
LLMs for Semi-Automated Data Science:
Introducing CAAFE for Context-Aware Automated

Feature Engineering

Anonymous Author(s)
Affiliation
Address
email

Abstract

As the field of automated machine learning (AutoML) advances, it becomes in-1

creasingly important to incorporate domain knowledge into these systems. We2

present an approach for doing so by harnessing the power of large language models3

(LLMs). Specifically, we introduce Context-Aware Automated Feature Engineering4

(CAAFE), a feature engineering method for tabular datasets that utilizes an LLM to5

iteratively generate additional semantically meaningful features for tabular datasets6

based on the description of the dataset. The method produces both Python code for7

creating new features and explanations for the utility of the generated features.8

Despite being methodologically simple, CAAFE improves performance on 11 out9

of 14 datasets - boosting mean ROC AUC performance from 0.798 to 0.822 across10

all dataset - similar to the improvement achieved by using a random forest instead11

of logistic regression on our datasets.12

Furthermore, CAAFE is interpretable by providing a textual explanation for each13

generated feature. CAAFE paves the way for more extensive (semi-)automation in14

data science tasks and emphasizes the significance of context-aware solutions that15

can extend the scope of AutoML systems. For reproducibility, we release our code16

and a simple demo.17

CAAFE

User: Specifies
problem context

and dataset

LLM: Generates
Code for feature

engineering

Interpreter:
Executes

generated code

Tabular Pre-
diction Model:

Performs
cross-validation.

Evaluate Performance.
Keep change if performance is improved.

Figure 1: CAAFE accepts a dataset as well as user-specified context information and operates by
iteratively proposing and evaluating feature engineering operations.

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://github.com/cafeautomatedfeatures/CAFE
https://colab.research.google.com/drive/1JPgiEAKO1e7aofm2vqXA1yTHRhAqZgTx

1 Introduction18

Automated machine learning (AutoML; e.g., Hutter et al. (2019)) is very effective at optimizing the19

machine learning (ML) part of the data science workflow, but existing systems leave tasks such as20

data engineering and integration of domain knowledge largely to human practitioners. However,21

model selection, training, and scoring only account for a small percentage of the time spent by data22

scientists (roughly 23% according to the “State of Data Science”(Anaconda, 2020)). Thus, the most23

time-consuming tasks, namely data engineering and data cleaning, are only supported to a very24

limited degree by AutoML tools, if at all.25

While the traditional AutoML approach has been fruitful and appropriate given the technical capabili-26

ties of ML tools at the time, large language models (LLMs) may extend the reach of AutoML to cover27

more of data science and allow it to evolve towards automated data science (De Bie et al., 2022).28

LLMs encapsulate extensive domain knowledge that can be used to automate various data science29

tasks, including those that require contextual information. They are, however, not interpretable, or30

verifiable, and behave less consistently than classical ML algorithms. E.g., even the best LLMs still31

fail to count or perform simple calculations that are easily solved by classical methods (Hendrycks32

et al., 2021; OpenAI Community, 2021).33

In this work, we propose an approach that combines the scalability and robustness of classical ML34

classifiers (e.g. random forests (Breiman, 2001)) with the vast domain knowledge embedded in LLMs,35

as visualized in Figure 2. We bridge the gap between LLMs and classical algorithms by using code36

as an interface that allows LLMs to interact with classical algorithms and provides an interpretable37

interface to users. Our proposed method, CAAFE, generates Python code that creates semantically38

meaningful features that improve the performance of downstream prediction tasks in an iterative39

fashion and with algorithmic feedback as shown in Figure 1. Furthermore, it provides explanations40

for the utility of generated features. This allows for human-in-the-loop, interpretable AutoML (Lee &41

Macke, 2020), making it easier for the user to understand a solution, but also to modify and improve42

on it. Our approach combines the advantages of classical ML (robustness, predictability and a level43

of interpretability) and LLMs (domain-knowledge and creativity).44

Automating the integration of domain-knowledge into the AutoML process has clear advantages that45

extend the scope of existing AutoML methods. These benefits include: i) Reducing the latency from46

data to trained models; ii) Reducing the cost of creating ML models; iii) Evaluating a more informed47

space of solutions than previously possible with AutoML, but a larger space than previously possible48

with manual approaches for integrating domain knowledge; and iv) Enhancing the robustness and49

reproducibility of solutions, as computer-generated solutions are more easily reproduced. CAAFE50

demonstrates the potential of LLMs for automating a broader range of data science tasks and51

highlights the emerging potential for creating more robust and context-aware AutoML tools.52

2 Background53

2.1 Large Language Models (LLMs)54

LLMs are neural networks that are pre-trained on large quantities of raw text data to predict the next55

word in text documents. Recently, GPT-4 has been released as a powerful and publicly available56

LLM (OpenAI, 2023a). GPT-4 is a deep neural network that uses a transformer architecture (Vaswani57

et al., 2017), large-scale pre-training on a diverse corpus of text and fine-tuning using reinforcement58

learning from human feedback (RLHF) (Ziegler et al., 2019). It achieves state-of-the-art performance59

on various tasks, such as text generation, summarization, question answering and coding. One can60

adapt LLMs to a specific task without retraining by writing a prompt (Brown et al., 2020; Wei et al.,61

2021); the model parameters are frozen and the model performs in-context inference tasks based on a62

textual input that formulates the task and potentially contains examples.63

LLMs as Tabular Prediction Models Hegselmann et al. (2023) recently showed how to use64

LLMs for tabular data prediction by applying them to a textual representation of these datasets. A65

prediction on an unseen sample then involves continuing the textual description of that sample on66

the target column. However, this method requires encoding the entire training dataset as a string67

and processing it using a transformer-based architecture, where the computational cost increases68

quadratically with respect to N ·M , where N denotes the number of samples and M the number of69

2

Context specification
contextual informa-
tion, goal analysis
and specification

Exploitation
interpretation, visual-
ization, reporting, pre-
dictions, monitoring

Data Engineering
wrangling, integra-
tion, preparation,
transformation

Model Building
algorithm choice,

parameter tun-
ing, evaluation,
model selection

CAAFE Traditional AutoML

User driven
Strength of LLMs:

Exploratory, context-dependent,
real-world knowledge

Strength of classical algorithms:
Well-defined, predictable

Figure 2: Data Science pipeline, inspired by De Bie et al. (2022). We introduce LLMs for data
Science as an intermediate between the user and classical algorithms.

features. Furthermore, the predictions generated by LLMs are not easily interpretable, and there is no70

assurance that the LLMs will produce consistent predictions, as these predictions depend directly71

on the complex and heterogeneous data used to train the models. So far, Hegselmann et al. (2023)72

found that their method yielded the best performance on tiny datasets with up to 8 data points, but73

was outperformed for larger data sets.74

LLMs for Data Wrangling Narayan et al. (2022) demonstrated state-of-the-art results using LLMs75

for entity matching, error detection, and data imputation using prompting and manually tuning the76

LLMs. Vos et al. (2022) extended this technique by employing an improved prefix tuning technique.77

Both approaches generate and utilize the LLMs output for each individual data sample, executing78

a prompt for each row. This is in contrast to CAAFE, which uses code as an interface, making our79

work much more scalable and faster to execute, since one LLM query can be applied to all samples.80

2.2 Feature Engineering81

Feature engineering refers to the process of constructing suitable features from raw input data, which82

can lead to improved predictive performance. Given a dataset D = (xi, yi)
n
i=1, the goal is to find a83

function ϕ : X → X ′ which maximizes the performance of A(ϕ(xi), yi) for some learning algorithm84

A. Common methods include numerical transformations, categorical encoding, clustering, group85

aggregation, and dimensionality reduction techniques, such as principal component analysis (Wold86

et al., 1987).87

Deep learning methods are capable of learning suitable transformations from the raw input data88

making them more data-driven and making explicit feature engineering less critical, but only given89

a lot of data. Thus, appropriate feature engineering still improves the performance of classical and90

deep learning models, particularly for limited data, complex patterns, or model interpretability.91

Various strategies for automated feature engineering have been explored in prior studies. Deep92

Feature Synthesis (DFS; Kanter & Veeramachaneni (2015)) integrates multiple tables for feature93

engineering by enumerating potential transformations on features and performing feature selection94

based on model performance. Cognito (Khurana et al., 2016) proposes a tree-like exploration of the95

feature space using handcrafted heuristic traversal strategies. AutoFeat (Horn et al., 2019) employs96

an iterative subsampling of features using beam search. Learning-based methods, such as LFE97

(Nargesian et al., 2017), utilize machine learning models to recommend beneficial transformations98

while other methods use reinforcement learning-based strategies (Khurana et al., 2018; Zhang et al.,99

2019). Despite these advancements, none of the existing methods can harness semantic information100

in an automated manner.101

3

1 2 3 4 5 6 7 8 9 1011121314

Initial data

True False Test-Sample
1 2 3 4 5 6 7 8 9 1011121314

Weekday

Weekend

With extra feature based on context

Working Day-Off Test-Sample

Figure 3: Contextual information can simplify a task immensely. On the left-hand side no contextual
information is added to the plot, and it is hard to predict the label for the green query point. On the
right-hand side contextual information is added and a useful additional feature (weekend or weekday)
is derived from which a mapping from features to targets can be found.

2.2.1 Incorporating Semantic Information102

The potential feature space, when considering the combinatorial number of transformations and103

combinations, is vast. Therefore, semantic information is useful, to serve as a prior for identifying104

useful features. By incorporating semantic and contextual information, feature engineering techniques105

can be limited to semantically meaningful features enhancing the performance by mitigating issues106

with multiple testing and computational complexity and boosting the interpretability of machine107

learning models. This strategy is naturally applied by human experts who leverage their domain-108

specific knowledge and insights. Figure 3 exemplifies the usefulness of contextual information.109

3 Method110

We present CAAFE, an approach that leverages large language models to incorporate domain111

knowledge into the feature engineering process, offering a promising direction for automating data112

science tasks while maintaining interpretability and performance.113

Our method takes the training and validation datasets, Dtrain and Dvalid, as well as a description of114

the context of the training dataset and features as input. From this information CAAFE constructs a115

prompt, i.e. instructions to the LLM containing specifics of the dataset and the feature engineering116

task. Our method performs multiple iterations of feature alterations and evaluations on the validation117

dataset, as outlined in Figure 1. In each iteration, the LLM generates code, which is then executed118

on the current Dtrain and Dvalid resulting in the transformed datasets D′
train and D′

valid. We then119

use D′
train to fit an ML-classifier and evaluate its performance P ′ on D′

valid. If P ′ exceeds the120

performance P achieved by training on Dtrain and evaluating on Dvalid, the feature is kept and121

we set Dtrain := D′
train and Dvalid := D′

valid. Otherwise, the feature is rejected and Dtrain and122

Dvalid remain unchanged. Figure 4 shows a shortened version of one such run on the Tic-Tac-Toe123

Endgame dataset.124

Prompting LLMs for Feature Engineering Code Here, we describe how CAAFE builds the125

prompt that is used to perform feature engineering. In this prompt, the LLM is instructed to create126

valuable features for a subsequent prediction task and to provide justifications for the added feature’s127

utility. It is also instructed to drop unnecessary features, e.g. when their information is captured by128

other created features.129

The prompt contains semantic and descriptive information about the dataset. Descriptive information,130

i.e. summary statistics, such as the percentage of missing values is based solely on the train split of131

the dataset. The prompt consists of the following data points:132

A A user-generated dataset description, that contains contextual information about the dataset133

(see Section 4 for details on dataset descriptions for our experiments)134

B Feature names adding contextual information and allowing the LLM to generate code to135

index features by their names136

4

Dataset description: Tic -Tac -Toe Endgame database
This database encodes the complete set of possible board

configurations at the end of tic -tac -toe games , where "x" is
assumed to have played first. The target concept is "win for x" (i
.e., true when "x" has one of 8 possible ways to create a "three -
in -a-row").

(’number -of-x-wins ’, ’Number of ways x can win on the board ’)
Usefulness: Knowing the number of ways x can win on the board can be useful in

predicting whether x has won the game or not.
Input samples: ’top -left -square ’: [2, 2, 1], ’top -middle -square ’: [1, 2, 0], ...
df[’number -of -x-wins’] = ((df[’top -left -square ’]==1) & (df[’top -middle -square ’]==1) & (df

[’top -right -square ’]==1)).astype(int) + ((df[’middle -left -square ’]==1) & (df[’middle
-middle -square ’]==1) & (df[’middle -right -square ’]==1)).astype(int) [...]

Iteration 1
Performance before adding features ROC 0.888, ACC 0.700.
Performance after adding features ROC 0.987, ACC 0.980.
Improvement ROC 0.099 , ACC 0.280. Code was executed and changes to df

retained.

(’number -of-o-wins ’, ’Number of ways o can win on the board ’)
Usefulness: Knowing the number of ways o can win on the board can be useful in

predicting whether o has won the game or not.
Input samples: ’top -left -square ’: [2, 2, 1], ’top -middle -square ’: [1, 2, 0], ...
df[’number -of -o-wins’] = ((df[’top -left -square ’]==2) & (df[’top -middle -square ’]==2) & (df

[’top -right -square ’]==2)).astype(int) + ((df[’middle -left -square ’]==2) & (df[’middle
-middle -square ’]==2) & (df[’middle -right -square ’]==2)).astype(int) [...]

Iteration 2
Performance before adding features ROC 0.987, ACC 0.980.
Performance after adding features ROC 1.000, ACC 1.000.
Improvement ROC 0.013 , ACC 0.020. Code was executed and changes to df

retained.

Figure 4: Exemplary run of CAAFE on the Tic-Tac-Toe Endgame dataset. User generated input is
shown in blue, ML-classifier generated data shown in red and LLM generated code is shown with
syntax highlighting. The generated code contains a comment per generated feature that follows
a template provided in our prompt (Feature name, description of usefulness, features used in the
generated code and sample values of these features). In this run, CAAFE improves the ROC AUC on
the validation dataset from 0.888 to 1.0 in two feature engineering iterations.

C Data types (e.g. float, int, category, string) - this adds information on how to handle a feature137

in the generated code138

D Percentage of missing values - missing values are an additional challenge for code generation139

E 10 rows of sample data from the dataset - this provides information on the feature scale,140

encoding, etc.141

Additionally, the prompt provides a template for the expected form of the generated code and142

explanations. Adding a template when prompting is a common technique to improve the quality143

of responses (OpenAI, 2023b). We use Chain-of-thought instructions – instructing a series of144

intermediate reasoning steps –, another effective technique for prompting (Wei et al., 2023). The145

prompt includes an example of one such Chain-of-thought for the code generation of one feature:146

first providing the high-level meaning and usefulness of the generated feature, providing the names147

of features used to generate it, retrieving sample values it would need to accept and finally writing a148

line of code. We provide the complete prompt in Figure 5 in the appendix.149

5

If the execution of a code block raises an error, this error is passed to the LLM for the next code150

generation iteration. We observe that using this technique CAAFE recovered from all errors in our151

experiments. One such example can be found in Table 3.152

Technical Setup The data is stored in a Pandas dataframe (Wes McKinney, 2010), which is153

preloaded into memory for code execution. The generated Python code is executed in an environment154

where the training and validation data frame is preloaded. The performance is measured on the155

current dataset with ten random validation splits Dvalid and the respective transformed datasets156

D′
valid with the mean change of accuracy and ROC AUC used to determine if the changes of a code157

block are kept, i.e. when the average of both is greater than 0. We use OpenAI’s GPT-4 and GPT-3.5158

as LLMs (OpenAI, 2023a) in CAAFE. We perform ten feature engineering iterations and TabPFN in159

the iterative evaluation of code blocks.160

The automatic execution of AI-generated code carries inherent risks, such as misuse by malicious161

actors or unintended consequences from AI systems operating outside of controlled environments.162

Our approach is informed by previous studies on AI code generation and cybersecurity (Rohlf, 2023;163

Crockett, 2023). We parse the syntax of the generated python code and use a whitelist of operations164

that are allowed for execution. Thus operations such as imports, arbitrary function calls and others165

are excluded. This does not provide full security, however, e.g. does not exclude operations that can166

lead to infinite loops and excessive resource usage such as loops and list comprehensions.167

4 Experimental Setup168

Setup of Downstream-Classifiers We evaluate our method with Logistic Regression, Random169

Forests (Breiman, 2001) and TabPFN (Hollmann et al., 2022) for the final evaluation while using170

TabPFN to evaluate the performance of added features. We impute missing values with the mean,171

one-hot or ordinal encoded categorical inputs, normalized features and passed categorical feature172

indicators, where necessary, using the setup of Hollmann et al. (2022) 1.173

Setup of Automated Feature Engineering Methods We also evaluate popular context-agnostic174

feature engineering libraries Deep Feature Synthesis (DFS; Kanter & Veeramachaneni, 2015) and175

AutoFeat (Horn et al., 2019)2. We evaluate DFS and AutoFeat alone and in combination with CAAFE.176

When combined, CAAFE is applied first and the context-agnostic AutoFE method subsequently. For177

DFS we use the primitives "add_numeric" and "multiply_numeric", and default settings otherwise.178

For TabPFN, DFS generates more features than TabPFN accepts (the maximum number of features179

is 100) in some cases. In these cases, we set the performance to the performance without feature180

engineering. For AutoFeat, we use one feature engineering step and default settings otherwise.181

Evaluating LLMs on Tabular Data The LLM’s training data originates from the web, potentially182

including datasets and related notebooks. GPT-4 and GPT-3.5 have a knowledge cutoff in September183

2021, i.e., almost all of its training data originated from before this date. Thus, an evaluation on184

established benchmarks can be biased since a textual description of these benchmarks might have185

been used in the training of the LLM.186

We use two categories of datasets for our evaluation: (1) widely recognized datasets from OpenML187

released before September 2021, that could potentially be part of the LLMs training corpus and (2)188

lesser known datasets from Kaggle released after September 2021 and only accessible after accepting189

an agreement and thus harder to access by web crawlers.190

From OpenML (Vanschoren et al., 2013; Feurer et al.), we use small datasets that have descriptive191

feature names (i.e. we do not include any datasets with numbered feature names). Datasets on192

OpenML contain a task description that we provide as user context to our method. When datasets are193

perfectly solvable with TabPFN alone (i.e. reaches ROC AUC of 1.0) we reduce the training set size194

for that dataset, marked in Table ??. We focus on small datasets with up to 2 000 samples in total,195

because feature engineering is most important and significant for smaller datasets.196

We describe the collection and preprocessing of datasets in detail in Appendix G.1.197

1https://github.com/automl/TabPFN/blob/main/tabpfn/scripts/tabular_baselines.py
2https://github.com/alteryx/featuretools, https://github.com/cod3licious/autofeat

6

https://github.com/automl/TabPFN/blob/main/tabpfn/scripts/tabular_baselines.py
https://github.com/alteryx/featuretools
https://github.com/cod3licious/autofeat

Table 1: ROC AUC OVO results using TabPFN. ± indicates the standard deviation across 5 splits.
[R] indicates datasets where reduced data was used because TabPFN had 100% accuracy by default,
see Appendix G.1.

TabPFN
No Feat. Eng. CAAFE (GPT-3.5) CAAFE (GPT-4)

airlines 0.6211 ±.04 0.619 ±.04 0.6203 ±.04
balance-scale [R] 0.8444 ±.29 0.844 ±.31 0.882 ±.26
breast-w [R] 0.9783 ±.02 0.9809 ±.02 0.9809 ±.02
cmc 0.7375 ±.02 0.7383 ±.02 0.7393 ±.02
credit-g 0.7824 ±.03 0.7824 ±.03 0.7832 ±.03
diabetes 0.8427 ±.03 0.8434 ±.03 0.8425 ±.03
eucalyptus 0.9319 ±.01 0.9317 ±.01 0.9319 ±.00
jungle_chess.. 0.9334 ±.01 0.9361 ±.01 0.9453 ±.01
pc1 0.9035 ±.01 0.9087 ±.02 0.9093 ±.01
tic-tac-toe [R] 0.6989 ±.08 0.6989 ±.08 0.9536 ±.06
⟨Kaggle⟩ health-insurance 0.5745 ±.02 0.5745 ±.02 0.5748 ±.02
⟨Kaggle⟩ pharyngitis 0.6976 ±.03 0.6976 ±.03 0.7078 ±.04
⟨Kaggle⟩ kidney-stone 0.7883 ±.04 0.7873 ±.04 0.7903 ±.04
⟨Kaggle⟩ spaceship-titanic 0.838 ±.02 0.8383 ±.02 0.8405 ±.02

Mean ROC AUC 0.798 ±.05 0.7987 ±.05 0.8215 ±.04
Mean ROC AUC Rank 2.43 2.32 1.25

Evaluation Protocol For each dataset, we evaluate 5 repetitions, each with a different random seed198

and train- and test split to reduce the variance stemming from these splits (Bouthillier et al., 2021).199

We split into 50% train and 50% test samples and all methods used the same splits.200

5 Results201

In this section we showcase the results of our method in three different ways. First, we show that202

CAAFE can improve the performance of a state-of-the-art classifier. Next, we show how CAAFE203

interacts with traditional automatic feature engineering methods and conclude with examples of the204

features that CAAFE creates.205

Performance of CAAFE CAAFE can improve our strongest classifier, TabPFN, substantially. If it206

is used with GPT-4, we improve average ROC AUC performance from 0.798 to 0.822, as shown in207

Table 5, and enhance the performance for 11/14 datasets.On the evaluated datasets, this improvement208

is similar (71%) to the average improvement achieved by using a random forest (AUC 0.783) instead209

of logistic regression (AUC 0.749). We can see that CAAFE even improves performance for all of210

the new datasets from Kaggle. If we use CAAFE with GPT-3.5 only, we can see that it performs211

clearly worse than with GPT-4, and only improves performance on 6/14.212

Table 2: Mean ROC AUC and average rank (ROC AUC) per downstream classification method and
feature extension method. The features generated by CAAFE are chosen with TabPFN as classifier.
± indicates the standard deviation across 5 splits. AutoFeat and DFS improve simpler classifiers but
not TabPFN, while CAAFE improves all setups.

AutoFE-Base CAAFE AutoFE-Base + CAAFE
AutoFeat DFS GPT-3.5 GPT-4 GPT-4 + AF GPT-4 + DFS

Log. Reg. Mean 0.749 ±.14 0.754 ±.14 0.764 ±.14 0.75 ±.14 0.769 ±.13 0.781 ±.14 0.784 ±.14
Mean Rank 5.11 4.21 3.36 4.79 4.31 3.52 2.69

Rand. Forest Mean 0.783 ±.13 0.782 ±.12 0.781 ±.14 0.783 ±.13 0.801 ±.14 0.808 ±.14 0.808 ±.14
Mean Rank 4.44 4.41 4.14 4.38 4.28 3.15 3.21

TabPFN Mean 0.798 ±.14 0.797 ±.14 0.791 ±.15 0.799 ±.14 0.822 ±.14 0.821 ±.14 0.818 ±.14
Mean Rank 4.39 4.4 4.76 4.26 3.06 3.27 3.86

7

Table 3: Examples of common strategies employed by CAAFE for feature extension. The full code
and comments are automatically generated based on the user-provided dataset descriptions.

Description Generated code

Combination
Example from the Kaggle Kidney
Stone dataset.

U s e f u l n e s s : Feve r and r h i n o r r h e a a r e two of t h e most common
symptoms of r e s p i r a t o r y i n f e c t i o n s , i n c l u d i n g GAS p h a r y n g i t i s .
Th i s f e a t u r e c a p t u r e s t h e i r co − o c c u r r e n c e .

I n p u t samples : ’ t e m p e r a t u r e ’ : [3 8 . 0 , 3 9 . 0 , 3 9 . 5] , ’ r h i n o r r h e a ’ :
[0 . 0 , 0 . 0 , 0 . 0]

d f [’ f e v e r _ a n d _ r h i n o r r h e a ’] = ((d f [’ t e m p e r a t u r e ’] >= 3 8 . 0) & (d f [’
r h i n o r r h e a ’] > 0)) . a s t y p e (i n t)

Binning
Example from the Kaggle Spaceship
Titanic dataset.

F e a t u r e : AgeGroup (c a t e g o r i z e s p a s s e n g e r s i n t o age g r ou ps)
U s e f u l n e s s : D i f f e r e n t age g r ou ps might have d i f f e r e n t l i k e l i h o o d s

o f b e i n g t r a n s p o r t e d .
I n p u t samples : ’Age ’ : [3 0 . 0 , 0 . 0 , 3 7 . 0]
b i n s = [0 , 12 , 18 , 35 , 60 , 100]
l a b e l s = [’ C h i l d ’ , ’ Teen ’ , ’ YoungAdult ’ , ’ Adu l t ’ , ’ S e n i o r ’]
d f [’ AgeGroup ’] = pd . c u t (d f [’Age ’] , b i n s = b ins , l a b e l s = l a b e l s)
d f [’ AgeGroup ’] = d f [’ AgeGroup ’] . a s t y p e (’ c a t e g o r y ’)

String transformation
Example from the Kaggle Spaceship
Titanic dataset.

F e a t u r e : Deck
U s e f u l n e s s : The deck i n f o r m a t i o n can h e l p i d e n t i f y p a t t e r n s i n t h e

l o c a t i o n o f c a b i n s a s s o c i a t e d wi th t r a n s p o r t e d p a s s e n g e r s .
I n p u t samples : ’ Cabin ’ : [’ F / 3 5 6 / S ’ , ’G/ 8 6 / P ’ , ’C / 3 7 / P ’]
d f [’ Deck ’] = df [’ Cabin ’] . a p p l y (lambda x : x [0] i f i s i n s t a n c e (x , s t r)

e l s e ’Unknown ’)

F e a t u r e : Cab inS ide
U s e f u l n e s s : The s i d e o f t h e c a b i n can h e l p i d e n t i f y p a t t e r n s i n

t h e l o c a t i o n o f c a b i n s a s s o c i a t e d wi th t r a n s p o r t e d p a s s e n g e r s .
I n p u t samples : ’ Cabin ’ : [’ F / 3 5 6 / S ’ , ’G/ 8 6 / P ’ , ’C / 3 7 / P ’]
d f [’ Cab inS ide ’] = d f [’ Cabin ’] . a p p l y (lambda x : x . s p l i t (’ / ’) [−1] i f

i s i n s t a n c e (x , s t r) e l s e ’Unknown ’)

Removing features
Example from the Balance Scale
dataset.

Drop o r i g i n a l columns
E x p l a n a t i o n : The o r i g i n a l columns ’ l e f t − we ig h t ’ , ’ l e f t − d i s t a n c e ’ ,

’ r i g h t − we i gh t ’ , and ’ r i g h t − d i s t a n c e ’ can be dropped as t h e
newly c r e a t e d columns ’ l e f t _momen t ’ , ’ r igh t_moment ’ , and ’
m o m e n t _ d i f f e r e n c e ’ c a p t u r e t h e r e l e v a n t i n f o r m a t i o n f o r
p r e d i c t i n g t h e ’ c l a s s ’ .

d f . d rop (columns =[’ l e f t − w e i gh t ’ , ’ l e f t − d i s t a n c e ’ , ’ r i g h t − we igh t ’ , ’
r i g h t − d i s t a n c e ’] , i n p l a c e =True)

No more a d d i t i o n a l columns needed

Error Recovery
Example from the Kaggle Health In-
surance dataset. The code execution
failed because missing values were
not considered in the dataframe. In
the next iteration code is suggested
that can handle missing values.

F e a t u r e : A g e _ d i f f e r e n c e
U s e f u l n e s s : Age d i f f e r e n c e between uppe r and lower age can be

u s e f u l i n d e t e r m i n i n g t h e l i k e l i h o o d of a p e r s o n a p p l y i n g f o r a
p o l i c y .

I n p u t samples : ’ Upper_Age ’ : [’ C33 ’ , ’C2 ’ , ’C3 ’] , ’ Lower_Age ’ : [’
Owned ’ , ’ Rented ’ , ’ Rented ’]

d f [’ A g e _ d i f f e r e n c e ’] = d f [’ Upper_Age ’] . s t r . e x t r a c t (’ (\ d +) ’) . a s t y p e (
i n t) − d f [’ Lower_Age ’] . s t r . e x t r a c t (’ (\ d +) ’) . a s t y p e (i n t)

Feedback : f a i l e d wi th e r r o r : c a n n o t c o n v e r t f l o a t NaN t o i n t e g e r .

F e a t u r e : A g e _ d i f f e r e n c e
U s e f u l n e s s : Age d i f f e r e n c e between uppe r and lower age can be

u s e f u l i n d e t e r m i n i n g t h e l i k e l i h o o d of a p e r s o n a p p l y i n g f o r a
p o l i c y .

I n p u t samples : ’ Upper_Age ’ : [’ C33 ’ , ’C2 ’ , ’C3 ’] , ’ Lower_Age ’ : [’
Owned ’ , ’ Rented ’ , ’ Rented ’]

d f [’ A g e _ d i f f e r e n c e ’] = d f [’ Upper_Age ’] . s t r . e x t r a c t (’ (\ d +) ’) . a s t y p e (
f l o a t) . f i l l n a (0) − df [’ Lower_Age ’] . s t r . e x t r a c t (’ (\ d +) ’) . a s t y p e (
f l o a t) . f i l l n a (0)

8

There is great variability in the improvement size depending on whether (1) a problem is amenable to213

feature engineering, i.e. is there a mapping of features that explains the data better and that can be214

expressed through simple code; and (2) the quality of the dataset description (e.g., the balance-scale215

dataset contains an accurate description of how the dataset was constructed) Per dataset performance216

can be found in Table 4. CAAFE takes 4:43 minutes to run on each dataset, 90% of the time is217

spent on the LLM’s code generation and 10% on the evaluation of the generated features. Running218

CAAFE with 10 iterations costs 0.71$ per dataset on average. In Appendix F we plot the performance,219

time and cost of CAAFE across feature engineering iterations, showing the tradeoff between these220

parameters. For the 14 datasets, 5 splits and 10 CAAFE iterations, CAAFE generates 52 faulty221

features (7.4%) in the generation stage, from which it recovers (see Figure 3).222

Incorporating Classical AutoFE Methods Classical AutoFE methods can readily be combined223

with our method, one simply runs CAAFE first and then lets a classical AutoFE method find further224

feature extensions, as we did in Table 5. For less powerful downstream classifiers, namely Logistic225

Regression and Random Forests, we observe that applying AutoFE additionally to CAAFE improves226

performance further. The AutoML method TabPFN on the other hand cannot be improved by applying227

classical AutoFE. This discrepancy might stem from the larger hypothesis space (complexity) of228

TabPFN, it can get all necessary information from the data directly.For all combinations of classifiers229

and additional AutoFE methods, we can see that CAAFE improves performance on average.230

Feature Engineering Strategies Table 3 shows a diverse set of examples of feature engineering231

strategies applied by our method. We show examples where CAAFE combines features, creates232

ordinal versions of numerical features through binning, performs string transformations, removes233

superfluous features, and even recover from errors when generating code that errors.234

6 Conclusion235

Our study presents a novel approach to integrating domain knowledge into the AutoML process236

through Context-Aware Automated Feature Engineering (CAAFE). By leveraging the power of large237

language models, CAAFE automates feature engineering for tabular datasets, generating semantically238

meaningful features and explanations of their utility. Our evaluation demonstrates the effectiveness239

of this approach, which complements existing automated feature engineering and AutoML methods.240

This work emphasizes the importance of context-aware solutions in achieving robust outcomes. We241

expect that LLMs will also be useful for automating other aspects of the data science pipeline, such242

as data collection, processing, model building, and deployment. As large language models continue243

to improve, it is expected that the effectiveness of CAAFE will also increase.244

Dataset descriptions play a critical role in our method; however, in our study, they were derived solely245

from web-crawled text associated with public datasets. If users were to provide more accurate and246

detailed descriptions, the effectiveness of our approach could be significantly improved.247

However, our current approach has some limitations. Handling datasets with a large number of248

features can lead to very large prompts, which can be challenging for LLMs to process effectively.249

The testing procedure for adding features is not based on statistical tests, and could be improved250

using techniques of previous feature engineering works. Finally, the usage of LLMs in automated251

data analysis comes with a set of societal and ethical challenges. Please see Section B for a discussion252

on safeguarding code execution, biases in LLMs and societal implications of automation.253

Future research may explore prompt tuning, fine-tuning language models, and automatically incor-254

porating domain-knowledge into models in other ways. Also, there may lie greater value in the255

interaction of human users with such automated methods, also termed human-in-the-loop AutoML256

(Lee & Macke, 2020), where human and algorithm interact continuously. This would be particularly257

easy with a setup similar to CAAFE, as the input and output of the LLM are interpretable and easily258

modified by experts.259

9

References260

Anaconda. The state of data science 2020. Website, 2020. URL https://www.anaconda.com/261

state-of-data-science-2020.262

Xavier Bouthillier, Pierre Delaunay, Mirko Bronzi, Assya Trofimov, Brennan Nichyporuk, Justin263

Szeto, Nazanin Mohammadi Sepahvand, Edward Raff, Kanika Madan, Vikram Voleti, Samira264

Ebrahimi Kahou, Vincent Michalski, Tal Arbel, Chris Pal, Gael Varoquaux, and Pascal Vin-265

cent. Accounting for variance in machine learning benchmarks. In A. Smola, A. Dimakis,266

and I. Stoica (eds.), Proceedings of Machine Learning and Systems, volume 3, pp. 747–267

769, 2021. URL https://proceedings.mlsys.org/paper_files/paper/2021/file/268

cfecdb276f634854f3ef915e2e980c31-Paper.pdf.269

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.270

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,271

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are272

few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.273

Adam Crockett. Ai generated code creates a new security at-274

tack vector, April 2023. URL https://dev.to/adam_cyclones/275

ai-generated-code-creates-a-new-security-attack-vector-39if.276

Tijl De Bie, Luc De Raedt, José Hernández-Orallo, Holger H Hoos, Padhraic Smyth, and Christo-277

pher KI Williams. Automating data science. Communications of the ACM, 65(3):76–87, 2022.278

Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya Ravi,279

Andreas Mueller, Joaquin Vanschoren, and Frank Hutter. Openml-python: an extensible python280

api for openml. arXiv, 1911.02490. URL https://arxiv.org/pdf/1911.02490.pdf.281

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David282

Sontag. Tabllm: Few-shot classification of tabular data with large language models, 2023.283

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,284

and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. CoRR,285

abs/2103.03874, 2021. URL https://arxiv.org/abs/2103.03874.286

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer287

that solves small tabular classification problems in a second. arXiv preprint arXiv:2207.01848,288

2022.289

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automatic feature290

engineering and selection. CoRR, abs/1901.07329, 2019. URL http://arxiv.org/abs/1901.291

07329.292

F. Hutter, L. Kotthoff, and J. Vanschoren (eds.). Automated Machine Learning: Methods, Systems,293

Challenges. Springer, 2019. Available for free at http://automl.org/book.294

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data295

science endeavors. In 2015 IEEE international conference on data science and advanced analytics296

(DSAA), pp. 1–10. IEEE, 2015.297

Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthasrathy. Cognito: Auto-298

mated feature engineering for supervised learning. In 2016 IEEE 16th International Conference299

on Data Mining Workshops (ICDMW), pp. 1304–1307, 2016. doi: 10.1109/ICDMW.2016.0190.300

Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive modeling301

using reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,302

volume 32, 2018.303

Doris Jung-Lin Lee and Stephen Macke. A human-in-the-loop perspective on automl: Milestones304

and the road ahead. IEEE Data Engineering Bulletin, 2020.305

Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, and Christopher Ré. Can foundation models306

wrangle your data?, 2022.307

10

https://www.anaconda.com/state-of-data-science-2020
https://www.anaconda.com/state-of-data-science-2020
https://www.anaconda.com/state-of-data-science-2020
https://proceedings.mlsys.org/paper_files/paper/2021/file/cfecdb276f634854f3ef915e2e980c31-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/cfecdb276f634854f3ef915e2e980c31-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/cfecdb276f634854f3ef915e2e980c31-Paper.pdf
https://dev.to/adam_cyclones/ai-generated-code-creates-a-new-security-attack-vector-39if
https://dev.to/adam_cyclones/ai-generated-code-creates-a-new-security-attack-vector-39if
https://dev.to/adam_cyclones/ai-generated-code-creates-a-new-security-attack-vector-39if
https://arxiv.org/pdf/1911.02490.pdf
https://arxiv.org/abs/2103.03874
http://arxiv.org/abs/1901.07329
http://arxiv.org/abs/1901.07329
http://arxiv.org/abs/1901.07329

Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B Khalil, and Deepak S Turaga.308

Learning feature engineering for classification. In Ijcai, volume 17, pp. 2529–2535, 2017.309

OpenAI. Gpt-4 technical report, 2023a.310

OpenAI. openai/openai-cookbook: Examples and guides for using the openai api. https://github.311

com/openai/openai-cookbook, 2023b. (Accessed on 04/20/2023).312

OpenAI Community. GPT-3 can’t count syllables - or doesn’t “get” haiku. https://community.313

openai.com/t/gpt-3-cant-count-syllables-or-doesnt-get-haiku/18733, 2021. Ac-314

cessed on: 2023-03-21.315

Chris Rohlf. Ai code generation and cybersecurity, April 2023. URL https://www.cfr.org/316

blog/ai-code-generation-and-cybersecurity.317

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science in318

machine learning. SIGKDD Explorations, 15(2):49–60, 2013. doi: 10.1145/2641190.2641198.319

URL http://doi.acm.org/10.1145/2641190.2641198.320

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luís Torgo. Openml: networked science in321

machine learning. CoRR, abs/1407.7722, 2014. URL http://arxiv.org/abs/1407.7722.322

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,323

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL324

http://arxiv.org/abs/1706.03762.325

David Vos, Till Döhmen, and Sebastian Schelter. Towards parameter-efficient automation of data326

wrangling tasks with prefix-tuning. In NeurIPS 2022 First Table Representation Workshop, 2022.327

URL https://openreview.net/forum?id=8kyYJs2YkFH.328

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,329

Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint330

arXiv:2109.01652, 2021.331

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,332

and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.333

Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt and334

Jarrod Millman (eds.), Proceedings of the 9th Python in Science Conference, pp. 56 – 61, 2010.335

doi: 10.25080/Majora-92bf1922-00a.336

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics and337

intelligent laboratory systems, 2(1-3):37–52, 1987.338

Jianyu Zhang, Jianye Hao, Françoise Fogelman-Soulié, and Zan Wang. Automatic feature engi-339

neering by deep reinforcement learning. In Proceedings of the 18th International Conference on340

Autonomous Agents and MultiAgent Systems, pp. 2312–2314, 2019.341

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul342

Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv343

preprint arXiv:1909.08593, 2019.344

11

https://github.com/openai/openai-cookbook
https://github.com/openai/openai-cookbook
https://github.com/openai/openai-cookbook
https://community.openai.com/t/gpt-3-cant-count-syllables-or-doesnt-get-haiku/18733
https://community.openai.com/t/gpt-3-cant-count-syllables-or-doesnt-get-haiku/18733
https://community.openai.com/t/gpt-3-cant-count-syllables-or-doesnt-get-haiku/18733
https://www.cfr.org/blog/ai-code-generation-and-cybersecurity
https://www.cfr.org/blog/ai-code-generation-and-cybersecurity
https://www.cfr.org/blog/ai-code-generation-and-cybersecurity
http://doi.acm.org/10.1145/2641190.2641198
http://arxiv.org/abs/1407.7722
http://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=8kyYJs2YkFH

A Acknowledgements345

GPT-4 (OpenAI, 2023a) was used in the following ways: to help us iterate on LaTeX formatting and346

diagram plotting; for text summarization; and as a copyediting tool; for rephrasing proposals.347

B Broader Impact Statement348

Social Impact of Automation The broader implications of our research may contribute to the349

automation of data science tasks, potentially displacing workers in the field. However, CAAFE350

crucially depends on the users inputs for feature generation and processing and provides an example351

of human-in-the-loop AutoML. The automation of routine tasks could free up data scientists to focus352

on higher-level problem-solving and decision-making activities. It is essential for stakeholders to353

be aware of these potential consequences, and to consider strategies for workforce education and354

adaptation to ensure a smooth transition as AI technologies continue to evolve.355

Replication of Biases AI algorithms have been observed to replicate and perpetuate biases observed356

in their training data distribution. CAAFE leverages GPT-4, which has been trained on web crawled357

data that contains existing social biases and generated features may be biased on these biases. When358

data that contains demographic information or other data that can potentially be used to discriminate359

against groups, we advise not to use CAAFE or to proceed with great caution, double checking the360

generated features.361

AI Model Interpretability As the adoption of advanced AI methods grows, it becomes increasingly362

important to understand and interpret their results. Our approach aims to enhance interpretability by363

providing clear explanations of model outputs and generating simple code, thus making the automated364

feature engineering process more transparent.365

Risk of increasing AI capabilities We do not believe this research affects the general capabilities366

of LLMs, but rather demonstrates their application. As such we estimate our work does not contribute367

to the risk of increasing AI capabilities.368

C Reproducibility369

Code release In an effort to ensure reproducibility, we release code to reproduce our experiments at370

https://github.com/cafeautomatedfeatures/CAFE. We release a minimal demo at a simple371

demo.372

Availability of datasets All datasets used in our experiments are freely available at OpenML.org (Van-373

schoren et al., 2014) or at kaggle.com, with downloading procedures included in the submission.374

D Full LLM Prompt375

Figure 5 shows the full prompt for one examplary dataset. You can find the generated prompts in376

our repository: https://github.com/cafeautomatedfeatures/CAFE/tree/main/feature_377

extension.378

12

https://github.com/cafeautomatedfeatures/CAFE
https://colab.research.google.com/drive/1JPgiEAKO1e7aofm2vqXA1yTHRhAqZgTx
https://colab.research.google.com/drive/1JPgiEAKO1e7aofm2vqXA1yTHRhAqZgTx
https://colab.research.google.com/drive/1JPgiEAKO1e7aofm2vqXA1yTHRhAqZgTx
OpenML.org
kaggle.com
https://github.com/cafeautomatedfeatures/CAFE/tree/main/feature_extension
https://github.com/cafeautomatedfeatures/CAFE/tree/main/feature_extension
https://github.com/cafeautomatedfeatures/CAFE/tree/main/feature_extension

The d a t a f r a m e ‘ df ‘ i s l o a d e d and i n memory . Columns a r e a l s o named a t t r i b u t e s .
D e s c r i p t i o n o f t h e d a t a s e t i n ‘ df ‘ (column d t y p e s might be i n a c c u r a t e) :
"** Tic −Tac −Toe Endgame d a t a b a s e **
Th i s d a t a b a s e encodes t h e c o m p l e t e s e t o f p o s s i b l e boa rd c o n f i g u r a t i o n s a t t h e end of t i c − t a c −

t o e games , where " x " i s assumed t o have p l a y e d f i r s t . The t a r g e t c o n c e p t i s " win f o r x "
(i . e . , t r u e when " x " has one o f 8 p o s s i b l e ways t o c r e a t e a " t h r e e − in −a−row ") . "

Columns i n ‘ df ‘ (t r u e f e a t u r e d t y p e s l i s t e d here , c a t e g o r i c a l s encoded as i n t) :
top − l e f t − s q u a r e (i n t 3 2) : NaN− f r e q [0 . 0 %] , Samples [2 , 2 , 2 , 2 , 2 , 2 , 0 , 1 , 1 , 2]
top −middle − s q u a r e (i n t 3 2) : NaN− f r e q [0 . 0 %] , Samples [0 , 0 , 1 , 1 , 1 , 2 , 0 , 2 , 2 , 2]
top − r i g h t − s q u a r e (i n t 3 2) : NaN− f r e q [0 . 0 %] , Samples [1 , 0 , 1 , 2 , 1 , 1 , 1 , 0 , 2 , 1]
middle − l e f t − s q u a r e (i n t 3 2) : NaN− f r e q [0 . 0 %] , Samples [1 , 0 , 2 , 1 , 2 , 0 , 0 , 2 , 1 , 2]
middle −middle − s q u a r e (i n t 3 2) : NaN− f r e q [0 . 0 %] , Samples [0 , 2 , 2 , 1 , 2 , 1 , 1 , 1 , 2 , 1]
middle − r i g h t − s q u a r e (i n t 3 2) : NaN− f r e q [0 . 0 %] , Samples [1 , 1 , 2 , 2 , 2 , 2 , 0 , 0 , 0 , 0]
bottom − l e f t − s q u a r e (i n t 3 2) : NaN− f r e q [0 . 0 %] , Samples [2 , 1 , 1 , 0 , 0 , 1 , 2 , 0 , 1 , 1]
bottom −middle − s q u a r e (i n t 3 2) : NaN− f r e q [0 . 0 %] , Samples [2 , 0 , 0 , 0 , 1 , 2 , 2 , 2 , 1 , 0]
bottom − r i g h t − s q u a r e (i n t 3 2) : NaN− f r e q [0 . 0 %] , Samples [2 , 2 , 0 , 2 , 0 , 1 , 2 , 1 , 2 , 0]
C l a s s (c a t e g o r y) : NaN− f r e q [0 . 0 %] , Samples [1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0]

Th i s code was w r i t t e n by an e x p e r t d a t a s c i e n t i s t working t o improve p r e d i c t i o n s . I t i s a
s n i p p e t o f code t h a t adds new columns t o t h e d a t a s e t .

Number o f sample s (rows) i n t r a i n i n g d a t a s e t : 71

Th i s code g e n e r a t e s a d d i t i o n a l columns t h a t a r e u s e f u l f o r a downstream c l a s s i f i c a t i o n
a l g o r i t h m (such as XGBoost) p r e d i c t i n g " C l a s s " .

A d d i t i o n a l columns add new s e m a n t i c i n f o r m a t i o n , t h a t i s t h e y use r e a l wor ld knowledge on t h e
d a t a s e t . They can e . g . be f e a t u r e c o m b i n a t i o n s , t r a n s f o r m a t i o n s , a g g r e g a t i o n s where t h e
new column i s a f u n c t i o n o f t h e e x i s t i n g columns .

The s c a l e o f columns and o f f s e t does n o t m a t t e r . Make s u r e a l l used columns e x i s t . Fol low t h e
above d e s c r i p t i o n o f columns c l o s e l y and c o n s i d e r t h e d a t a t y p e s and meanings o f c l a s s e s .

Th i s code a l s o d r o p s columns , i f t h e s e may be r e d u n d a n t and h u r t t h e p r e d i c t i v e p e r f o r m a n c e o f
t h e downstream c l a s s i f i e r (F e a t u r e s e l e c t i o n) . Dropping columns may h e l p as t h e chance

o f o v e r f i t t i n g i s lower , e s p e c i a l l y i f t h e d a t a s e t i s s m a l l .
The c l a s s i f i e r w i l l be t r a i n e d on t h e d a t a s e t w i th t h e g e n e r a t e d columns and e v a l u a t e d on a

h o l d o u t s e t . The e v a l u a t i o n m e t r i c i s a c c u r a c y . The b e s t p e r f o r m i n g code w i l l be s e l e c t e d
.

Added columns can be used i n o t h e r codeb loc ks , d ropped columns a r e n o t a v a i l a b l e anymore .

Code f o r m a t t i n g f o r each added column :
‘ ‘ ‘ py thon
(F e a t u r e name and d e s c r i p t i o n)
U s e f u l n e s s : (D e s c r i p t i o n why t h i s adds u s e f u l r e a l wor ld knowledge t o c l a s s i f y " C l a s s "

a c c o r d i n g t o d a t a s e t d e s c r i p t i o n and a t t r i b u t e s .)
I n p u t samples : (Three samples o f t h e columns used i n t h e f o l l o w i n g code , e . g . ’ top − l e f t −

squa re ’ : [2 , 2 , 2] , ’ top −middle − squa re ’ : [0 , 0 , 1] , . . .)
(Some pandas code u s i n g top − l e f t − squa re ’ , ’ top −middle − squa re ’ , . . . t o add a new column f o r

each row i n df)
‘ ‘ ‘ end

Code f o r m a t t i n g f o r d r o p p i n g columns :
‘ ‘ ‘ py thon
E x p l a n a t i o n why t h e column XX i s dropped
df . d rop (columns =[’XX’] , i n p l a c e =True)
‘ ‘ ‘ end

Each c o d e b l o c k g e n e r a t e s e x a c t l y one u s e f u l column and can drop unused columns (F e a t u r e
s e l e c t i o n) .

Each c o d e b l o c k ends wi th ‘ ‘ ‘ end and s t a r t s w i th " ‘ ‘ ‘ py thon "
Codeblock :

Figure 5: Full LLM Prompt for the CMC dataset. The generated code will be the reply to this prompt.

13

E Additional Results379

E.1 Per Dataset Results380

Table 4: ROC AUC OVO results per dataset and downstream classification method. CAAFE optimized
for strong performance on TabPFN.

AutoFE-Base CAAFE AutoFE-Base + CAAFE
AutoFeat DFS GPT-3.5 GPT-4 GPT-4 + AF GPT-4 + DFS

airlines 0.6211 ±.04 0.6076 ±.04 0.595 ±.04 0.619 ±.04 0.6203 ±.04 0.602 ±.04 0.5966 ±.04
balance-scale 0.8444 ±.29 0.8438 ±.30 0.8428 ±.31 0.844 ±.31 0.882 ±.26 0.8812 ±.27 0.8773 ±.27
breast-w 0.9783 ±.02 0.9713 ±.03 0.9783 ±.02 0.9809 ±.02 0.9809 ±.02 0.9713 ±.03 0.9809 ±.02
cmc 0.7375 ±.02 0.7384 ±.02 0.7349 ±.02 0.7383 ±.02 0.7393 ±.02 0.7386 ±.02 0.7362 ±.02
credit-g 0.7824 ±.03 0.7819 ±.03 0.7824 ±.03 0.7824 ±.03 0.7832 ±.03 0.784 ±.03 0.7824 ±.03
diabetes 0.8427 ±.03 0.8414 ±.03 0.8417 ±.03 0.8434 ±.03 0.8425 ±.03 0.8432 ±.03 0.8382 ±.03
eucalyptus 0.9319 ±.01 0.9321 ±.01 0.9319 ±.01 0.9317 ±.01 0.9319 ±.00 0.9323 ±.01 0.9319 ±.01
jungle_chess.. 0.9334 ±.01 0.9197 ±.01 0.9284 ±.01 0.9361 ±.01 0.9453 ±.01 0.9535 ±.01 0.94 ±.01
⟨Kaggle⟩ health-insurance 0.5745 ±.02 0.5805 ±.03 0.5753 ±.02 0.5745 ±.02 0.5748 ±.02 0.5777 ±.03 0.5782 ±.03
⟨Kaggle⟩ pharyngitis 0.6976 ±.03 0.6976 ±.03 0.6976 ±.03 0.6976 ±.03 0.7078 ±.04 0.7073 ±.04 0.6976 ±.03
⟨Kaggle⟩ kidney-stone 0.7883 ±.04 0.7856 ±.04 0.7929 ±.04 0.7873 ±.04 0.7903 ±.04 0.7875 ±.04 0.7967 ±.03
⟨Kaggle⟩ spaceship-titanic 0.838 ±.02 0.8486 ±.02 0.8443 ±.02 0.8383 ±.02 0.8405 ±.02 0.853 ±.02 0.8486 ±.02
pc1 0.9035 ±.01 0.9046 ±.01 0.9035 ±.01 0.9087 ±.02 0.9093 ±.01 0.908 ±.01 0.9035 ±.01
tic-tac-toe 0.6989 ±.08 0.6989 ±.08 0.6291 ±.10 0.6989 ±.08 0.9536 ±.06 0.9536 ±.06 0.938 ±.06

Mean ROC 0.798 ±.05 0.7966 ±.05 0.7913 ±.05 0.7987 ±.05 0.8215 ±.04 0.8209 ±.05 0.8176 ±.04
Mean Rank 4.68 4.75 5.29 4.36 2.39 2.57 3.96

E.2 Generated Prompts and Code381

You can find the generated prompts and the respective LLM generated code in our repository:382

https://github.com/cafeautomatedfeatures/CAFE/tree/main/data/generated_code.383

F Compute384

1 2 3 4 5 6 7 8 9 10
Number of iterations

0.8075

0.8100

0.8125

0.8150

0.8175

0.8200

0.8225

M
ea

n
RO

C
AU

C

0.0

0.2

0.4

0.6
To

ke
n

co
st

 in
 $

0

1

2

3

4

5

Ti
m

e
in

 m
in

ut
es

Figure 6: Mean ROC AUC OVO, inference cost for GPT and time spent with an increasing number
of feature generation runs.

Figure F illustrates the increasing performance but also cost and time spent for more feature engineer-385

ing iterations. Prediction for LLMs is done per token and so the generation of code takes dominates386

the 4:43 minutes evaluation time of CAAFE on average per dataset. For GPT-3.5 this time is reduce387

to about 1/4. Also for GPT-3.5 the cost is reduced to 1/10 as of the writing of this paper. For the388

evaluation of TabPFN we use one Nvidia RTX 2080 Ti as well as 8 Intel(R) Xeon(R) Gold 6242 CPU389

@ 2.80GHz CPU cores.390

14

 https://github.com/cafeautomatedfeatures/CAFE/tree/main/data/generated_code

G Datasets391

Features # Samples # Classes OpenML ID / Kaggle Name
Name

balance-scale 4 125 3 11
breast-w 9 69 2 15
cmc 9 1473 3 23
credit-g 20 1000 2 31
diabetes 8 768 2 37
tic-tac-toe 9 95 2 50
eucalyptus 19 736 5 188
pc1 21 1109 2 1068
airlines 7 2000 2 1169
jungle_chess_2pcs_raw_endgame_complete 6 2000 3 41027
pharyngitis 19 512 2 pharyngitis
health-insurance 13 2000 2 health-insurance-lead-prediction-raw-data
spaceship-titanic 13 2000 2 spaceship-titanic
kidney-stone 7 414 2 playground-series-s3e12

Table 5: Test datasets used for the evaluation. See Section 4 for a description of the datasets used.

G.1 Dataset Collection and Preprocessing392

OpenML datasets We use small datasets from OpenML (Vanschoren et al., 2013; Feurer et al.)393

that have descriptive feature names (i.e. we do not include any datasets with numbered feature names).394

Datasets on OpenML contain a task description that we provide as user context to our method and that395

we clean from redundant information for feature engineering, such as author names or release history.396

While some descriptions are very informative, other descriptions contain much less information. We397

remove datasets with more than 20 features, since the prompt length rises linearly with the number398

of features and exceeds the permissible 8,192 tokens that standard GPT-4 can accept. We show all399

datasets we used in Table 5 in Appendix G. When datasets are perfectly solvable with TabPFN alone400

(i.e. reaches ROC AUC of 1.0) we reduce the training set size for that dataset to 10% or 20% of the401

original dataset size. This is the case for the datasets “balance-scale” (20%), “breast-w” (10%) and402

“tic-tac-toe” (10%). We focus on small datasets with up to 2 000 samples in total, because feature403

engineering is most important and significant for smaller datasets.404

Kaggle datasets We additionally evaluate CAAFE on 4 datasets from Kaggle that were released405

after the knowledge cutoff of our LLM Model. These datasets contain string features as well. String406

features allow for more complex feature transformations, such as separating Names into First and407

Last Names, which allows grouping families. We drop rows that contain missing values for our408

evaluations. Details of these datasets can also be found in Table 5 in Appendix G.409

G.2 Dataset Descriptions410

The dataset descriptions used were crawled from the respective datasource. For OpenML prompts411

uninformative information such as the source or reference papers were removed. Figures 20 show the412

parsed dataset descriptions used for each dataset.413

15

https://www.kaggle.com/datasets/yoshifumimiya/pharyngitis
https://www.kaggle.com/datasets/owaiskhan9654/health-insurance-lead-prediction-raw-data
https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/playground-series-s3e12

** Balance Scale Weight & Distance Database **
This data set was generated to model psychological experimental results. Each example is

classified as having the balance scale tip to the right , tip to the left , or be
balanced. The attributes are the left weight , the left distance , the right weight ,
and the right distance. The correct way to find the class is the greater of (left -
distance * left -weight) and (right -distance * right -weight). If they are equal , it
is balanced.

Attribute description
The attributes are the left weight , the left distance , the right weight , and the right

distance.

Figure 7: Dataset description for balance-scale.

** Breast Cancer Wisconsin (Original) Data Set .** Features are computed from a digitized
image of a fine needle aspirate (FNA) of a breast mass. They describe
characteristics of the cell nuclei present in the image. The target feature records
the prognosis (malignant or benign).

Figure 8: Dataset description for breast-w.

4. Relevant Information:
This dataset is a subset of the 1987 National Indonesia Contraceptive
Prevalence Survey. The samples are married women who were either not
pregnant or do not know if they were at the time of interview. The
problem is to predict the current contraceptive method choice
(no use , long -term methods , or short -term methods) of a woman based
on her demographic and socio -economic characteristics.

7. Attribute Information:

1. Wife ’s age (numerical)
2. Wife ’s education (categorical) 1=low , 2, 3, 4=high
3. Husband ’s education (categorical) 1=low , 2, 3, 4=high
4. Number of children ever born (numerical)
5. Wife ’s religion (binary) 0=Non -Islam , 1= Islam
6. Wife ’s now working? (binary) 0=Yes , 1=No
7. Husband ’s occupation (categorical) 1, 2, 3, 4
8. Standard -of-living index (categorical) 1=low , 2, 3, 4=high
9. Media exposure (binary) 0=Good , 1=Not good
10. Contraceptive method used (class attribute) 1=No-use

2=Long -term
3=Short -term

Figure 9: Dataset description for cmc.

16

** German Credit dataset **
This dataset classifies people described by a set of attributes as good or bad credit

risks.

This dataset comes with a cost matrix:
‘‘‘
Good Bad (predicted)
Good 0 1 (actual)
Bad 5 0
‘‘‘

It is worse to class a customer as good when they are bad (5), than it is to class a
customer as bad when they are good (1).

Attribute description

1. Status of existing checking account , in Deutsche Mark.
2. Duration in months
3. Credit history (credits taken , paid back duly , delays , critical accounts)
4. Purpose of the credit (car , television ,...)
5. Credit amount
6. Status of savings account/bonds , in Deutsche Mark.
7. Present employment , in number of years.
8. Installment rate in percentage of disposable income
9. Personal status (married , single ,...) and sex
10. Other debtors / guarantors
11. Present residence since X years
12. Property (e.g. real estate)
13. Age in years
14. Other installment plans (banks , stores)
15. Housing (rent , own ,...)
16. Number of existing credits at this bank
17. Job
18. Number of people being liable to provide maintenance for
19. Telephone (yes ,no)
20. Foreign worker (yes ,no)

Figure 10: Dataset description for credit-g.

4. Relevant Information:
Several constraints were placed on the selection of these instances from
a larger database. In particular , all patients here are females at
least 21 years old of Pima Indian heritage. ADAP is an adaptive learning
routine that generates and executes digital analogs of perceptron -like
devices. It is a unique algorithm; see the paper for details.

7. For Each Attribute: (all numeric -valued)
1. Number of times pregnant
2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test
3. Diastolic blood pressure (mm Hg)
4. Triceps skin fold thickness (mm)
5. 2-Hour serum insulin (mu U/ml)
6. Body mass index (weight in kg/(height in m)^2)
7. Diabetes pedigree function
8. Age (years)
9. Class variable (0 or 1)

Relabeled values in attribute ’class ’
From: 0 To: tested_negative
From: 1 To: tested_positive

Figure 11: Dataset description for diabetes.

17

**Tic -Tac -Toe Endgame database **
This database encodes the complete set of possible board configurations at the end of tic

-tac -toe games , where "x" is assumed to have played first. The target concept is "
win for x" (i.e., true when "x" has one of 8 possible ways to create a "three -in-a-
row").

Figure 12: Dataset description for tic-tac-toe.

** Eucalyptus Soil Conservation **
The objective was to determine which seedlots in a species are best for soil conservation

in seasonally dry hill country. Determination is found by measurement of height ,
diameter by height , survival , and other contributing factors.

It is important to note that eucalypt trial methods changed over time; earlier trials
included mostly 15 - 30cm tall seedling grown in peat plots and the later trials
have included mostly three replications of eight trees grown. This change may
contribute to less significant results.

Experimental data recording procedures which require noting include:
- instances with no data recorded due to experimental recording procedures

require that the absence of a species from one replicate at a site was
treated as a missing value , but if absent from two or more replicates at a
site the species was excluded from the site ’s analyses.

- missing data for survival , vigour , insect resistance , stem form , crown form
and utility especially for the data recorded at the Morea Station; this
could indicate the death of species in these areas or a lack in collection
of data.

Attribute Information

1. Abbrev - site abbreviation - enumerated
2. Rep - site rep - integer
3. Locality - site locality in the North Island - enumerated
4. Map_Ref - map location in the North Island - enumerated
5. Latitude - latitude approximation - enumerated
6. Altitude - altitude approximation - integer
7. Rainfall - rainfall (mm pa) - integer
8. Frosts - frosts (deg. c) - integer
9. Year - year of planting - integer
10. Sp - species code - enumerated
11. PMCno - seedlot number - integer
12. DBH - best diameter base height (cm) - real
13. Ht - height (m) - real
14. Surv - survival - integer
15. Vig - vigour - real
16. Ins_res - insect resistance - real
17. Stem_Fm - stem form - real
18. Crown_Fm - crown form - real
19. Brnch_Fm - branch form - real
Class:
20. Utility - utility rating - enumerated

Relevant papers

Bulluch B. T., (1992) Eucalyptus Species Selection for Soil Conservation in Seasonally
Dry Hill Country - Twelfth Year Assessment New Zealand Journal of Forestry Science
21(1): 10 - 31 (1991)

Kirsten Thomson and Robert J. McQueen (1996) Machine Learning Applied to Fourteen
Agricultural Datasets. University of Waikato Research Report

https ://www.cs.waikato.ac.nz/ml/publications /1996/ Thomson -McQueen -96. pdf + the original
publication:

Figure 13: Dataset description for eucalyptus.

18

Binarized version of the original data set (see version 1). The multi -class target
feature is converted to a two -class nominal target feature by re-labeling the
majority class as positive (’P’) and all others as negative (’N’). Originally
converted by Quan Sun.

Figure 14: Dataset description for wine.

**PC1 Software defect prediction **
One of the NASA Metrics Data Program defect data sets. Data from flight software for

earth orbiting satellite. Data comes from McCabe and Halstead features extractors of
source code. These features were defined in the 70s in an attempt to objectively

characterize code features that are associated with software quality.

Attribute Information

1. loc : numeric % McCabe ’s line count of code
2. v(g) : numeric % McCabe "cyclomatic complexity"
3. ev(g) : numeric % McCabe "essential complexity"
4. iv(g) : numeric % McCabe "design complexity"
5. n : numeric % Halstead total operators + operands
6. v : numeric % Halstead "volume"
7. l : numeric % Halstead "program length"
8. d : numeric % Halstead "difficulty"
9. i : numeric % Halstead "intelligence"
10. e : numeric % Halstead "effort"
11. b : numeric % Halstead
12. t : numeric % Halstead ’s time estimator
13. lOCode : numeric % Halstead ’s line count
14. lOComment : numeric % Halstead ’s count of lines of comments
15. lOBlank : numeric % Halstead ’s count of blank lines
16. lOCodeAndComment: numeric
17. uniq_Op : numeric % unique operators
18. uniq_Opnd : numeric % unique operands
19. total_Op : numeric % total operators
20. total_Opnd : numeric % total operands
21. branchCount : numeric % of the flow graph
22. branchCount : numeric % of the flow graph
23. defects : {false ,true} % module has/has not one or more reported defects

Relevant papers

- Shepperd , M. and Qinbao Song and Zhongbin Sun and Mair , C. (2013)
Data Quality: Some Comments on the NASA Software Defect Datasets , IEEE Transactions on

Software Engineering , 39.

- Tim Menzies and Justin S. Di Stefano (2004) How Good is Your Blind Spot Sampling Policy
? 2004 IEEE Conference on High Assurance

Software Engineering.

- T. Menzies and J. DiStefano and A. Orrego and R. Chapman (2004) Assessing Predictors of
Software Defects", Workshop on Predictive Software Models , Chicago

Figure 15: Dataset description for pc1.

Airlines Dataset Inspired in the regression dataset from Elena Ikonomovska. The task is
to predict whether a given flight will be delayed , given the information of the
scheduled departure.

Figure 16: Dataset description for airlines.

19

Description

This dataset is part of a collection datasets based on the game "Jungle Chess" (a.k.a.
Dou Shou Qi). For a description of the rules , please refer to the paper (link
attached). The paper also contains a description of various constructed features. As
the tablebases are a disjoint set of several tablebases based on which (two) pieces
are on the board , we have uploaded all tablebases that have explicit different

content:

* Rat vs Rat
* Rat vs Panther
* Rat vs. Lion
* Rat vs. Elephant
* Panther vs. Lion
* Panther vs. Elephant
* Tiger vs. Lion
* Lion vs. Lion
* Lion vs. Elephant
* Elephant vs. Elephant
* Complete (Combination of the above)
* RAW Complete (Combination of the above , containing for both pieces just the rank , file

and strength information). This dataset contains a similar classification problem as
, e.g., the King and Rook vs. King problem and is suitable for classification tasks.

(Note that this dataset is one of the above mentioned datasets). Additionally , note that
several subproblems are very similar. Having seen a given positions from one of the
tablebases arguably gives a lot of information about the outcome of the same
position in the other tablebases.

J. N. van Rijn and J. K. Vis , Endgame Analysis of Dou Shou Qi. ICGA Journal 37:2,
120--124, 2014. ArXiv link: https :// arxiv.org/abs /1604.07312

Figure 17: Dataset description for jungle_chess_2pcs_raw_endgame_complete.

For the data and objective , it is evident that this is a Binary Classification Problem
data in the Tabular Data format.

A policy is recommended to a person when they land on an insurance website , and if the
person chooses to fill up a form to apply , it is considered a Positive outcome (
Classified as lead). All other conditions are considered Zero outcomes.

Figure 18: Dataset description for Kaggle_health-insurance-lead-prediction-raw-data.

Group A streptococcus (GAS) infection is a major cause of pediatric pharyngitis , and
infection with this organism requires appropriate antimicrobial therapy.

There is controversy as to whether physicians can rely on signs and symptoms to select
pediatric patients with pharyngitis who should undergo rapid antigen detection
testing (RADT) for GAS .

Our objective was to evaluate the validity of signs and symptoms in the selective testing
of children with pharyngitis.

Now , let ’s use machine learning to analyze whether a diagnosis can be made from the child
’s symptoms and signs.

Can we predict RADT positive?

Figure 19: Dataset description for Kaggle_pharyngitis.

20

Dataset Description
In this competition your task is to predict whether a passenger was transported to an

alternate dimension during the Spaceship Titanic ’s collision with the spacetime
anomaly. To help you make these predictions , you ’re given a set of personal records
recovered from the ship ’s damaged computer system.

File and Data Field Descriptions
train.csv - Personal records for about two -thirds (~8700) of the passengers , to be used

as training data.
PassengerId - A unique Id for each passenger. Each Id takes the form gggg_pp where gggg

indicates a group the passenger is travelling with and pp is their number within the
group. People in a group are often family members , but not always.

HomePlanet - The planet the passenger departed from , typically their planet of permanent
residence.

CryoSleep - Indicates whether the passenger elected to be put into suspended animation
for the duration of the voyage. Passengers in cryosleep are confined to their cabins
.

Cabin - The cabin number where the passenger is staying. Takes the form deck/num/side ,
where side can be either P for Port or S for Starboard.

Destination - The planet the passenger will be debarking to.
Age - The age of the passenger.
VIP - Whether the passenger has paid for special VIP service during the voyage.
RoomService , FoodCourt , ShoppingMall , Spa , VRDeck - Amount the passenger has billed at

each of the Spaceship Titanic ’s many luxury amenities.
Name - The first and last names of the passenger.
Transported - Whether the passenger was transported to another dimension. This is the

target , the column you are trying to predict.

Figure 20: Dataset description for kaggle_spaceship-titanic.

21

	Introduction
	Background
	Large Language Models (LLMs)
	Feature Engineering
	Incorporating Semantic Information

	Method
	Experimental Setup
	Results
	Conclusion
	Acknowledgements
	Broader Impact Statement
	Reproducibility
	Full LLM Prompt
	Additional Results
	Per Dataset Results
	Generated Prompts and Code

	Compute
	Datasets
	Dataset Collection and Preprocessing
	Dataset Descriptions

