,wd = {wd
k,l ∈ R}k,l=1,...,dq

initialize learnable weight wc,wd

3: v⃗k =
∑

l w
c
k,lq⃗l +

∑
l w

d
k,lq⃗

o
l v⃗k ∈ R3 , q⃗l ∈ Qi, q⃗

o
l ∈ Qo

i

4: u⃗k = w⃗k·v⃗k

∥w⃗k∥∥v⃗k∥ v⃗k w⃗k ∈ R3, (w⃗k · v⃗k) ∈ R
w⃗k are learnable weights.

5: we = {we
m,k ∈ R}m,k=1,...,dq

initialize learnable weight we.

6: e⃗m =
∑

k w
e
m,ku⃗k e⃗m ∈ R3

7: return {e⃗m}m=1,....,dq

A.2.2 IMPLEMENTATION OF VFN-DIFF

Figure 6: In the context of FrameDiff (A) and VFN-Diff (B), the traditional point attention module in
FrameDiff has been replaced with a VFN layer, introducing enhanced geometric feature extraction
capabilities

We have implemented VFN-Diff based on FrameDiff, as shown in Figure 6. Apart from modifications
to the structural encoder, IPA, all other parts remain unchanged. Within IPA, attention is divided
into three components: node attention, edge attention, and point attention. In the case of VFN-Diff,
we replace the point attention component in IPA with the VFN layer, while keeping the remaining
portions unaltered. Despite the removal of node attention and edge attention in VFN-Diff, the model
still functions effectively, achieving performance comparable to FrameDiff. However, it is important
to note that, at this stage, VFN-Diff’s parameter count is only one-ninth that of FrameDiff. Clearly,
such a comparison would be unfair. Therefore, we retained the additional parameter-rich “vanilla”
components, node attention and edge attention. This adjustment brings the parameter count of
VFN-Diff close to that of FrameDiff (18.3 million vs. 17.4 million), facilitating a fair comparison.
Moreover, node attention and edge attention are well-established practices, widely adopted in previous
works such as PiFold. Consequently, these modules do not constitute the core of IPA; rather, point
attention does. Hence, the replacement of point attention with the VFN-Diff approach represents a
rigorously comparative implementation.

A.2.3 IMPLEMENTATION OF VFN-IF

We have adopted the PiFold framework to implement VFN, consisting of three components: the input
layer, network layer, and decoder. Concerning the decoder and corresponding loss functions, VFN
remains consistent with PiFold. For the network layer, we have substituted PiFold’s layer, PiGNN,

16

Published as a conference paper at ICLR 2024

Figure 8: Flowchart depicting the fine-tuning process of frozen VFN-IF and ESM with LoRA.

with the VFN layer. However, to ensure a fair comparison, the Global Context Attention module
from PiFold has also been retained in VFN-IF.

Frame

Backbone Atom

VFN
layer

VFN
layer

VFN
layer

VFN

AMQNRWAETKFDSDIDEVVYGS
RLIGSDPDLVLGGGNTSVKTTER
DHAGRIISVLRVKNSGSNLGTIDS
RGFTGIRMDDALAAAKIDKMTDE
AMVDYLKKSMVNPSEPSPSVETF
LHAFLPYKFVMHSHADAILSITNT
DLPSDQIAKILGNVVVLPYIPPG

Sequence

Figure 7: We harnessed the capabilities of VFN layers to effectively
extract both frame and backbone atom information, facilitating the
generation of sequences for inverse folding.

Regarding the network in-
put layer, PiFold employs
a manual featurizer to ex-
tract interatomic features
such as angles and dis-
tances. In VFN, we have
completely removed this
featurizer since the VFN
layer itself can extract ge-
ometric features without re-
lying on a featurizer. We
initialize a portion of vir-
tual atomic coordinates us-
ing known backbone atomic
coordinates to provide the
network with this information.

A.2.4 IMPLEMENTATION OF VFN-IFE

In VFN-IFE, the ESM model is employed to refine the predictions made by VFN-IF. During training,
the pretrained VFN-IF is frozen, and its predictions are used as input to the ESM model (as described
later). The ESM model is initialized with pretrained weights and then frozen. We leverage LoRA
to provide learnable weights and fine-tune the ESM. ESM is supervised with a cross-entropy loss
using ground truth amino acid labels. The most critical aspect of our approach is the introduction of a
relaxation method, allowing the ESM to accept probability-based inputs from VFN-IF.

For i-th amino acid, VFN-IF predicts a set of probabilities corresponding to 20 amino acid categories,
denoted as p = {0 < pj < 1}j=0,...,20. Similarly, ESM includes word embeddings corresponding
to these categories, denoted as WESM = {wj ∈ RdESM}j=0,...,20. Therefore, we use the predicted
probabilities p from VFN to perform a weighted sum of the corresponding word embeddings WESM
for producing the input token sESM

i to ESM, denoted as:

sESM
i =

∑
j

pjwj (10)

A.2.5 LOCAL FRAMES OF RESIDUES

In VFN, a local frame is set up for each residue via a Gram–Schmidt process proposed by AlphaFold2
(Jumper et al., 2021), refer to rigidFrom3Points algorithm in their paper.

17

Published as a conference paper at ICLR 2024

A.2.6 PROOF OF SE(3) INVARIANCE

The output and the vector representation of VFN are SE(3) invariant, which are crucial for networks
to attain higher performance. The proof is simple. In short, the local frame of residues is SE(3)
equivariant, which ensures the invariance for the inputs of VFN and the outputs of vector field
operator. Here, we provide the proof following:

The SE(3) invariance of initial representation. Due to all the initial representations are with respect
to the local frame, the input of VFN, si, ei,j , q⃗k, is SE(3) invariant.

The SE(3) invariance of the vector field operator. In our main paper, the transform matrix Ti←j is
employed in our operators (refer to Eq. equation 1 in our main paper):

Kj = Ti←j ◦Qj , where Ti←j = T−1i ◦Tj (11)

The transform matrix Ti←j is SE(3) invariant w.r.t. the global reference frame, because the global
frame cancels out in the computation of the transform matrix Ti←j :

(Tglobal ◦Ti)
−1 ◦ (Tglobal ◦Tj) = T−1i ◦T

−1
global ◦Tglobal ◦Tj

= T−1i ◦Tj

(12)

where Tglobal denotes any global reference frame. Therefore, the outputs h⃗k,gi,j of the vector field
operator are SE(3) invariant.

The conclusion of SE(3) invariance. Finally, because the input of VFN and the vector field operator
(Only these operators associated with the global reference frame) are SE(3) invariant, the intermediate
variables and outputs of VFN satisfy SE(3) invariance.

A.3 DE NOVO PROTEIN DESIGN USING VFN

In this section, we explored de novo protein design through the utilization of two distinct pipelines.
The first pipeline involves the established flow of FrameDiff coupled with Protein MPNN, while
the alternative approach adpots VFN-Diff in tandem with VFN-IFE. Both pipleines employed the
ESMFold (Hie et al., 2022) to fold amino acid sequences into ptrotein structures.Remarkably, in
one-shot experiments with a Noise Scale parameter set to 1.0, our VFN-based pipeline outperformed
FrameDiff+Protein MPNN approach in terms of designability, as shown in §A.4.3.

VFN-
IFE

Protein
MPNN

ESMFold

VFN-
DIFF

Frame
Diff SELDELLEKLKEIYEETRE

MKTEEIEANKDNVASEEE
IAALLARPREELFAELMR
DLWGRIQRVRRFALKLPG
FSELPEEDRLALLVANSL
RVVLIEMARG

Figure 9: Whole pipelines

A.4 EXPERIMENT

A.4.1 DATASET DETAILS

Protein diffsuion. FrameDiff was re-trained using the same standards as in (Yim et al., 2023), while
VFN-Diff was trained on four NVIDIA 4090 GPUs for a total duration of 10 days and 14 hours. The
training dataset consisted of proteins from the PDB database (Berman et al., 2000) in August 2023,
encompassing 21,399 proteins with lengths ranging from 60 to 512 and a resolution of < 5Å.

Inverse folding. Unless specified, our experiments are conducted on the CATH 4.2 (Orengo et al.,
1997) dataset using the same data splitting as previous works such as GVP (Jing et al., 2020) and
PiFold (Gao et al., 2022). The dataset consists of 18,024 proteins for training, 608 for validation, and

18

Published as a conference paper at ICLR 2024

Metric

Setting Noise Scale 1.0 0.5 0.1 0.1

Number Steps 500 500 500 100

Number Sequences 8 8 8 8

D
es

ig
na

bi
lit

y
scTM0.5 ↑

FrameDiff + ProteinMPNN 53.58% 76.42% 77.41% 76.67%
VFN-Diff + ProteinMPNN 67.04% 81.23% 83.95% 83.83%
VFN-Diff + VFN-IF 72.84% 91.60% 93.46% 90.49%

scRMSD2 ↓
FrameDiff + ProteinMPNN 10.62% 23.46% 28.02% 26.42%
VFN-Diff + ProteinMPNN 25.93% 40.00% 44.20% 40.25%
VFN-Diff + VFN-IF 26.79% 53.33% 58.27% 51.36%

D
iv

er
si

ty

Diversity ↑
FrameDiff + ProteinMPNN 51.98% 74.57% 75.56% 74.94%
VFN-Diff + ProteinMPNN 66.54% 80.49% 83.33% 82.59%
VFN-Diff + VFN-IF 69.75% 86.91% 87.03% 85.43%

Table 5: Comparison of the complete pipeline. All settings are aligned with Table 4 in the main text.
Here, VFN-IF adopts the settings of ProteinMPNN.

1120 for testing. During the evaluation, we also test our model on two smaller datasets, TS50 and
TS500 (Jing et al., 2020; Gao et al., 2022), to validate the generalizability. Furthermore, we also
create another larger training set by incorporating data from the PDB (Burley et al., 2017). We apply
the same strategy as in (Zhou et al., 2023) to collect and filter structures. Additionally, the proteins
with sequences highly similar to test set proteins are also removed. By using the expanded dataset,
we are able to scale up the VFN-IF.

A.4.2 IMPLEMENT DETAILS

VFN-Diff. Our training regimen employs the Adam optimizer with the following hyperparameters: a
learning rate of 0.0001, β1 set to 0.9, and β2 set to 0.999. We follow the setting of FrameDiff. For
more implement details, please refer to thier paper.

VFN-IF. VFN-IF are trained with batch size 8 and are optimized by AdamW with a weight decay of
0.1. We apply a OneCycle scheduler with a learning rate of 0.001 and train our model for a total of
100,000 iterations.

VFN-IFE. We constructed VFN-IFE by employing a 15B ESM model in conjunction with the
standard VFN-iF. The rank for LoRA applied to ESM was set to 8. All other training settings
remained consistent with those of VFN-iF.

A.4.3 METRIC

Protein diffusion inference. Inferences were conducted with protein lengths ranging from 100 to
500, using a step size of 5. This resulted in the generation of 10 diffusion samples of protein at each
step, with a total of 810 diffusion samples, denoted as Ndiff . ‘Noise Scale’ represents the initial
noise scale in diffusion, while ‘Num. Step’ represent the diffusion steps during inference. Protein
MPNN was employed to generate ‘Num. Seq.’ (Nseq) sequences for each sample, followed by
ESMFold to create protein structure files, referred to as Nesm = Ndiff ×Nseq .

Protein diffusion Metrics. Metrics of protein diffusion inference experiments can be categorized
into the following sections:

• Structural Similarity Metrics: This metric evaluates the proportion of samples with a
structural consensus TM score (scTM) and RMSD meeting the criteria of scTM > 0.5
and scRMSD < 2 Å, as indicated in Table 4 by scTM0.5 and scRMSD2. In this context,
scTM measures the structural similarity between ESMFold generated proteins and diffusion
generated structures, while scRMSD quantifies the root-mean-square deviation in atomic
positions between these structures.

• Diversity: To gauge the diversity of the generated protein sequences, we adhered to the
methodology laid out in (Yim et al., 2023) and leveraged MaxCluster (Herbert & Sternberg,
2008) for hierarchical clustering of protein backbones. However, we opted for a higher
threshold of 0.6 TM-score, in contrast to the 0.5 TM-score referenced in the literature, to

19

Published as a conference paper at ICLR 2024

impose a more rigorous clustering criterion. Furthermore, we enforced a selection criterion
for cluster inclusion, requiring scTM > 0.5, with the intention of mitigating the impact
of proteins with low designability on diversity assessments. For each diffusion sample,
a singular protein generated through ESMFold was chosen based on the highest scTM
score. The diversity metric was computed as the ratio of the number of clusters to Ndiff .
These experimental modifications were introduced to yield results that are not only more
scientifically sound but also align more closely with anticipated trends within the inference
data.

• pdbTM: To assess protein novelty, we compared the ESMFold-generated PDB files, each
containing the protein with the highest scTM score from a diffusion sample, to the PDB
database using the Foldseek tool (van Kempen et al., 2024). The highest TM-scores of the
generated samples were compared with any chain in the PDB database, and the resulting
value was denoted as pdbTM. To exclude proteins with limited designability, we applied
a cutoff criterion of RMSD < 2, consistent with the approach used in (Yim et al., 2023).
pdbTM served as a robust metric for quantifying protein novelty, reflecting the structural
similarity between the generated proteins and those documented in the PDB database. In
contrast to the threshold of pdbTM < 0.6 employed in (Yim et al., 2023), we considered
proteins with pdbTM values less than 0.7, which refers as pdbTM0.7 in Table 4, as novel
designs due to their substantial dissimilarity from existing proteins, resulting in the inclusion
of a greater number of novel proteins in both selection.

Inverse folding. We conducted a comparative analysis involving VFN-IF, VFN-IFE, Pifold, and
LM-Design. We utilized the CATH 4.2 dataset for validation and compared the results by performing
ESMFold on the generated sequences (with Nseq = 1) and comparing them with the original PDB
files to calculate scTM and scRMSD. This analysis was performed as a one-shot comparison.

Whole Pipeline. This set of experiments compared VFN-Diff + VFN-IFE with FrameDiff + Protein-
MPNN. To ensure alignment of comparison standards, we used Nseq = 1 and Noise Scale = 1.0 for
one-shot comparisons.

Figure 10: Whole pipeline in one-shot: FrameDiff+ProteinMPNN and VFN-Diff+VFN-IFE

A.4.4 ABLATION STUDY

A.5 ABLATIONS

In this section, we carefully investigate the design choices of vector field modules proposed here
based on CATH 4.2 (inverse folding).

The number of layers. We investigate the impact of modifying the number of layers on recovery and
perplexity in Table 6a. Increasing the number of layers from 5 to 15 results in a marginal improvement

20

Published as a conference paper at ICLR 2024

Figure 11: VFN vs PiFold on different structural contexts

Table 6: Ablation studies on the CATH 4.2 dataset. We use the default model settings unless otherwise
specified. When calculating the number of parameters, we only count the number of parameters
occupied by this module in one layer.

(a) Varying the number of layers.

#layers 5 8 10 12 15

w edge feature Recovery(%) 52.53 54.12 54 54.3 54.08
Perplexity 4.3114 4.1986 4.1883 4.1536 4.2185

w/o edge feature Recovery (%) 52.68 53.78 54.28 54.11 54.7
Perplexity 4.3192 4.1983 4.1766 4.1829 4.1687

(b) Varying the number of vectors.

#Vec. 16 32 64

Recovery (%) 53.97 54.28 53.63
Perplexity 4.1598 4.1766 4.2636

(c) Varying the V-MLP.

Recovery (%) Params

V-MLP 54.28 4.2K
MLP 53.42 36.0K
w/o V-MLP 53.67 0.0K

(d) Varying the vector field.

Recovery (%) Perplexity

Baseline 54.28 4.1766
w/o Vec. field 35.43 7.5455
w/o gi,j in Eq. equation 7 53.05 4.2907

(e) Varying the transformation T .

ID Gbf h⃗k/∥h⃗k∥ Transformation Recovery(%) Perplexity

1 ✓ ✓ ✓ 54.28 4.1766
2 ✗ ✓ ✓ 53.55 4.2495
3 ✓ ✗ ✓ 53.36 4.2238
4 ✗ ✗ ✗ 52.89 4.3268

in recovery scores, with the highest recovery achieved at 54.72% for 12 layers. Ablation experiments
without the edge featurizer show that with or without edge features, the performance is comparable.
Especially when the number of layers reaches 15, it even achieves better results, indirectly proving
the effectiveness of VFN-IF and its potential for reducing reliance on hand-crafted features.

21

Published as a conference paper at ICLR 2024

The number of vectors. In Table 6b we also perform an ablation study to determine the optimal
number for vectors. It demonstrates that increasing the vector number from 16 to 32 brings a slight
improvement in recovery score from 53.72% to 54.26%, while maintaining a low perplexity score of
4.14. However, further increasing the number to 64 results in a decrease in recovery score to 53.83%
and a higher perplexity score of 4.20. Overall, these findings suggest that 32 is a more suitable choice.

V-MLP. In Table 6c, we observe that using V-MLP outperforms using a regular MLP or not using it
at all. Compared to using a regular MLP, V-MLP significantly reduces the parameter count.

Vector field design. Results in Table 6d show that removing the whole vector field operator leads
to a significant drop in recovery, indicating its importance in capturing protein folding patterns.
The incorporation of the gi,j in the edge aggregation module also has a substantial effect on the
performance of the model.

Vector field operator design. We validate the effectiveness of RBF and h⃗k/∥h⃗k∥ in Eq. equation 3,
as shown in Table 6e. Furthermore, it illustrates that completely excluding the Eq. equation 3 and
directly flattening the vectors Hi,j into gi,j leads to an obvious performance decrease.

A.5.1 VISUALIZATION RESULTS

In this section, we visualize some of the protein structure restoration results of VFN-IF, as shown in
Figure 13, Figure 14 and Figure 12.

ExperimentVFN PiFold
r.m.s.d. = 3.227 Å Recovery = 39.7 %r.m.s.d. = 1.820 Å Recovery = 51.2 %

Figure 12: Visualization results of a challenging sample (PDB 2KRT). We use AlphaFold2 to recover
the structure based on the predicted sequence and compare it against the experimentally determined
ground-truth structure.

22

Published as a conference paper at ICLR 2024

1D2I
r.m.s.d. = 0.317 Å recovery = 54.70 %

1WTD
r.m.s.d. = 1.846 Å recovery =48.90 %

2KIN
r.m.s.d. = 0.453 Å recovery = 50.00 %

VFN

1GT7
r.m.s.d. = 0.517 Å recovery = 54.37 %

2BMO
r.m.s.d. = 0.403 Å recovery = 52.06 %

2LT5
r.m.s.d. = 1.869 Å recovery = 49.17 %

Experiment

Figure 13: The visualization result of VFN.

23

Published as a conference paper at ICLR 2024

2LWY
r.m.s.d. = 0.827 Å recovery = 57.25 %

3F7S
r.m.s.d. = 0.629 Å recovery = 50.00 %

4HR6
r.m.s.d. = 0.544 Å recovery = 52.47 %

VFN

2R4I
r.m.s.d. = 0.730 Å recovery = 48.78 %

3GZB
r.m.s.d. = 0.575 Å recovery = 50.00 %

4U13
r.m.s.d. = 0.457 Å recovery = 49.54 %

Experiment

Figure 14: The visualization result of VFN.

24

	Introduction
	Related Work
	De novo Protein Design
	General Purpose Encoder
	Frame-based Encoder
	Atom Representation Bottleneck

	Vector Field Network Layers
	Protein Representation
	Vector Field Operator
	Node Interactions
	Edge Interactions
	Virtual Atom Coordinates Updating

	Implementation for De novo Protein Design
	Protein Diffusion
	Inverse Folding

	Experiments
	Inverse Folding
	Protein Diffusion

	Conclusion
	Appendix
	The Comparison between VFN and IPA
	The pseudo-code for VFN and IPA
	The Differences Between IPA and VFN
	Bypassing IPA Bottlenecks
	The Pipeline of IPA

	Methodology
	Multi-Layer Vector Perceptron Module
	Implementation of VFN-Diff
	Implementation of VFN-IF
	Implementation of VFN-IFE
	Local Frames of Residues
	Proof of SE(3) Invariance

	De novo Protein Design Using VFN
	Experiment
	Dataset Details
	Implement Details
	Metric
	Ablation study

	Ablations
	Visualization results

