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Abstract

A long standing goal in neuroscience has been to elucidate the functional or-
ganization of the brain. Within higher visual cortex, functional accounts have
remained relatively coarse, focusing on regions of interest (ROIs) and taking the
form of selectivity for broad categories such as faces, places, bodies, food, or
words. Because the identification of such ROIs has typically relied on manually
assembled stimulus sets consisting of isolated objects in non-ecological contexts,
exploring functional organization without robust a priori hypotheses has been
challenging. To overcome these limitations, we introduce a data-driven approach in
which we synthesize images predicted to activate a given brain region using paired
natural images and fMRI recordings, bypassing the need for category-specific
stimuli. Our approach – Brain Diffusion for Visual Exploration (“BrainDiVE”) –
builds on recent generative methods by combining large-scale diffusion models
with brain-guided image synthesis. Validating our method, we demonstrate the
ability to synthesize preferred images with appropriate semantic specificity for
well-characterized category-selective ROIs. We then show that BrainDiVE can
characterize differences between ROIs selective for the same high-level category.
Finally we identify novel functional subdivisions within these ROIs, validated with
behavioral data. These results advance our understanding of the fine-grained func-
tional organization of human visual cortex, and provide well-specified constraints
for further examination of cortical organization using hypothesis-driven methods.
Code and project site: https://www.cs.cmu.edu/~afluo/BrainDiVE

1 Introduction

The human visual cortex plays a fundamental role in our ability to process, interpret, and act on visual
information. While previous studies have provided important evidence that regions in the higher
visual cortex preferentially process complex semantic categories such as faces, places, bodies, words,
and food [1, 2, 3, 4, 5, 6, 7], these important discoveries have been primarily achieved through the
use of researcher-crafted stimuli. However, hand-selected, synthetic stimuli may bias the results
or may not accurately capture the complexity and variability of natural scenes, sometimes leading
to debates about the interpretation and validity of identified functional regions [8]. Furthermore,
mapping selectivity based on responses to a fixed set of stimuli is necessarily limited, in that it can
only identify selectivity for the stimulus properties that are sampled. For these reasons, data-driven
methods for interpreting high-dimensional neural tuning are complementary to traditional approaches.

We introduce Brain Diffusion for Visual Exploration (“BrainDiVE”), a generative approach for
synthesizing images that are predicted to activate a given region in the human visual cortex. Several
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Figure 1:Images generated using BrainDiVE .Images are generated using a diffusion model with
maximization of voxels identi�ed from functional localizer experiments as conditioning. We �nd that
brain signals recorded via fMRI can guide the synthesis of images with high semantic speci�city,
strengthening the evidence for previously identi�ed category selective regions. Select images are
shown, please see below for uncurated images.

recent studies have yielded intriguing results by combining deep generative models with brain
guidance [9, 10, 11]. BrainDiVE, enabled by the recent availability of large-scale fMRI datasets
based on natural scene images [12, 13], allows us to further leverage state-of-the-art diffusion
models in identifying �ne-grained functional specialization in an objective and data-driven manner.
BrainDiVE is based on image diffusion models which are typically driven by text prompts in order
to generate synthetic stimuli [14]. We replace these prompts with maximization of voxels in given
brain areas. The result being that the resultant synthesized images are tailored to targeted regions in
higher-order visual areas. Analysis of these images enables data-driven exploration of the underlying
feature preferences for different visual cortical sub-regions. Importantly, because the synthesized
images are optimized to maximize the response of a given sub-region, these images emphasize and
isolate critical feature preferences beyond what was present in the original stimulus images used in
collecting the brain data. To validate our �ndings, we further performed several human behavioral
studies that con�rmed the semantic identities of our synthesized images.

More broadly, we establish that BrainDiVE can synthesize novel images (Figure 1) for category-
selective brain regions with high semantic speci�city. Importantly, we further show that Brain-
DiVE can identify ROI-wise differences in selectivity that map to ecologically relevant properties.
Building on this result, we are able to identify novel functional distinctions within sub-regions of
existing ROIs. Such results demonstrate that BrainDiVE can be used in a data-driven manner to
enable new insights into the �ne-grained functional organization of the human visual cortex.

2 Related work
Mapping High-Level Selectivity in the Visual Cortex. Certain regions within the higher visual
cortex are believed to specialize in distinct aspects of visual processing, such as the perception of
faces, places, bodies, food, and words [15, 3, 4, 1, 16, 17, 18, 19, 5, 20]. Many of these discoveries
rely on carefully handcrafted stimuli speci�cally designed to activate targeted regions. However,
activity under natural viewing conditions is known to be different [21]. Recent efforts using arti�cial
neural networks as image-computable encoders/predictors of the visual pathway [22, 23, 24, 25, 26,
27, 28, 29, 30] have facilitated the use of more naturalistic stimulus sets. Our proposed method
incorporates an image-computable encoding model in line with this past work.

Deep Generative Models. The recent rise of learned generative models has enabled sampling from
complex high dimensional distributions. Notable approaches include variational autoencoders [31,
32], generative adversarial networks [33], �ows [ 34, 35], and score/energy/diffusion models [36, 37,
38, 39]. It is possible to condition the model on category [40, 41], text [42, 43], or images [44]. Recent
diffusion models have been conditioned with brain activations to reconstruct observed images [45,
46, 47, 48, 49]. Unlike BrainDiVE, these approaches tackle reconstruction but not synthesis of novel
images that are predicted to activate regions of the brain.

Brain-Conditioned Image Generation. The differentiable nature of deep encoding models in-
spired work to create images from brain gradients in mice, macaques, and humans [50, 51, 52].
Without constraints, the images recovered are not naturalistic. Other approaches have combined deep
generative models with optimization to recover natural images in macaque and humans [10, 11, 9].
Both [11, 9] utilize fMRI brain gradients combined with ImageNet trained BigGAN. In particu-
lar [11] performs end-to-end differentiable optimization by assuming a soft relaxation over the
1; 000ImageNet classes; while [9] trains an encoder on the NSD dataset [13] and �rst searches for
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top-classes, then performs gradient optimization within the identi�ed classes. Both approaches are
restricted to ImageNet images, which are primarily images of single objects. Our work presents major
improvements by enabling the use of diffusion models [44] trained on internet-scale datasets [53]
over three magnitudes larger than ImageNet. Concurrent work by [54] explore the use of gradients
from macaque V4 with diffusion models, however their approach focuses on early visual cortex with
grayscale image outputs, while our work focuses on higher-order visual areas and synthesize complex
compositional scenes. By avoiding the search-based optimization procedures used in [9], our work
is not restricted to images within a �xed class in ImageNet. Further, to the authors' knowledge we
are the �rst work to use image synthesis methods in the identi�cation of functional specialization in
sub-parts of ROIs.

Figure 2:Architecture of brain guided diffusion (BrainDiVE) . Top: Our framework consists
of two core components:(1) A diffusion model trained to synthesize natural images by iterative
denoising; we utilize pretrained LDMs.(2) An encoder trained to map from images to cortical activity.
Our framework can synthesize images that are predicted to activate any subset of voxels. Shown here
are scene-selective regions (RSC/PPA/OPA) on the right hemisphere.Bottom: We visualize every4
steps the magnitude of the gradient of the brain w.r.t. the latent and the corresponding "predicted
x0" [55] when targeting scene selective voxels in both hemispheres. We �nd clear structure emerges.

3 Methods

We aim to generate stimuli that maximally activate a given region in visual cortex using paired natural
image stimuli and fMRI recordings. We �rst review relevant background information on diffusion
models. We then describe how we can parameterize encoding models that map from images to brain
data. Finally, we describe how our framework (Figure 2) can leverage brain signals as guidance to
diffusion models to synthesize images that activate a target brain region.

3.1 Background on Diffusion Models
Diffusion models enable sampling from a data distributionp(x) by iterative denoising. The
sampling process starts withxT � N (0; I ), and produces progressively denoised samples
xT � 1; xT � 2; xT � 3 : : : until a samplex0 from the target distribution is reached. The noise level
varies by timestept, where the sample at each timestep is a weighted combination ofx0 and
� � N (0; I ), with x t =

p
� t x0 + �

p
1 � � t . The value of� interpolates betweenN (0; I ) andp(x).

In the noise prediction setting, an autoencoder network� � (x t ; t) is trained using a mean-squared error
E(x;�;t )

�
k� � (x t ; t) � � k2
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�
. In practice, we utilize a pretrained latent diffusion model (LDM) [44],

with learned image encoderE � and decoderD 
 , which together act as an autoencoderI �
D 
 (E � (I )) . The diffusion model is trained to samplex0 from the latent space ofE � .

3.2 Brain-Encoding Model Construction
A learned voxel-wise brain encoding model is a functionM � that maps an imageI 2 R3� H � W to
the corresponding brain activation fMRI beta values represented as anN element vectorB 2 RN :
M � (I ) ) B . Past work has identi�ed later layers in neural networks as the best predictors of
higher visual cortex [30, 56], with CLIP trained networks among the highest performing brain
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