
Appendix

A Existing Synthesis Framworks

Inspired by prior work by Jia and Liang [2016] in semantic parsing, Yu et al. [2021] extended a
synchronous context-free grammar (SCFG) approach to the text-to-SQL task where they manually
crafted about 90 high-quality SQL-NLQ aligned patterns to generate new SQL-NLQ pairs. They
found pretraining on the synthetic dataset leads to a significant improvement even tested with a very
strong text-to-SQL parser RAT-SQL on the Spider benchmark.

While SCFG usually creates high-quality data because patterns are carefully designed and aligned,
the coverage of the patterns is limited, and expert knowledge is required to design such patterns.
Thus, more efforts are devoted to automating the procedure. Guo et al. [2018] utilized a two-stage
approach by first sampling SQL queries from a simple pattern and then generating questions using
a copy-based RNN encoder-decoder structure find the synthetic data that can improve the existing
state-of-the-art model on the WikiSQL benchmark. Zhong et al. [2020] followed the same two-stage
approach but used templates extracted from training to generate SQL and augmented the NLQ
generator with pretrained transformer BERT and iteratively updated the parser and generator. Only
the synthetic dataset that was created using target schemas filtered with cycle consistency can facilitate
the downstream performance.

Along the same approach, Wang et al. [2021] identified problems with fixed SQL synthesis rules
and employed a full-fledged probabilistic context-free grammar (PCFG) that enabled generating
SQLs with varying structures. They synthesized natural language queries with a BART SQL-NLQ
generator. Their synthesis method has been shown to boost the RAT-SQL parser performance on the
Spider benchmark, though the improvement is not as significant as pretraining using SCFG generated
synthetic data [Yu et al., 2021]. The gap might be due to the quality of the synthetic dataset as the
independent selection of generation step in PCFG introduces substantial noise such as illogical SQL
queries.

To improve the quality of synthetic data, Wu et al. [2021] introduced a clause-level synthesis
framework: first decomposing a query into sub-clauses and translating sub-SQL clauses into sub-
questions, and finally assembling sub-questions into a whole question. They found clause-based
synthesis method is better than flat synthesis.

Alternatively, Yang et al. [2021] proposed to improve the quality of synthetic data by incorporat-
ing domain information in question generation. Specifically, they learned an entity sampler and
synthesized questions using an entity-to-question generator with entities sampled from the sampler,

Paper Method
SQL Synthesis NLQ Synthesis SQL-NLQ

Bridging
Manual
EffortAbstraction Limitation Procedure Generator

Guo et al
(2018) Two stage Template Single template, no JOIN SQL à NLQ

copy-based
RNN - minimal

GAZP
(Zhong et al
2020)

Iterative
two stage Template

Violating foreign key
relations, limit to training
templates

SQL à NLQ BERT +
point
decoder

- minimal

Wang et al
(2021) Two stage PCFG OP/COL incompatibility,

invalid SQL structure
SQL à NLQ BART - minimal

Wu et al
(2021)

Two stage CFG No support for IEU,
no JOIN

SQL à Sub-SQL
à NLQ fragment
àNLQ

copy-based
RNN

SQL clause
/ NLQ

fragment

combination
rules

Yang et al
(2021)

Iterative
reversed
two stage

- Dependent on base parser schema à entity
à NLQ T5 - minimal

Grappa
(Yu et al 2021) Synchronous Template Limit to training templates simultaneous instantiation of

SQL-NLQ template

Aligned
SQL-NLQ

template
alignment

Ours Two stage Template Limit to training templates SQLà IRà NLQ T5 IR minimal

Figure 3: Comparison of different data synthesis methods for text-to-SQL task. Synchronous refers
to generating SQL and NLQ together, Two-stage first synthesizes SQL then generates NLQ, reversed
two-stage first generates NLQ then synthesizes SQL. SQL-NLQ Bridging refers to intermediate
operations or representations for matching SQL and NLQ.

10

followed by generating pairing SQL queries through a baseline parser. For this approach, they also
attractively updated the parser and generator, in a similar fashion as in Zhong et al. [2020]. Their
synthetic dataset can significantly improve a DT-Fixup parser on the Spider benchmark.

This work seeks to investigate value of synthetic dataset with current state-of-the-art PICARD
model and refine a synthetic method in an automate and non-iterative manner. Thus, we examine two
synthetic datasets from recent work [Wang et al., 2021, Wu et al., 2021] that demonstrate improvement
of downstream performance with previous state-of-the-art text-to-SQL parser (RAT-SQL) over Spider
benchmark without iterative training.

B SQL Synthesis with Schema-Weighted Column Sampling

B.1 Table Distance.

For a given database d, we first establish an undirected graph for all the tables in d. We can then
compute the distance between any two tables, e(·, ·), defined as the least number of joins necessary
to join the two tables under the restriction that table join can only take place with qualified primary
key and foreign key information. In other words, we disable arbitrary join of two tables if they lack
key and foreign key relationship.

We give some examples using one of the databases (id: college_1) in the Spider benchmark, as
shown in Table 7.

• e(T1,T2) = 1 because the column class code in table class (T1) is a foreign key in table
course (T2). We can also observe from the table graph in Figure 4: there is a direct path
between table node class and table node course.

• e(T2,T7) = 2 since we first need to join table course (T2) with table department (T3),
followed by joining table department with table student (T7). Note that even though we
can also join using the path T2 → T1 → T5 → T7, this is not the least number of joins
between the two tables.

Table 7: Example database (id: college_1)

Alias Table Name Primary Key Foreign Key

Table Column

T1 class class code enroll class code

T2 course course code class class code

T3 department department code

course department code

professor department code

student department code

T4 employee employee number

class professor employee number

department employee number

professor employee number

T5 enroll - - -

T6 professor - - -

T7 student student num enroll student number

The reason we introduce the concept of table distance is that we want to leverage this value to
promote table joins with appropriate relationships while discouraging illogical joins when two tables
are irrelevant. During the process of column sampling, we will choose columns that have smaller
table distance with the other columns that have already been selected with the objective to create
more realistic synthetic SQL queries. In the example above, assume we have first sampled a column
from the table student (T7). For the next column placeholder, we are more likely to sample a column
from table enroll (T5) than table professor (T6) — it is more natural to ask questions like "how many

11

course
T2

class
T1

department
T3

employee
T4

enroll
T5

professor
T6

student
T7

Figure 4: Example table graph (id: college_1)

students enrolled in class X" compared to asking "how many students enrolled in classes taught by
professors who were employed before year YYYY".

B.2 Algorithm

Define a template t as (q, c,v) where q is the flat template string, c = [c1, . . . , cm] is the set of
column placeholders and v = [v1, . . . , vn] is the set of value placeholders in q. Denote Tc to represent
the table that contains column c and Sd(τ) as the set of columns in d with the strong type τ . Given a

Algorithm 1: Single SQL Synthesis with Schema-Weighted Column Sampling
Input : template t = (q, c,v), database d, decay rate γ
Output: SQL query y

1 Let y = q
2 Random sample z1 from Sd(τc1) and replace c1 with z1 in y
3 Compute sampling weights

w(z) =

{
1, if Tz = Tc1

1

γδc1
(z) , o.w. , ∀z

where δc(z) = e(Tc, Tz)
4 for c← c2 : cm do
5 Compute sampling distribution

p(z) =


w(z)∑

z′:τ
z′=τc

w(z′) , if τz = τc

0, o.w.

6 Sample z from Sd(τc) with p
7 Replace c with z in y
8 Update sampling weights

w(z)← w(z) +

{
1, if Tz = Tc

1
γδc(z)

, o.w.
, ∀z

9 end
10 for v ← v1 : vn do
11 Identify relevant columns w.r.t. v and retrieve a set of possible values for v from the d
12 Random sample one value from the set and replace v with the value in y
13 end

12

template t and a qualified database d, the fundamental algorithm of SQL synthesis is described in
Algorithm 1 in Appendix B.

The intuition is as follows: after we select the first column for the given template, we want to choose
other columns in the database that are more relevant to the first column, so as to boost the chance of
synthesizing more realistic SQL queries. We do so by sampling columns, for the remaining column
placeholders in the template, according to a particular sampling probability, which is a monotonically
decreasing function of the table distances in the table graph for type-qualified column candidates,
and 0 for non-qualified column candidate.

In Algorithm 1, the input γ is the hyperparameter that controls the decay rate in the sampling
probability for qualified columns. By selecting an appropriate value for γ (γ = 5), the average
table count in our synthetic data constructed from the schema-weighted column sampling method is
close to that in the real Spider benchmark as shown in Figure 5, while the random column sampling
mechanism tend to generate SQLs that are overly complicated. See Appendix A for the experiment
details.

B.3 Value of γ in Algorithm 1.

Recall that in Algorithm 1, γ is a hyperparameter that controls the decay rate in the sampling
probability for columns that are farther away from the columns that have already been selected.
Under the restricted join condition, we look at the number of tables in a query as a proxy to the
table distance. To determine the value of γ, we randomly sample 7000 synthetic SQL queries with
replacement and calculate the average number of tables from the samples. We repeat this process for
1000 times and plot the distribution. Then we perform the same steps for the real Spider training data.
We chose γ so that the distribution of the average number of tables in the synthetic data is close to
the real data. This helps prevent generating over-simplified or over-complicated SQL queries.

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2
Number of tables

0

50

100

150

200

250

300

350
Spider train
Synthetic w/ weight
Synthetic w/o weight

Figure 5: Histogram of the average table count (i.e. number of joins) for three types of datasets with
γ = 5. Our schema-distance-weighted column sampling reduces the table number of synthetic SQLs
and better matches the training distribution.
Based on this experiment, we chose γ to be 5 for the Spider benchmark. Figure 5 displays the distri-
bution for three types of datasets: Spider training, synthetic dataset with schema-distance-weighted
column sampling, and synthetic dataset with random column sampling. The figure demonstrates
that the weighted sampling process, which provides an interface to tune the value of γ, can generate
synthetic SQL queries that better match the real training data.

13

	Conclusion
	Existing Synthesis Framworks
	SQL Synthesis with Schema-Weighted Column Sampling
	Table Distance.
	Algorithm
	Value of in Algorithm 1.

