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A APPENDIX

A.1 ADDITIONAL QUALITATIVE RESULTS

Figures 1 and 2 provide additional qualitative examples comparing segmentation and anticipation.
The portion of each timeline preceding the vertical dashed line corresponds to the TAS output on
the observed interval, while the portion after the dashed line illustrates the LTA of future actions.
These examples highlight the ability of our model to produce temporally coherent segmentations of
the observed video and to extend these predictions into plausible and semantically consistent future
action sequences.

A.2 ADDITIONAL RESULTS:

Varying of CTC loss. We empirically found that enforcing transcript consistency via CTC on
encoder frame-logits over the full video yields more stable alignments than applying CTC on con-
catenated TAS+LTA logits (see Table 2. This design isolates future uncertainty to the decoder and
CRF, avoiding noisy global alignments while still transferring reliable boundary information to an-
ticipation.

Effect of TbLTA in TAS-only mode. We also evaluate TbLTA in a TAS-only setting (α = 1.0,
β = 0.0). The model obtains MoF = 54.5, F1@10/25/50 = 37.0/29.8/18.9, and Edit = 32.2,
which is competitive with weakly-supervised ATBA (MoF = 53.9) despite not being specialized for
segmentation.

Stochastic Evaluation Protocol For evaluation, we also closely follow prior work (Zatsarynna
et al., 2025; 2024). Specifically, for each observed video snippet, we sample S = 25 predictions
from our model. As evaluation metrics, we report:

• Mean MoC: the average Mean over Classes (MoC) accuracy across the S generated sam-
ples.

• Top-1 MoC: the MoC of the single best-matching sample among the S candidates.

This protocol allows us to assess both the diversity (Mean MoC) and the best-case accuracy (Top-1
MoC) of the model under stochastic decoding.

A.3 HYPERPARAMETERS

The full configuration for all datasets is reported in Table 1, which summarizes all hyperparameter
choices used in our experiments.

A.4 DETAILS ON LOSSES

Temporal Alignment Losses. To train the segmentation branch under weak supervision, we adopt
the loss formulation proposed in the Action Temporal Boundary Adjustment (ATBA) framework Xu
& Zheng (2024). ATBA method generates frame-level pseudo-labels by aligning the model’s pre-
dictions with transcript supervision, while promoting temporal coherence and boundary precision.
ATBA begins by identifying a class-agnostic set of candidate boundaries, from which it selects the
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Figure 1: Qualitative results on Breakfast datasets.
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Figure 2: Qualitative results on 50Salads dataset.

Hyperparameter 50Salads/ EGTEA Gaze+ Breakfast

Dataset classes (C) 19 48
Batch size (bs) 4 2
Epochs (ne) 80 80
Learning rate (lr) 5×10−4 1×10−4

Weight decay (wd) 3×10−4 5×10−5

Feature dim (f ) 256 256
Encoder input dim 512 128
Encoder layers 8 4
Decoder layers 4 2
Decoder hidden dim 256 128
Decoder heads 4 8
Decoder queries (Q) 20 8
CRF weight 1.0 0.1
Dropout 0.5 –
Top-k (CRF) 25 25
Text encoder DistilBERT DistilBERT
γ1 0.6 0.6
γ2 0.01 0.01
γ3 1.0 1.0

Table 1: Hyperparameter configuration on all datasets.

optimal kobs − 1 transitions that best align with the observed transcript Yobs, using dynamic pro-
gramming. This results in a frame-level sequence of pseudo-labels Ŷ = [ŷ1, . . . , ŷTobs ] that serve as
supervisory signals.

Given the fused representation F̃ ∈ R(|C|+Tobs)×dTAS , we estimate action probabilities through:

ξseg = σ(WsegF̃ + ϵseg) ∈ R(|C|+Tobs)×|C| (1)

2
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TbLTA Model Obs 20% Obs 30% Avg.
10% 20% 30% 50% 10% 20% 30% 50%

50Salads ctc loss (obs) 33.8 27.9 25.0 22.1 34.5 33.3 29.4 22.2 28.5
ctc loss (full video) 26.6 26.8 24.5 21.9 33.4 34.2 28.7 22.2 27.3

Breakfast ctc loss (obs) 37.2 33.0 31.7 30.5 45.7 41.9 39.1 38.3 37.2
ctc loss (full video) 35.4 31.1 30.0 28.3 44.5 41.1 38.3 33.1 35.2

Table 2: Ablation study on CTC loss.

where Wseg and ϵseg are learnable parameters and σ(·) denotes the sigmoid activation. We define
the following loss components:

• Frame-wise Cross-Entropy Loss:
Let Pframes ⊂ ξseg denote the last Tobs rows, corresponding to the frame-level predictions.
We supervise them using pseudo-labels:

Lframes = − 1

Tobs

Tobs∑
t=1

logPframest,ŷt (2)

• Video-level Binary Classification Loss:
To address noise in pseudo-labels, we follow Xu & Zheng (2024) and add a video-level
multi-label classification loss:

Lvid = − 1

|C|

|C|∑
c=1

[
yvid
c log ξsegc + (1− yvid

c ) log(1− ξsegc)
]

(3)

where ξsegc is the action occurrence probability for each class c ∈ C, yvid
c = 1 if class c is

present in Yobs, and 0 otherwise.

• Global-Local Contrastive Loss:
Class tokens E′ = [e′1, . . . , e

′
|C|] encode global action semantics. For each class c, we

compute a centroid x̄c by averaging the frame features corresponding to class c in Ŷ . A
contrastive loss (He et al., 2020) then aligns local and global features:

Lglc = − 1

|Set(Yobs)|
∑

c∈Set(Yobs)

log
exp (⟨x̄c, e

′
c⟩/τ)∑|C|

c′=1 exp (⟨x̄c, e′c′⟩/τ)
, (4)

where ⟨·, ·⟩ denotes cosine similarity and τ is a temperature hyperparameter.
This loss complements frame-level supervision by encouraging the decoder to produce
semantically meaningful and temporally coherent segments.

The final segmentation loss is a weighted combination of all terms:

Latba = β1Lframes + β2Lvid + β3Lglc (5)

where β1, β2 = 0.5 and β3 = 0.1, following the ATBA paper.

LTA Losses. To supervise the LTA branch, we rely on the temporal consistency regularization
strategy introduced by TCCA (Maté & Dimiccoli, 2024). The output sequence is predicted by a
decoder and refined through a CRF. We define four loss components for this stage.

The primary objective is a CRF sequence loss Lcrf, which maximizes the log-likelihood of the pre-
dicted future label sequence under a CRF model. This ensures structural consistency in the antici-
pated sequence.

3
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To promote contextual regularization, following BACR (Bi-Directional Action Context Regular-
izer), we apply two KL divergence terms. The first,

Lnext = DKL(pfut-cur ∥ pfut-next), (6)

aligns the current action distribution with that of the subsequent predicted action. The second,

Lprev = DKL(pfut-cur ∥ pfut-prev), (7)

performs a similar alignment with the preceding action. These losses serve to improve transition
coherence and reduce label jittering in the anticipated future.

The total CRF loss is then:
LCRF = Lcrf + Lnext + Lprev (8)

Duration loss. During training, we compute per-class duration estimates from the observed seg-
ments by counting the frequency of predicted labels from the segmentation head. These estimates
are stored in a momentum-based buffer d̂ ∈ R|C|, updated as:

d̂(t) = wb · d̂(t−1) + (1− wb) · dbatch, (9)

where wb ∈ [0, 1] is a momentum balancing weight, and dbatch is the mean observed duration for
each class in the current batch. This running average captures temporal priors in a self-supervised
fashion, even in the absence of true duration annotations. During inference, the decoder output
SLTA, the predicted class probabilities ξfut-cur, and the class duration priors d̂ are concatenated and
passed to a regression head to obtain a per-segment predicted duration:

δ̂i = Wdur ·
[
SLTAi , ξ

i
fut-cur, d̂

]
+ ϵdur, i = 1, . . . , nLTA

q (10)

where Wdur and ϵdur are learnable parameters of the duration prediction head, and δ̂i is the predicted
normalized duration for segment i. The self-supervised duration loss is formulated as:

Ldur =
1

Tpred

Tpred∑
i=1

(
δ̂i − d̂yi

)2
, (11)

where δ̂i is the per-segment predicted duration and the ground truth target is approximated by the
class-wise prior d̂yi

.

A.5 CRF DECODING.

In our framework, the Conditional Random Field (CRF) can produce multiple future action hypothe-
ses. By default, setting top k in the decoder returns K candidate sequences, which may be sampled
or enumerated depending on the implementation. A naı̈ve strategy is to retain the first hypothesis
(k = 0), implicitly assuming that the output is sorted by probability. However, this assumption
does not always hold: in practice, the returned set can mix high- and low-probability sequences in
arbitrary order.

To remove this ambiguity and ensure reproducibility, we adopt a deterministic decoding procedure.
During evaluation, we generate K = 25 candidate futures from the CRF, compute the CRF score of
each candidate (emissions plus transition potentials), and retain the most probable one. This guar-
antees determinism and ensures that reported metrics reflect the model’s own highest-probability
prediction rather than oracle or sampling artifacts.

A.6 AI ASSISTANCE

We would like to note that large language models (ChatGPT, Gemini) were used to polishing the
writing of this work.
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