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A MORE DISCUSSION ABOUT MULTI-ATLAS

A.1 DIFFERENCE BETWEEN MULTI-ATLAS AND MULTI-TEMPLATE METHODS

In brain MRI analysis, the concepts of template and atlas can sometimes be confused. The atlas in
our paper refers to a detailed map of brain structures (Tzourio-Mazoyer et al., 2002), often derived
from anatomical, functional, and histological data, and includes labels for different brain regions
based on specific criteria. A template, on the other hand, is a standard reference image that serves
as a common coordinate system for comparing different brain images (Tang et al., 2016). It is
usually created by averaging brain images from a group of subjects, providing a standardized space
for registering or aligning individual brain images. This allows for comparison and combination of
data across different subjects or groups. Figures 3 and 4 illustrate the difference between atlas and
template. Although some existing works (Min et al., 2014a;b; Liu et al., 2015; 2016) are named
multi-atlas, they are more akin to multi-template methods. Instead of registering brain images to
different spaces in multi-template methods, the multi-atlas methods discussed in our paper segment
brain images in the common space to define ROIs differently.

Motivation

School of Computer Science and Engineering 36

Each atlas is based on a different parcellation hypothesis 

AAL116 Schaefer100

Figure 3: AAL116 and Schaefer100 atlases. Each atlas is based on a different parcellation hypothe-
sis.

Figure 4: MNI template T1-w image.

A.2 DIFFERENCES OF VARIOUS ATLASES

When applying an atlas to preprocessed neuroimaging data, not all voxels are assigned to a specific
ROI based on the distinct hypothesis for different atlases. For instance, in our study, 6.3% of voxels
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in the Schaefer atlas are not included in AAL; 33.3% of voxels in AAL are not included in Schaefer;
13.8% of voxels in the HO atlas are not included in Schaefer; and 13.8% of voxels in Schaefer are not
included in HO. This incomplete ROI assignment can result in the loss of important information for
downstream tasks. A figure comparing AAL and Schaefer atlases is provided in the Rebuttal PDF,
showing that each atlas is based on a different parcellation hypothesis with significantly different
ROI definitions. For example, Schaefer does not include the whole cerebellum, unlike AAL. We
summarize the detailed comparison of AAL and Schaefer atlases in the following:

• Development

AAL Atlas: Introduced by Tzourio-Mazoyer et al. (2002).
Schaefer Atlas: Created by Schaefer et al. (2018b).

• Basis

AAL Atlas: Based on anatomically defined regions.
Schaefer Atlas: Based on functional connectivity data.

• Number of Regions

AAL Atlas: 116 regions.
Schaefer Atlas: Variable resolutions, offering 100, 200, 300, up to 1000 parcels.

• Coverage

AAL Atlas: Covers the entire cerebral cortex, subcortical structures, and cerebellum.
Schaefer Atlas: Covers the entire cerebral cortex only.

• Resolution

AAL Atlas: Coarse, anatomically-based.
Schaefer Atlas: Multi-resolution, functionally-based.

• Primary Use

AAL Atlas: Commonly used in functional and structural neuroimaging studies.
Schaefer Atlas: Suitable for high-resolution functional parcellation and network-based
analyses.

• Defining Features

AAL Atlas: Features straightforward anatomical definitions and ease of use.
Schaefer Atlas: Captures functional organization with higher precision.

• Strengths

AAL Atlas: Simple, established, and widely used in the neuroimaging community.
Schaefer Atlas: Provides detailed functional parcellations and flexibility in resolution.

• Limitations

AAL Atlas: Limited to anatomical boundaries and offers coarse granularity.
Schaefer Atlas: Requires functional data and is more complex to implement.

• Typical Applications

AAL Atlas: General neuroimaging studies.
Schaefer Atlas: Advanced fMRI research and network analysis.

B NOTATION TABLE

Notation-wise, we use calligraphic letters to denote sets (e.g., X ), bold capital letters to denote
matrices (e.g., X), and strings with bold lowercase letters to represent vectors (e.g., x). Subscripts
and superscripts are used to distinguish between different variables or parameters, and lowercase
letters denote scalars. We use S[i, :] and S[:, j] to denote the i-th row and j-th column of a matrix
S, respectively. Table 6 summarizes the notations used throughout the paper.

C MORE DISCUSSION ABOUT THE IDENTITY EMBEDDING AND POSITIONAL
EMBEDDING

The identity and positional information in our context of ROIs differ from each other. In graph
Transformers, positional embeddings (e.g., graph Laplacian) (Li et al., 2020; Ying et al., 2021;
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Table 6: Notation table
Notation Description

D Input dataset
Xa,Xb A brain network of atlases a and b
yX Label of Xa and Xb

na, nb Number of nodes in atlases a and b
HID Identity-encoded feature matrix
m Brain network representation
d Dimensionality of node representations

WID,WINC ,WGC ,WQ,WK ,WV Parameter matrices
H Node representations after inter-atlas message-passing
A

ab The cross-atlas adjacency matrix for atlases a and b
H

ab The combined node representations for atlases a and b
i, j Index for matrix dimensions
bz Batch size

Wang et al., 2022) are designed to encode graph structural information. However, in brain networks
where edges are defined by the correlation between ROIs, the network can be considered a fully
connected, weighted graph. Thus, no structural information can be captured by general positional
embeddings. Furthermore, the orders of ROIs in different brain networks with the same atlas are
identical. Therefore, we use identity embeddings to mark nodes in different subjects that correspond
to the same ROI. To be more specific, the first node in all brain networks with AAL atlas represents
the same ROI. We add the identity embedding of this ROI (WID[1, :]) to its node feature X[i, :]. The
vectorized embedding kernel in BrainGNN (Li et al., 2021) and our identity embedding both aim to
encode identity information into node representations, but ours is a simpler way without relying on
the spatial information.

D MORE DETAIL ABOUT INTER-ATLAS MESSAGE-PASSING

D.1 DETAILED DESCRIPTION OF INTER-ATLAS MESSAGE-PASSING.

Given two atlases a and b with na and nb ROIs, we denote the 3D coordinate of the i-th and j-th ROI
of them as Ca

i and C
b
j , respectively. The distance matrix D

ab → Rna→nb is computed by Euclidean
distance D

ab
ij = distance(C

a
i ,C

b
j ).

A mask matrix M is then generated, where M
ab
ij = 1 if j → topk(D

ab
i ), and 0 otherwise. After-

wards, the inter-atlas adjacency matrix is defined as: Aab
=




0 M

ab

M
ba

0



 .

We summarize this process in the following algorithm.

Algorithm 1 Construction of the inter-atlas adjacency matrix A
ab.

Require: The 3D ROI coordinates Ca and C
b of atlases a and b;

1: D
ab
ij = distance(Ca

i ,C
b
j );

2: M
ab
ij =

{
1 if j → topk(Dab

i )

0 otherwise
;

3: D
ba
ij = distance(Cb

i ,C
a
j );

4: M
ba
ij =

{
1 if j → topk(Dba

i )

0 otherwise
;

5: A
ab

=

[
0 M

ab

M
ba

0

]
;

6: return A
ab
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D.2 AN EXAMPLE OF THE ADJACENCY MATRIX FOR INTER-ATLAS MESSAGE-PASSING

As shown in Figure 5, we generated an adjacency matrix for Schaefer100 and AAL116 by setting
k = 5. The connections between spatial neighborhoods across atlases are constructed. Note that
node v in atlas 1 is one of the nearest k neighbors of node u in atlas 2 does not mean u is one of the
nearest k neighbors of v, thus the adjacency matrix is asymmetry.

Figure 5: The adjacency matrix for inter-atlas message-passing.

E DETAILED DATASET DESCRIPTION

The class-wise sample sizes are summarized in Table 7.

ABIDE The ABIDE initiative supports the research on ASD by aggregating functional brain imag-
ing data from laboratories worldwide. ASD is characterized by stereotyped behaviors, including
irritability, hyperactivity, depression, and anxiety. Subjects in the dataset are classified into two
groups: TC and individuals diagnosed with ASD.

ADNI The ADNI raw images used in this paper were obtained from the ADNI database (adni.
loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Princi-
pal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), PET, other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression of mild cognitive impairment (MCI)
and early AD. For up-to-date information, see www.adni-info.org. We include subjects from
6 different stages of AD, from cognitive normal (CN), significant memory concern (SMC), mild
cognitive impairment (MCI), early MCI (EMCI), late MCI (LMCI) to AD.

PPMI The PPMI is a comprehensive study aiming to identify biological markers associated with
Parkinson’s risk, onset, and progression. PPMI comprises multimodal and multi-site MRI images.
The dataset consists of subjects from 4 distinct classes: normal control (NC), scans without evidence
of dopaminergic deficit (SWEDD), prodromal, and PD.

Mātai Mātai is a longitudinal single site, single scanner study designed for detecting subtle changes
in the brain due to a season of playing contact sports. This dataset consists of the brain networks
preprocessed from the data collected from Gisborne-Tairāwhiti area, New Zealand, with 35 con-
tact sport players imaged at pre-season (N=35) and post-season (N=25) with subtle brain changes
confirmed using diffusion imaging study due to playing contact sports.

F IMPLEMENTATION DETAILS

The settings of our experiments mainly follow those in (Dwivedi et al., 2020). We split each dataset
into 8:1:1 for training, validation and test, respectively. We evaluate each model with the same
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Table 7: The Class Distribution of the Brain Network Datasets we used
Dataset Gender (F/M) Age (mean ± std) Class # Subjects

ABIDE 152/873 16.5 ± 7.4 Control 537
ASD 488

ADNI 728/599 74.6 ± 7.9

CN 819
SMC 73
LMCI 102
EMCI 89
MCI 179
AD 65

PPMI 82/127 62.9 ± 9.5

Control 15
SWEDD 14

Prodromal 67
PD 113

Mātai N/A N/A Pre-season 35
Post-season 25

random seed under 10-fold cross-validation and report the average accuracy. The whole network
is trained in an end-to-end manner using the Adam optimizer (Kingma & Ba, 2014). We use the
early stopping criterion, i.e., we halve the learning rate when there is no further improvement on
the validation loss during 25 epochs and stop the training once the learning rate is smaller than the
minimum rate we set. All the codes were implemented using PyTorch (Paszke et al., 2017) and
Deep Graph Library (Wang et al., 2019) packages. All experiments were conducted on a Linux
server with an AMD Ryzen Threadripper PRO 5995WX 64-Cores and an NVIDIA GeForce RTX
4090. The version for the software we used in AIDFusion is listed in Table 8.

Table 8: The software dependency of AIDFusion.
Dependency Version

Python 3.10.13
cudatoolkit 12.2

pytorch 2.2.1+cu121
DGL 2.1.0+cu121

scikit-learn 1.4.1.post1
numpy 1.26.4

matplotlib 3.8.3
nilearn 0.10.4

All the baselines used in this paper are implemented by ourselves. In AIDFusion, we adopt a mean
pooling layer as the readout function and a two-layer MLP with ReLU as the prediction head. The
number of incompatible nodes r is set to 4. The number of clusters n↑ for the cluster assignment
matrix S is set to half of the average number of nodes for all atlases, e.g., for Schaefer100 and
AAL116, n↑

= (100 + 116)/2/2 = 54. The temperature hyper-parameter ω in Eq. (10) is set to
0.75. The hidden dimensions of all layers are set to 100. The batch size of each dataset is set to
10% of the subject number in the dataset. We tuned the other hyperparameters on validation set
including k in kNN for the inter-atlas message-passing, trade-off hyperparameters ε1,ε2,ε4,ε4 for
loss function Eq. (12), the initial learning rate init lr, and the minimum learning rate min lr used
for early stop. To be specific, we search k from {3, 5, 10}, ε1 from {1e-2, 1e-1, 1e0, 1e1, 1e2},
ε2 from {1e-2, 1e-1, 1e0, 1e1, 1e2}, ε3 from {1e-6, 1e-5, 1e-4, 1e-3, 1e-2}, ε4 from {1e-1, 1e0,
1e1}, inir lr from {5e-5, 8e-5, 1e-4, 2e-4, 7e-4} and inir lr from {6e-5, 1e-5, 5e-6, 1e-6}. The
optimized hyperparameters for AIDFusion are reported in Table 9.

For machine learning baselines (LR, SVM), we use the official code1 of Xu et al. (2023) and imple-
ment the multi-atlas version on the top of it. We follow the same parameter-tuning scheme as they
do. The full list of parameters, including those we used for the grid search, is provided below. The
parameter tuning for MultiLR and MultiSVM are the same with LR and SVM, respectively.

1https://github.com/brainnetuoa/data_driven_network_neuroscience
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Table 9: The optimized hyperparameters for AIDFusion.
ABIDE ADNI PPMI Mātai

k 10 5 5 5
ε1 1e1 1e1 1e1 1e-2
ε2 1e-1 1e1 1e1 1e0
ε3 1e-2 1e-5 1e-4 1e-3
ε4 1e0 1e0 1e0 1e0

init lr 1e-4 8e-5 1e-4 7e-4
min lr 6e-5 6e-5 6e-5 6e-5

LogisticRegression(penalty:(’l1’, ’l2’, ’elasticnet’, ’none’), dual=False, tol=0.0001, C=1.0,
fit intercept=True, intercept scaling=1, class weight=None, random state=None, solver=’lbfgs’,
max iter=1000000, multi class=’auto’, verbose=0, warm start=False, n jobs=None,
l1 ratio=None)

SVM(C=1, kernel=(’rbf’,’linear’,’poly’,’sigmoid’,’shortest path’), degree=3, gamma=’auto’,
coef0=0.0, shrinking=True, probability=False, tol=0.001, cache size=200, class weight=None,
verbose=False, max iter=- 1, decision function shape=’ovr’, break ties=False, ran-
dom state=None)

Table 10: Results of more atlases on ADNI dataset. The best results for each atlas setting are
highlighted in bold.

Atlas model acc ± stdSchaefer100 AAL116 HO48

↭ ↭

MGRL 62.74 ± 3.55
MGT 63.99 ± 4.34

METAFormer 66.52 ± 2.63
LeeNet 64.63 ± 1.34

AIDFusion 67.57 ± 2.04

↭ ↭

MGRL 64.48 ± 1.68
MGT 60.48 ± 1.91

METAFormer 64.48 ± 1.68
LeeNet 64.48 ± 1.58

AIDFusion 65.99 ± 2.62

↭ ↭

MGRL 57.92 ± 2.82
MGT 60.64 ± 3.52

METAFormer 65.23 ± 3.25
LeeNet 63.42 ± 1.82

AIDFusion 65.91 ± 1.80

↭ ↭ ↭

MGRL 56.63 ± 4.66
MGT 62.89 ± 1.28

METAFormer 66.33 ± 2.80
LeeNet 64.40 ± 1.71

AIDFusion 66.59 ± 1.77

G RESULTS WITH MORE ATLASES

To further evaluate the effectiveness of AIDFusion with other atlases, we conducted experiments
using an additional atlas, HO48 (Makris et al., 2006), on the ADNI dataset. Note that when AIDFu-
sion is extended to handle more than two atlases, it computes the orthogonal loss, inter-atlas message
passing, and both subject-level and population-level consistency for each pair of atlases. The results,
presented in Table 10 indicate that the proposed AIDFusion achieves the best performance across
all four atlas settings. Notably, increasing the number of atlases does not necessarily enhance model
performance. In some cases, using all three atlases yields lower accuracy compared to the com-
bination of Schaefer100 and AAL116. Additionally, the choice of atlas combination is crucial for
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multi-atlas methods. In dual-atlas experiments, combining two atlases with a similar number of ROIs
(Schaefer100 and AAL116) can mutually enhance and significantly improve model performance. To
further verify our finding that our method will benefit more from atlases with a similar number of
ROIs, we conduct additional experiments on the ABIDE dataset using three atlases (Schaefer100,
AAL116, and BASC122 (Bellec et al., 2010)). Results shown in the following table demonstrate
that for five multi-atlas methods, three of them (MGRL, METAFormer, and AIDFusion) achieve
better performance with three atlases compared to any two-atlas combinations. Importantly, our
proposed AIDFusion still outperforms all baselines in these settings. This reinforces our claim that
AIDFusion effectively integrates multi-atlas information while remaining robust to the inclusion of
additional atlases.

Table 11: Results of more atlases on ABIDE dataset. The best results for each atlas setting are
highlighted in bold.

Atlas model acc ± stdSchaefer100 AAL116 BASC122

↭ ↭

MGRL 61.56 ± 4.90
MGT 63.32 ± 3.90

METAFormer 61.27 ± 4.05
LeeNet 61.28 ± 3.12

AIDFusion 66.35 ± 3.26

↭ ↭

MGRL 60.80 ± 5.12
MGT 58.49 ± 5.64

METAFormer 62.92 ± 5.79
LeeNet 60.01 ± 4.00

AIDFusion 65.97 ± 3.60

↭ ↭

MGRL 63.14 ± 4.17
MGT 59.90 ± 3.46

METAFormer 62.53 ± 3.78
LeeNet 59.12 ± 4.20

AIDFusion 64.79 ± 2.80

↭ ↭ ↭

MGRL 63.62 ± 4.57
MGT 62.84 ± 3.85

METAFormer 65.80 ± 5.61
LeeNet 60.19 ± 3.77

AIDFusion 66.65 ± 4.14

To further explore how the resolution of atlases will influence the performance of our model, we
conduct experiments for atlases with various numbers of ROIs. The Schaefer atlas allows adjusting
the resolution of ROIs (e.g., from 100 to 1000). We selected Schaefer100 for detailed study be-
cause a previous study (Xu et al., 2023) found that using 100 ROIs with the Schaefer atlas usually
performs better than using more ROIs. To verify this conclusion in multi-atlas brain network classi-
fication, we conducted experiments using AAL116 combined with Schaefer200, Schaefer500, and
Schaefer1000. Results showed that AAL116 combined with Schaefer100 achieves the best results.
Additionally, we provided experimental results using the HO48 atlas in Appendix F. The dual-atlas
experiments demonstrate that combining two atlases with a similar number of ROIs (AAL116 and
Schaefer100) can mutually enhance and significantly improve model performance. It is also inter-
esting for us to explore using both atlases of around 200 nodes (or around 1000 nodes). We will
leave such exploration about multi-scale brain networks in the future.

Table 12: Results of more atlases with different resolutions on ABIDE dataset. The best results for
each atlas setting are highlighted in bold.

Atlas 1 Atlas 2 acc ± std

AAL116 Schaefer100 66.35 ± 3.26
AAL116 Schaefer200 65.03 ± 5.10
AAL116 Schaefer500 64.72 ± 4.80
AAL116 Schaefer1000 63.15 ± 2.80
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Figure 6: Visualization for attention maps on ABIDE. VIS = visual network; SMN = somatomotor
network; DAN = dorsal attention network; VAN = ventral attention network; LN = limbic network;
FPCN = frontoparietal control network; DMN = default mode network.

H BRAIN NETWORK ATTENTION MAP ON ABIDE

In the ASD analysis using the ABIDE dataset (Figure 6), AIDFusion identifies common connections
within the lingual gyrus of the VIS network in both Schaefer100 and AAL116. This aligns with
existing ASD studies which suggest a greater reliance on visual perceptual processing and more
effortful top-down control during semantic processing in ASD (Shen et al., 2012). Besides, for
Schaefer, AIDFusion emphasizes ROIs in the DAN, particularly the connection between the right
posterior and VIS, consistent with Koshino et al. (2008) who found lower activation in ASD subjects
in the inferior left prefrontal area (verbal processing and working memory) and the right posterior
temporal area (theory of mind processing). In the AAL analysis, connections in the DMN and
the frontoparietal control network (FPCN) are highlighted, supporting the understanding that (1)
dysfunctions in DMN nodes and their interactions contribute to difficulties of ASD in attending to
socially relevant stimuli (Padmanabhan et al., 2017), and (2) the ASD group shows reduced lateral
frontal activity and diminished hippocampal connectivity, especially between the hippocampus and
FPCN regions (Cooper et al., 2017). These findings clarify why the features identified by AIDFusion
are distinctive for ASD biomarkers.

I MORE RESULTS FOR ABLATION STUDY

I.1 VISUALIZATION FOR THE ABLATION ON SUBJECT- AND POPULATION-LEVEL
CONSISTENCY

In this subsection, we assess the impact of subject- and population-level consistency constraints on
the representation learning of AIDFusion.

First, to understand the effect of the subject-level consistency loss, we compute the difference in
hidden feature matrices Ĥ for two different brain atlases: Schaefer100 and AAL116. We compare
AIDFusion models with and without the subject-level consistency loss by plotting the difference
matrix !Ĥ = ĤSchaefer100 ↑ ĤAAL116. As shown in Figure 7, incorporating the subject-level
consistency loss significantly reduces the differences in hidden feature matrices across the two at-
lases. This demonstrates that AIDFusion achieves more consistent feature representations, aligning
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the learned embeddings across different brain network views at a higher hidden layer. The reduced
variance in the difference matrix implies that the model successfully learns shared patterns across
atlases, leading to improved representation stability.

Figure 7: Visualization for the difference of hidden feature matrices Ĥ between Schaefer100 and
AAL116 on ADNI. The right one is AIDFusion while the left one is AIDFusion w/o subject-level
consistency loss.

Next, we evaluate the effect of the population-level consistency loss by analyzing the difference in
similarity matrices G (used in Eq. (11)), which capture the pairwise similarity of subject representa-
tions for Schaefer100 and AAL116 atlases. Figure 8 illustrates the difference in similarity matrices
between the two atlases for models trained with and without the population-level consistency loss.
Without this constraint (left panel), some subjects show significant discrepancies between the two
views, suggesting that the learned representations are inconsistent across atlases. This misalignment
may lead to degraded model performance, as the decision boundaries are influenced by inconsistent
representations. In contrast, when applying the population-level consistency loss (right panel), the
differences in similarity matrices are notably reduced. This indicates that AIDFusion successfully
aligns the representations at the population level, ensuring that the graph-level similarities are pre-
served across different views of the brain network. By enforcing this consistency, our model can
make more robust predictions.

Figure 8: Visualization for the difference of the similarity matrices G between Schaefer100 and
AAL116 on the first batch of ADNI. The right one is AIDFusion while the left one is AIDFusion
w/o population-level consistency loss.
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Overall, these visualizations highlight the importance of the subject- and population-level consis-
tency losses in improving the alignment and robustness of the learned representations in multiview
brain network analysis.

Figure 9: Visualization for attention maps of AIDFusion w/ and w/o incompatible nodes.

I.2 ABLATION STUDY FOR INCOMPATIBLE NODES

In this subsection, we further explore the function of incompatible nodes by visualizing the atten-
tion map of AIDFusion w/o incompatible nodes. The attention maps are shown in Figure 9. We can
observe that, when not using incompatible nodes, the attentions of two atlases (in the right column)
are remarkably imbalanced. Attentions on Schaefer are much higher than those on AAL. Besides,
the attention map of AAL exhibits over-smoothing and no highlighted network is found, which indi-
cates the model is not able to extract the distinguishable connections. This case study demonstrates
that the incompatible nodes enable the model to filter out the inconsistent atlas-specific information.

J HYPERPARAMETER ANALYSIS

In this section, we study the sensitivity of four trade-off hyperparameters in Eq. (12). All experi-
ments are conducted on the ADNI dataset. We tune the value of ε1 from 1e0 to 1e2, ε2 from 1e0 to
1e2, ε3 from 1e-6 to 1e-4 and ε4 from 1e-1 to 1e1. The results presented in Table 13 show that our
model performs the best when ε1 = 1e1, ε2 = 1e1, ε3 = 1e-5 and ε4 = 1e0. We can exhibit that
these trade-off hyperparameters in the loss function will marginally affect the model performance
on ADNI (less than 1%), which demonstrates the stability of AIDFusion.
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Table 13: The hyperparameter sensitivity analysis for AIDFusion on ADNI dataset.
ε1 ε2 ε3 ε4 acc ± std
1e0 1e1 1e-5 1e0 66.97 ± 1.95
1e1 1e0 1e-5 1e0 66.44 ± 2.88
1e1 1e1 1e-6 1e0 67.04 ± 2.20
1e1 1e1 1e-5 1e-1 66.82 ± 1.98
1e1 1e1 1e-5 1e0 67.57 ± 2.04
1e1 1e1 1e-5 1e1 66.82 ± 2.64
1e1 1e1 1e-4 1e0 67.04 ± 2.21
1e1 1e2 1e-5 1e0 66.89 ± 2.10
1e2 1e1 1e-5 1e0 66.21 ± 2.34
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