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Figure 1: Summary of results for learning real-valued concept classes and quantum states with
imprecise feedback. Except for the ?-arrow, an arrow A→ B implies that, if the sample complexity
of learning in model A or the combinatorial parameter A is SA, then the complexity of learning
in model B or the combinatorial parameter B is SB = poly(SA). The dotted arrow signifies that a
technique used to prove that arrow for Boolean functions is a no-go for our quantum learning setting.
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A Preliminaries2

Notation. Throughout this paper we will use the following notation. We let X be the input domain3

of real-valued functions (eventually when instantiating to quantum learning, we will let X be the set4

of all possible 2-outcome measurements denoted byM). We will let C be a concept class of real5

valued functions, i.e,. C ⊆ {f : X → [0, 1]} and let H be a collection of concept classes C. For a6

distribution D : X → [0, 1], two functions h, c : X → [0, 1] and a distance parameter r ∈ [0, 1], we7

define loss as8

LossD(h, c, r) := Pr
x∼D

[
|h(x)− c(x)| > r

]
. (1)

The quantum learning setting. While we are interested in the quantum learning setting – learning9

n-qubit quantum states in the class U over an orthogonal basis of n-qubit quantum measurements,10

M – our results apply more generally to learning an arbitrary real-valued function class C = {f :11

X → [0, 1]} with imprecise adversarial feedback. Therefore the learning models we introduce, and12

our theorems in the rest of this paper, will be for the more general real-valued setting.13

For X =M, these two problems are equivalent: there is a one-to-one mapping between the set of all14

quantum states and real-valued functions onM, i.e., for every σ, one can clearly associate a function15

fσ : M → [0, 1] defined as fσ(M) = Tr(Mσ) and for the converse direction, given an arbitrary16

c : M→ [0, 1], one can find a density matrix σ for which c(M) = Tr(Mσ) for all M ∈ M (and17

this uses the orthogonality ofM crucially). Hence, if one can learn C for X =M then one can learn18

the class of quantum states U , and the converse is also true. When U is a subset of the set of all19
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n-qubit states, the learner we construct is an improper learner, i.e., it could output σ not in U , which20

nevertheless is useful for prediction.21

A.1 Learning models of interest22

PAC learning. We first introduce the PAC learning model for the real-valued concept classes.23

Definition A.1 (PAC learning). Let α, ζ ∈ [0, 1]. An algorithm A (ζ, α)-PAC learns C with sample24

complexity m if the following holds: for every c ∈ C, and distribution D : X → [0, 1], given25

m labelled examples {(xi, ĉ(xi))}mi=1 where each xi ∼ D and |c(xi) − ĉ(xi)| ≤ ζ/5, then with26

probability at least 3/4 (over random examples and randomness of A) outputs a hypothesis h27

satisfying128

Pr
y∼D

[
|c(y)− h(y)| ≥ ζ

]
≤ α. (2)

We remark that in the definition above, we assume the success probability of the algorithm is 3/4 for29

notational simplicity. With an overhead of O(log(1/β)), we can boost 3/4 to 1− β using standard30

techniques as mentioned in [1].31

Online learning Let us now introduce the online learning setting in the form of a game between32

two players: the learner and the adversary. As always, we shall be concerned with learning real-valued33

concept classes C := {f : X → [0, 1]} and we let the target function be c ∈ C. In the rest of this34

paper, we will use the term “online learning” to refer to improper online learning2, also known35

in the literature as online prediction, where the learner’s objective is to make predictions for c(x)36

given some point x ∈ X , and it may do so using a hypothesis function f(x) not necessarily in C.37

Importantly, we also depart from the real-valued online learning literature in allowing the adversary38

to be imprecise; that is, for the adversary to respond to the learner with feedback that is ε-away from39

the true value (this is made more precise below). This generalization allows for the case when the40

feedback is generated by a randomized algorithm with approximation guarantees, a statistical sample,41

or a physical measurement.42

The following setting, which we also call the strong feedback setting, was introduced by [2] to model43

online learning of quantum states. The following procedure repeats for T rounds: at the t-th round,44

1. Adversary provides input point in the domain: xt ∈ X .45

2. Learner has a local prediction function ft which may not necessarily be in C, and predicts46

ŷt = ft(xt) ∈ [0, 1].47

3. Adversary provides strong feedback ĉ(xt) ∈ [0, 1] satisfying |ĉ(xt)− c(xt)| < ε.48

4. Learner suffers loss |ŷt − c(xt)| .49

At the end of T rounds, the learner has computed a function fT+1, which functions as its prediction50

rule. If the learner is such that fT+1 is not guaranteed to be in C, we call the learner an ‘improper51

learner’. Such a learner can, however, still make predictions fT+1(x) on any given input x ∈ X .52

Alternatively, we could also require that the learner be ‘proper’, that is, it must output some fT+1 ∈ C.53

Generally, the goal of the learner is either to make as few prediction mistakes as possible within54

T rounds (where a ‘mistake’ is defined as |f(xt)− c(xt)| > ε, to be discussed more below); or to55

minimize regret for a given notion of loss, which is the total loss of its predictions compared to the56

loss of the best possible prediction function that could be found with perfect foresight. Because the57

former, ‘mistake-bound’ setting is the one relevant to quantum states, we focus on that and will define58

it next.59

Some variants of our strong feedback setting could also be considered, and we now explain how they60

are related to our setting. Firstly, [3] and [4] consider an alternative setting for online prediction of61

real-valued functions that differs from ours in step (3). There, the adversary’s feedback is c(xt) itself62

and is infinitely precise; to recover that setting from ours, we merely set ε = 0. Since in our setting63

we allow ε arbitrary, we accommodate the possibility of a precision-limited adversary, for instance if64

1An alternative definition of the PAC model of learning is the following: a learner obtains (xi, b) where
b ∈ {0, 1} satisfies Pr[b = 1] = c(xi). Both these models are equivalent up to poly-logarithmic factors.

2However, whenever we are concerned with online learning of quantum states, we take special care to ensure
that our algorithms are proper, so that the learner’s hypothesis function corresponds to an actual quantum state.
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the adversary’s feedback comes from some estimation process or physical measurement. A second65

alternative setting is where the adversary only commits to providing weak feedback: ĉ(xt) = 0 if66

|ŷt − c(xt)| < ε and ĉ(xt) = 1 otherwise. Additionally, the adversary specifies if c(xt) > ŷt + ε,67

or c(xt) < ŷt − ε to the learner. We have termed this ‘weak feedback’ because it contains only two68

bits of information, whereas for the strong feedback setting considered above, the feedback contains69

O(log(1/ε)) bits of information.370

Mistake bound for online learning. We now introduce the notion of ‘mistake bound’ of an online71

learner. Before defining the model, we first define an ε-mistake at step (3) of the the T -step procedure72

we mentioned above.73

Definition A.2 (ε-mistake). Let the target concept be c. At a given round, let the input point be xt74

and the learner’s guess be ŷt. The learner has made a mistake if |ŷt − c(xt)| ≥ ε.75

We now define the mistake-bound model of online learning.76

Definition A.3 (Mistake bound ). Let A be an online learning algorithm for class C. Given any77

sequence S = (x1, ĉ (x1)) , . . . , (xT , ĉ (xT )) , where T is any integer, c ∈ C and ĉ is the feedback of78

the online learner on point xi. Let MA(S) be the number of mistakes A makes on the sequence S.79

We define the mistake bound of learner A (for C) as maxSMA(S) where S is a sequence of the80

above form. We say that class C is online learnable if there exists an algorithm A for which81

MA(C) ≤ B <∞. We further define the mistake bound of a concept class asM(C) := minAMA(C)82

where the minimization is over all valid online learners A for C.83

The mistake bound of class C, M(C) is one way to measure the online learnability of C. For learning84

Boolean function classes, [5] showed that this bound gives an operational interpretation to the85

Littlestone dimension of the function class: minAMA(C) = Ldim(C). For showing that there exists86

A such that MA(C) ≤ Ldim(C), Littlestone constructed a generic algorithm – the Standard Optimal87

Algorithm – to learn any class C that makes at most Ldim(C)-many mistakes on any sequence of88

examples.89

The mistake-bounded online learning model outlined in the previous few paragraphs recovers the90

‘online learning of quantum states’ model, proposed by [2], once we specialize to learning quantum91

states using the translation we provide at the start of this section. Whereas [2]’s focus was on regret92

bounds for online learning, we instead focus on online learning with bounded mistakes. While this93

can be viewed as a special case of bounding regret (with an indicator loss function), the mistake-bound94

viewpoint opens up windows to other models of learning, as we will see in the rest of this paper.95

A.2 Other tools of interest96

A.2.1 Differentially-private learning97

The task of designing randomized algorithms with privacy guarantees has attracted much attention98

classically with the motivation of preserving user privacy [6]. Below we formally introduce differential99

privacy, one way of formalizing privacy. Let A be a learning algorithm. Let S be a sample set100

consisting of labelled examples {(xi, `i)}i∈[n] where xi ∈ X , `i ∈ [0, 1], that is fed to a learning101

algorithm A. We say two sample sets S, S′ are neighboring if there exists i ∈ [n] such that102

(xi, `i) 6= (x′i, `
′
i) and for all j 6= i it holds that (xj , `j) = (x′j , `

′
j). Additionally, we define (ε, δ)-103

indistinguishability of probability distributions: for a, b, ε, δ ∈ [0, 1] let a ≈ε,δ b denote the statement104

a ≤ eεb+δ and b ≤ eεa+δ. We say that two probability distributions p, q are (ε, δ)-indistinguishable105

if p(E) ≈ε,δ q(E) for every event E.106

Definition A.4 (Differentially-private learning). A randomized algorithm107

A : (X × [0, 1])n → [0, 1]X

is (ε, δ)-differentially-private if for every two neighboring examples S, S′ ∈ (X × [0, 1])n, the output108

distributions A(S) and A (S′) are (ε, δ)-indistinguishable.109

3That is to say, a learner that works in the strong feedback setting can also work in the weak feedback setting,
by mounting a binary search of the range [0, 1] to obtain for itself an ε-approximation of strong feedback at
every round. Conversely, a learner that works for the weak feedback setting also works in the strong feedback
setting, by throwing away some information in the strong feedback.
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Definition A.5 (Differentially-private PAC learning). Let C ⊆ {f : X → [0, 1]} be a concept class.110

Let ζ, α ∈ [0, 1] be accuracy parameters and ε, δ be privacy parameters. We say C can be learned111

with sample complexity m(ζ, α, ε, δ) in a private PAC manner if there exists an algorithm A that112

satisfies the following:113

• PAC learner — AlgorithmA is a (ζ, α)-PAC learner for C with sample sizem (as formulated114

in Definition A.1).115

• Privacy — Algorithm A is (ε, δ)-differentially private (as formulated in Definition A.4).116

We shall say such a learner is (ζ, α, ε, δ)-PPAC.117

A.2.2 Communication complexity.118

In this section, we introduce one-way classical and quantum communication complexity. Different119

from the usual setting, here we consider communication protocols that compute real-valued and not120

just Boolean functions. In the one-way classical communication model, there are two parties Alice and121

Bob. Let C ⊆ {f : {0, 1}n → [0, 1]} be a concept class. We consider the following task which we call122

EvalC : Alice receives a function f ∈ C and Bob receives an x ∈ X . Alice and Bob share random bits123

and Alice is allowed to send classical bits to Bob, who needs to output a ζ-approximation of f(x) with124

probability 1− ε. We let R→ζ,ε(c, x) be the minimum number of bits that Alice communicates to Bob,125

so that he can output a ζ-approximation of f(x) with probability at least 1− ε (where the probability126

is taken over the randomness of Alice and Bob). Let R→ζ,ε(C) = max{R→ζ,ε(c, x) : c ∈ C, x ∈ X}.127

We will also be interested in the quantum one-way communication model. The setting here is exactly128

the same as above, except that now Alice and Bob can apply quantum unitaries locally and Alice is129

allowed to send qubits instead of classical bits to Bob. Like before, we let Q→ζ,ε(c, x) be the minimum130

number of qubits that Alice communicates to Bob, so that he can output a ζ-approximation of c(x)131

with probability at least 1− ε (where the probability is taken over the randomness of Alice and Bob).132

Let Q→ζ,ε(C) = max{Q→ζ,ε(c, x) : c ∈ C, x ∈ X}.133

A.2.3 Stability of algorithms134

An important conceptual contribution in this paper is the concept of stability of algorithms. The135

notion of stability has been used in several previous works [6, 7, 8, 9, 10]. In the context of real-valued136

functions we are not aware of such a definition. We naturally extend previous definitions of stability137

from Boolean-valued functions to real-valued functions as follows.138

Definition A.6 (Stability). Let C ⊆ {f : X → [0, 1]} be a concept class and η, ζ ∈ [0, 1]. Let
D : X → [0, 1] be a distribution and c ∈ C be a target unknown concept. We say a learning algorithm
A is (T, η, ζ)-stable with respect to D if: given T many labelled examples S = {(xi, c(xi))} when
xi ∼ D, there exists a hypothesis f such that

Pr[A(S) ∈ T (ζ, f)] ≥ η,
where the probability is taken over the randomness of the algorithm A and the examples S, and139

T (ζ, f) is the function ball of radius ζ around f , i.e T (ζ, f) = {g : |g(x)−f(x)| < r for every x ∈140

X}.141

It is worth noting that in the standard notion of global stability (for example the one used in [7]), we142

say an algorithm A is stable if a single function is output by A with high probability. In the real-143

valued robust scenario, one cannot hope for similar guarantees because the adversary is allowed to be144

ζ-off with his feedback at every round. In particular, the adversary’s feedback could correspond to a145

different function from the target concept c. However, the intuition is that any adversarially-chosen146

alternative function cannot be “too” far from c.147

Inspired by the definition above we also define quantum stability as follows.148

Definition A.7 (Quantum Stability). Let S be a class on n-qubit quantum states and η, ζ ∈ [0, 1].149

Let D : X → [0, 1] be a distribution over orthogonal 2-outcome measurements and ρ ∈ S be an150

unknown quantum state. We say a learning algorithm A is (T, η, ζ)-stable with respect to D if: given151

T many labelled examples Q = {(Ei,Tr(ρEi))} when Ei ∼ D, there exists a quantum state σ such152

that153

Pr[A(Q) ∈ B(ε, σ)] ≥ η, (3)
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where the probability is taken over the examples in Q and B(ε, σ) is the ball of states ε-close to σ154

with respect to X , i.e., B(ε, σ) = {σ′ : |Tr(Eσ)− Tr(Eσ′)| < ε for every E ∈ X}.155

A.2.4 Combinatorial parameters.156

We define some combinatorial parameters used in PAC learning and online learning real-valued157

function classes {f : X → [0, 1]}. These are the fat-shattering (for PAC learning) and sequential158

fat-shattering dimension (for online learning). They can be viewed as the real-valued analogs of159

the VC dimension and Littlestone dimension respectively for PAC learning and online learning160

Boolean function classes {f : X → {0, 1}}. Below we define the combinatorial parameters for161

real-valued functions.162

Fat-Shattering dimension The set {x1, . . . , xk} ⊆ X is γ-fat-shattered by concept class C if there163

exists real numbers {α1, . . . , αk} ∈ [0, 1] such that for all k-bit strings y = (y1 · · · yk) there exists a164

concept f ∈ C such that if yi = 0 then f (xi) ≤ αi − γ and if yi = 1 then f (x1) ≥ αi + γ.165

The fat-shattering dimension of C, or fatγ(C) is the largest k for which: there exists {x1, . . . , xk} ∈ X166

that is γ-fat-shattered by C. We remark that if the functions in C have range {0, 1} and γ > 0, then167

fatγ(C) is just the standard VC dimension.168

Sequential Fat-Shattering dimension We also define an analog of the fat-shattering dimension169

for online learning. The presentation of this dimension closely follows [2]. We say a depth-k tree T170

is an ε-sequential fat-shattering tree for C if it satisfies the following:171

1. For every internal vertex w ∈ T , there is some domain point xw ∈ U and threshold172

aw ∈ [0, 1] associated with w, and173

2. For each leaf vertex v ∈ T , there exists f ∈ C that causes us to reach v if we traverse T from174

the root such that at any internal node w we traverse the left subtree if f (xw) ≤ aw − ε and175

the right subtree if f (xw) ≥ aw + ε. If we view the leaf v as a k -bit string, the function f is176

such that for all ancestors u of v, we have f (xu) ≤ au − ε if vi = 0, and f (xu) ≥ au + ε177

if vi = 1, when u is at depth i− 1 from the root.178

The ε-sequential fat-shattering dimension of C, denoted sfatε(C), is the largest k such that we can179

construct a complete depth-k binary tree T that is an ε-sequential fat-shattering tree for C. Again,180

we remark that if the functions in C have range {0, 1} and γ > 0, then sfatγ(C) is just the standard181

Littlestone dimension [5].182

Representation dimension. The representation dimension of concept class C roughly considers the183

collection of all distributions over sets of hypothesis functions (not necessarily from the class C) that184

“cover” C. We make this precise below. This dimension is known to capture the sample complexity185

of various models of differential private learning Boolean functions [11, 12]. Because we shall be186

concerned with learning real-valued concept classes, we define these notions below with an additional187

‘tolerance’ parameter ζ.188

Definition A.8 (Deterministic representation dimension DRdim, real-valued analog of [12]). Let189

C ⊆ {f : X → [0, 1]} be a concept class. A class of functionsH deterministically (ζ, ε)-represents C190

if for every f ∈ C and every distribution D : X → [0, 1], there exists h ∈ H such that191

Pr
x∼D

[
|h(x)− f(x)| > ζ

]
≤ ε. (4)

The deterministic representation dimension of C (abbreviated DRdim(C)) is192

DRdimζ,ε(C) = min
H

log |H| (5)

where the minimization is overH that deterministically (ζ, ε)-represent C.193

Definition A.9 (Probabilistic representation dimension PRdim, real-valued analog of [13]). Let194

C ⊆ {f : X → [0, 1]} be a concept class. Let H be a collection of concept classes of real-valued195

functions, and P : H → [0, 1]. We say (H ,P) is (ζ, ε, δ)-representation of C if for every f ∈ C196

and distribution D : X → [0, 1], with probability at least 1− δ (over the choice of H ∼ P), there197

exists h ∈ H such that198

Pr
x∼D

[
|h(x)− f(x)| > ζ

]
≤ ε. (6)
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The probabilistic representation dimension of C (abbreviated PRdim(C)) is199

PRdimζ,ε,δ(C) = min
(H ,P)

max
H∈supp(H )

log |H|, (7)

where the outer minimization is over all sets (H ,P) of valid (ζ, ε, δ)-representations.200

B Robust standard optimal algorithm and mistake bounds201

In this section, we present an algorithm that improperly online-learns a real-valued function class C,202

making at most sfat(C) many mistakes (see Definition A.3). This algorithm is an important tool for203

results in the rest of the paper. All results in this section are presented for the general case of online-204

learning arbitrary real-valued function classes, with imprecise adversarial feedback. Ultimately, we205

will use this algorithm as a subroutine for the specific setting of quantum learning.206

For learning a Boolean function class C, [5] showed that the mistake bound M(C) is equal to the207

Littlestone dimension Ldim(C), thus giving an operational interpretation to this dimension. The208

aim of this section is to examine if the same operational interpretation holds for the sequential209

fat-shattering dimension, in the context of online-learning real-valued functions with strong feedback210

(which is also the setting most relevant to quantum learning).211

Our algorithm’s learning setting generalizes that of [3] and [4], who also studied online learning of212

real-valued and multi-class functions (i.e. functions mapping to a finite set), albeit, the former in213

the case of precise adversarial feedback (ε = 0). [4] defined several extensions of the Littlestone214

dimension Ldimτ for τ ∈ (0, 2) and showed that for learning a multi-class function class C, Ldimτ <215

M(C) < Ldim2τ . They also showed that for a real-valued function class C, sfat(C) is linked to the216

Ldimτ of a discretization of the function class, thus effectively transforming any real-valued learning217

problem into a multi-class learning problem. However, their approach does not work for our setting,218

for the following reason: if c is the target real-valued function, and the true value of c(x) is ε-close219

to a boundary of some class within the discretized range, our ε-imprecise adversary could choose a220

value of the feedback ĉ(x) that falls in the neighboring class. Hence the resulting multi-class learner221

has to deal with the adversary reporting the wrong class, which is beyond the scope of what they222

considered.223

In Section B.1, we first construct an algorithm Robust Standard Optimal Algorithm (RSOA) whose224

mistake bound satisfiesMRSOA(C) ≤ sfat(C) for online-learning with strong feedback. In Section B.2,225

we prove some of the properties of this algorithm, which are essential for proving later results in226

this paper. Moreover, for online learning with weak feedback, we show that M(C) ≥ sfat(C).227

However, since the type of feedback differs in these two models we consider, we cannot yet state228

that M(C) = sfat(C) when C is a real-valued function class (this would be the real-valued analog of229

the relation M(C) = Ldim(C) for Boolean function classes). It is an open question whether we can230

close this gap, but for the rest of this paper, we are concerned solely with online learning with strong231

feedback and hence the implication MRSOA(C) ≤ sfat(C) is sufficient.232

B.1 Robust Standard Optimal Algorithm233

In this section, we give an algorithm to to online-learn real-valued functions with strong feedback.234

In order to handle subtleties caused by learning functions with output in [0, 1] instead of {0, 1}, we235

define the notion of an ζ-cover. This was introduced by [3] and in order to handle inaccuracies in the236

output of an adversary, we extend their notion to define an interleaved ζ-cover.237

Definition B.1 (ζ-cover and interleaved ζ-cover). Let 0 < ζ < 1 be such that 1/ζ is an integer.238

A ζ-cover of the [0, 1] interval is a set of non-overlapping half-open intervals (‘bins’) of width ζ239

given by
{

[0, ζ), [ζ, 2ζ), . . . , [1− ζ, 1]
}

with the midpoints Iζ =
{
ζ/2, 3ζ/2, . . . , 1− ζ/2

}
where240

|Iζ | = 1/ζ . Given a ζ-cover Iζ , the corresponding interleaved ζ-cover Ĩζ is the set of overlapping241

half-open intervals (‘super-bins’) of width 2ζ (each consisting of two adjacent bins in Iζ) given by242 {
[0, 2ζ), [ζ, 3ζ), . . . , [1−2ζ, 1]

}
with the midpoints Ĩζ =

{
ζ, 2ζ, . . . , 1−ζ

}
where |Ĩζ | = |Iζ |−1.243

We denote a super-bin with midpoint r as SB(r).244

We will also need the definition of a ζ-ball.245

Definition B.2 (ζ-ball). An ζ-ball around an arbitrary point x ∈ [0, 1] (denoted B(ζ, x)) is the open246

interval of radius ζ around x, i.e., B(ζ, x) := (x− ζ, x+ ζ)247
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As we mentioned earlier, the FAT-SOA algorithm of [3] used α-covers to understand real-valued248

online learning, however, it does not suffice in the setting of quantum learning since the output of the249

adversary could be imprecise. To account for this, we use interleaved α-covers defined above. Our250

learning algorithm will take advantage of the following property enjoyed by the interleaved α-cover:251

the ζ-ball of any point is guaranteed to be entirely contained inside some super-bin, i.e., for every252

x ∈ (ζ, 1 − ζ), α > 2ζ and r = arg minr∈Ĩ2ζ
{|x − r|}, we have B(ζ, x) ⊂ SB(r). Finally, we253

need one more notation: given a set of functions V ⊆ {f : X → [0, 1]}, r ∈ Ĩ2ζ and x ∈ X , define254

a (possibly empty) subset V (r, x) ⊆ V as255

V (r, x) =
{
f ∈ V : f(x) ∈ B(2ζ, r)

}
,

i.e., V (r, x) are the set of functions f ∈ V for which f(x) is within a 2ζ-ball around r or f(x) ∈256

[r − 2ζ, r + 2ζ]. We are now ready to present our mistake-bounded online learning algorithm for257

learning real-valued functions. Our algorithm is Algorithm 1.258

Algorithm 1 Robust Standard Optimal Algorithm, RSOAζ
Input: Concept class C ⊆ {f : X → [0, 1]}, target (unknown) concept c ∈ C, and ζ ∈ [0, 1].

Initialize: V1 ← C
1: for t = 1, . . . , T do
2: A learner receives xt and maintains set Vt, a set of “surviving functions”.
3: For every super-bin midpoint r ∈ Ĩ2ζ the learner computes the set of functions Vt(r, xt).
4: A learner finds the super-bin which achieves the maximum sfat(·) dimension

Rt(xt) :=

{
arg max
r∈Ĩ2ζ

sfat2ζ (Vt(r, xt)) ∈ Ĩ2ζ

}
5: The learner computes the mean of the set Rt(xt), i.e., let

ŷt :=
1

|Rt(xt)|
∑

r∈Rt(xt)

r.

6: The learner outputs ŷt and receives feedback ĉ(xt).
7: Learner makes the update Vt+1 ← {g ∈ Vt | g(xt) ∈ B(ζ, ĉ(xt))}
8: end for

Outputs: The intermediate predictions ŷt for t ∈ [T ], and a final prediction function/hypothesis
which is given by f(x) := RT+1(x).

We first provide some intuition about this algorithm. At round t, the set of functions that has ‘survived’259

all previous rounds is Vt: in particular, Vt consists of functions which are consistent with the feedback260

received in the previous t− 1 iterations. Here, ‘consistent’ means that suppose x1, . . . , xt−1 were261

presented to a learner previously, then, for every g ∈ Vt, g(xi) ∈ B(ζ, ĉ(xi)) for i ∈ [t− 1]. This is262

clear from Line 7 of the algorithm; indeed, notice that Vt either stays the same as Vt−1 or shrinks at263

every round. At round t, once a learner receives xt, it always replies with ŷt that is either ζ-close264

to the true c(xt) else, aims to reduce Vt−1 as much as possible. In particular, for every super-bin265

r ∈ Ĩ2ζ , the learner identifies the subset of surviving functions that map to that super-bin at xt, i.e.,266

f ∈ Vt that satisfy f(xt) ∈ B(2ζ, r). This forms the set Vt(r, xt). The learner then computes sfat2ζ267

of the set of functions Vt(r, xt) and picks out the super-bins r ∈ Ĩ2ζ that maximize this combinatorial268

quantity, and output the mean of their midpoints as the prediction ŷt. Intuitively, the parameter sfat(·)269

serves as a surrogate metric for the number of functions mapping to a certain interval. Using sfat(·)270

to define this prediction rule thus maximizes the number of eliminated functions for every mistake271

of the learner. Once it receives the feedback ĉ(xt), the learner updates Vt to Vt+1 and this process272

repeats for T steps. We now list a few properties of this algorithm.273

B.2 Properties and guarantees of RSOA274

Lemma B.3. RSOAζ(denoted RSOA) has the following properties:275
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1. ζ-consistency: at the t-th iteration every f ∈ Vt satisfies |f(xi)− ĉ(xi)| ≤ ζ for i ∈ [t− 1].276

2. Correctness: the target function c is never eliminated, i.e., c ∈ Vt for every t ∈ [T ].277

3. For every t ∈ [T ], x ∈ X , any pair of points r, r′ ∈ Ĩ2ζ for which278

sfat2ζ (Vt(r, x)) = sfat2ζ (Vt(r
′, x)) = sfat2ζ (Vt) (8)

also satisfies |r − r′| < 4ζ. Additionally for all r ∈ Ĩ2ζ , sfat2ζ (Vt(r, x)) ≤ sfat2ζ (Vt).279

4. RSOA is deterministic, i.e., for the same sequence of inputs (x1, ĉ(x1)), . . . , (xT , ĉ(xT ))280

provided by the adversary to the learner (each of which is followed by a response ŷ1, . . . , ŷT281

of the learner), the RSOA algorithm produces the same function f .282

Proof. The first item follows by construction. At the end of ith round, the following update is283

performed: Vi+1 ← {g ∈ Vi | g(x) ∈ B(ζ, ĉ(xi)))} ⊆ Vi. This eliminates all functions g for284

which g(xi) /∈ B(ζ, ĉ(xi)) from the set Vi+1, hence all functions for which |f(xi)− ĉ(xi)| > ζ are285

eliminated.286

The second item follows trivially: by assumption yt = c(xt) is in the ζ-ball of ĉ(xt). Thus the target287

concept c is never eliminated in the update Vt+1 ← {g ∈ Vt | g(x) ∈ B(ζ, ĉ(xt))}.288

We now show the third item. Suppose by contradiction, there is a pair r, r′ ∈ Ĩ2ζ such that289

sfat2ζ (Vt(r, x)) = sfat2ζ (Vt(r
′, x)) = sfat2ζ (Vt)

and |r − r′| > 4ζ. Let sfat2ζ (Vt) = d. Without loss of generality, we assume r > r′. Then let290

s = (r + r′)/2. Clearly, for every f ∈ Vt(r, x) we have f(x) ≥ s + ζ and g ∈ Vt(r′, x) we have291

g(x) ≤ s− ζ. This means that, given a sequential fat-shattering tree of depth d for Vt(r, x), and the292

tree also of depth d for Vt(r′, x), we may join them together by adding a root node with the label x293

and the threshold s, and this new tree of depth d+1 is sequentially fat-shattered by Vt(r, x)∪Vt(r′, x)294

and hence by Vt (which is a superset). This contradicts the assumption that sfat2ζ(Vt) = d, because295

by definition of sfat(·) dimension, d is the depth of the deepest tree for the functions in Vt. The296

“additionally” part follows immediately because Vt(r, x) ⊆ Vt.297

The final item of the lemma is clear because steps 3 to 7 in the RSOA algorithm are deterministic and298

involve no randomness from a learner.299

Having established these properties, are now ready to prove our main theorem bounding the maximum300

number of prediction mistakes that RSOA makes.301

Theorem B.4 (RSOA mistake bound). Let C ⊆ {f : X → [0, 1]} be a concept class and ζ > 0.302

Given the setting of online learning with strong feedback, i.e., at every round t ∈ [T ], the feedback303

ĉ(xt) is ζ-close to the true value |c(xt)− ĉ(xt)| ≤ ζ , RSOAζ (described in Algorithm 1) is such that,304

for every T , the algorithm makes a predictions ŷt satisfying305

T∑
t=1

I
[
|ŷt − c(xt)| > 5ζ

]
≤ sfat2ζ(C)

Proof. The intuition is that whenever the learner makes a mistake, functions are eliminated from the306

‘surviving set’, such that sfat(·) of the remaining functions decreases by 1. Since the true function c307

is never eliminated from Vt, and the sfat(·) dimension of a set consisting of a single function is 0, no308

more than sfat(·) mistakes can be made.309

First observe that, whenever the algorithm makes a mistake, i.e., |ŷt − c(xt)| > 5ζ, it also follows310

that |ŷt − ĉ(xt)| > 4ζ because ĉ(xt) is an ζ-approximation of c(xt). Below we show that on every311

round where |ŷt − ĉ(xt)| > 4ζ, sfat(Vt+1) ≤ sfat(Vt)− 1. Together with property 2 of Lemma B.3312

and the fact that V1 = C this already implies that no more than sfat(C) mistakes are made by RSOA.313

Suppose |ŷt− ĉ(xt)| > 4ζ . Fix t and xt. Observe that by property 3 Eq. (8) (in Lemma B.3) there are314

at most three super-bins whose midpoints r satisfy sfat2ζ (Vt(r, x)) = sfat2ζ (Vt), i.e., between 0 and315

3 super-bins achieve the upper-bound on sfat(·) at each round, which we now call UBt := sfat2ζ(Vt).316

We now analyze each of four cases for the number of upper-bound-achieving super-bins.317
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Case 1: sfat2ζ(Vt(r, xt)) < UBt for every r ∈ Ĩ2ζ , i.e., no super-bins achieve UBt. Every update318

of Vt updates it to the functions within some ζ-ball,© := B(ζ, ĉ(xt)). Observe that© is entirely319

contained within some super-bin, call it SB (note that even if ĉt is at the boundary of two super-bins, it320

would still be inside the super-bin that is in-between the two, by definition of the interleaved ζ-cover).321

Hence, sfat(©) ≤ sfat(SB) < UBt where the second inequality is by the assumption of the case.322

Case 2: There exists exactly one r ∈ Ĩ2ζ such that
sfat2ζ(Vt(r, xt)) = UBt,

i.e., exactly one super-bin (centered at r = 2kζ for some k ∈ Z+) achieves UBt, let’s call this323

SB∗ = [2(k−1)ζ, 2(k+ 1)ζ). Since the super-bin’s midpoint is at some bin boundary, the prediction324

is ŷt = 2kζ. Similar to the previous case, the update step retains only the functions in some325

© := B(ζ, ĉ(xt)). However, since |ŷt − ĉ(xt)| > 4ζ, we either have ĉ(xt) < 2(k − 2)ζ or326

ĉ(xt) > 2(k+ 2)ζ . ©, therefore, is entirely contained within some super-bin SB 6= SB∗. Since there327

is only one maximizing super-bin SB∗, we have sfat(©) ≤ sfat(SB) < sfat(SB∗) = UBt.328

Case 3: There exists r1, r2 ∈ Ĩ2ζ such that
sfat2ζ(Vt(r1, xt)) = sfat2ζ(Vt(r2, xt)) = UBt,

i.e., two super-bins (centered at r1, r2 respectively) achieve UBt, call them SB∗1,SB
∗
2. Using Property329

3 of Lemma B.3, these two super-bins must either be touching at a boundary (hence ŷt = 2kζ where330

SB∗1 = [2kζ, 2(k + 2)ζ), SB∗2 = [2(k − 2)ζ, 2kζ)) or intersecting at one bin (hence ŷt = (2k + 1)ζ331

where SB∗1 = [2kζ, 2(k+2)ζ), SB∗2 = [2(k−1)ζ, 2(k+1)ζ)). In the former case, ĉ(xt) < 2(k−2)ζ332

or ĉ(xt) > 2(k + 2)ζ and thus neither SB∗1 nor SB∗2 entirely contains©, though there is some super-333

bin that does. In the latter case, ĉ(xt) < (2k − 3)ζ or ĉ(xt) > (2k + 5)ζ and thus neither SB∗1334

nor SB∗2 entirely contains©, though there is some super-bin that does. Identical reasoning to the335

previous two cases shows that the update thus decreases sfat(·) on the remaining functions.336

Case 4: There exists r1, r2, r3 ∈ Ĩ2ζ such that
sfat2ζ(Vt(r1, xt)) = sfat2ζ(Vt(r2, xt)) = sfat2ζ(Vt(r3, xt)) = UBt,

i.e., three super-bins (centered at r1, r2, r3 respectively) achieve UBt. Call them SB∗1,SB
∗
2,SB

∗
3.337

By Property 3 of Lemma B.3, there is only one configuration these three super-bins could be in,338

namely two super-bins have to be touching at a boundary, with the last super-bin straddling them:339

SB∗1 = [2kζ, 2(k + 2)ζ), SB∗2 = [2(k − 1)ζ, 2(k + 1)ζ), SB∗3 = [2(k − 2)ζ, 2kζ). Then ŷt = 2kζ340

and ĉ(xt) < 2(k − 2)ζ or a− t > 2(k + 2)ζ. None of SB∗1,SB
∗
2,SB

∗
3 entirely contains©, though341

there is some super-bin that does, and identical reasoning to the previous three cases shows that the342

update thus decreases sfat(·) on the remaining functions.343

Theorem B.4 says that the RSOA algorithm for a concept class C in the strong feedback model,344

makes at most sfat(C) mistakes. This is also the setting in the rest of the paper as well as most of345

the real-valued online learning literature. A natural question is, can we make fewer mistakes than346

the RSOA algorithm? Below we consider the weak feedback model of online learning and show no347

learner can do better than making sfat(·) mistakes. An interesting open question is, can we even348

improve the lower bound in the theorem below for the strong feedback model setting?349

Theorem B.5. Let ζ ∈ [0, 1] and C ⊆ {f : X → [0, 1]}. Every online learner A (in the weak350

feedback setting) for the class C, satisfies MA(C) ≥ sfatζ(C).351

Proof. We construct an adversary that can always force at least sfat(C) mistakes in the weak model of352

learning (where the adversary only gives two bits of feedback to the learner). To do so, the adversary353

traverses the ζ-fat-shattered tree starting at the root node, at every round interacting with the learner354

based on the information at the current node, always claiming the learner made a mistake, and then355

moving to one of the two daughter nodes. In particular, the interaction at node v of the tree, which is356

associated with (xv, av), is as follows: The adversary gives the learner the point xv. If the learner357

predicts ŷt < av, claim the learner is wrong and go to the right daughter node, thus committing the358

adversary to the subset of functions f ∈ C such that f(xv) ≥ av + ζ. Go to the opposite node if the359

learner predicts ŷt ≥ av . After sfatζ(C) rounds, the adversary will have reached a leaf node. At this360

point, by the definition of the sfat(·) tree, there is at least one function consistent with all previous361

commitments of the adversary. This becomes the target function, which the adversary then commits362

to in the first place. Since the depth of the tree is by definition sfatζ(C), the learner will have made363

sfatζ(C) mistakes by the time the adversary reaches a leaf and has to commit to a function.364
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C Online learning implies stability365

In this section we show that online learnability of a real-valued function class implies that there366

exists a real-valued DP PAC learner for the same class. More precisely, we will assume that the367

sfat(·) dimension of the function class is bounded (which implies its online learnability, as discussed368

in Section B); then we will explicitly describe an algorithm that uses this learner to learn in a369

globally-stable manner.370

This, however, is only half of the implication shown in [7]. There, they go one step further and turn371

their stable learner into an approximately DP PAC learner, concluding overall that online learning372

implies approximate DP PAC learning. Supposing we could prove the same for our learning model,373

then combining this with the implication shown in Section D (that pure DP PAC learning implies374

online learning) would make for almost a complete chain of implications starting at pure DP PAC375

learning, implying online learning, and finally implying approximate DP PAC learning. However,376

in the second half of this section, we use an argument from fingerprinting codes to show that the377

transformation in [7] from a stable learner to a DP PAC learner does not work with the stability378

guarantees we obtain for our real-valued learning setting.379

We will use the following notation throughout this section. Let C ⊆ {f : X → [0, 1]} be a concept380

class and c ∈ C be a target concept. Let D : X → [0, 1] be a distribution. In a slight abuse of381

notation, we use the notation (x, ĉ(x)) ∼ D to mean that x is drawn from the distribution D and ĉ(x)382

satisfies |ĉ(x)− c(x)| < ζ. Also, we say B ∼ Dm to mean that a learner receives m such examples383

{(xi, ĉ(xi))}mi=1. We say that the learner has made a mistake on input x if he has made a 5ζ-mistake384

(refer to Definition A.2). Finally, because we are concerned with real-valued learning, it is often the385

case that functions in the vicinity of the target function are considered “close enough” as hypotheses,386

and so we will make use of the following notion of function ball:387

Definition C.1 (Function ball of radius r around c). Given a set of functionsH ⊆ {f : X → [0, 1]},388

a function ball of radius r around c ∈ H is the set of all functions f ∈ H such that389

|f(x)− c(x)| < r for every x ∈ X , (9)
and we denote such a function ball by T (r, c).4 Moreover, for a set of functions E = {f1, . . . , fk},390

we let T (r, E) = ∪ki=1T (r, fi).391

In Section C.1, we prove that given a mistake-bounded online learner, there exists a stable learner.392

In Section C.2, we prove that stability does not, in turn, imply approximate DP learning using the393

transformation of [7], without a domain size dependence in the sample complexity. In Section C.3,394

we turn our attention to how our results apply to learning quantum states.395

C.1 Online learning implies stability396

In this subsection we prove the following theorem:397

Theorem C.2. Let α, ζ ∈ [0, 1]. Let C ⊆ {f : X → [0, 1]} be a concept class with sfat2ζ(C) = d.
Let D : X → [0, 1] be a distribution and let S = {(xi, ĉ(xi))} be a set of

T = O

(
ζ−d · d

α

)
examples where xi ∼ D and |ĉ(xi)− c(xi)| < ζ where c ∈ C is a unknown concept. There exists a398

(T, ζ−O(d), O(ζ))-stable learning algorithm G, that outputs f satisfying LossD(f, c, O(ζ)) ≤ α.399

The algorithm G is the RSOA run on a carefully tailored input distribution over the examples, with400

T being the overall sample complexity of our algorithm. Most of the work in the proof arises in401

explaining how to tailor the set of examples drawn from the original distribution D into a new set402

S on which RSOA is guaranteed to succeed. In this section, when we write RSOAζ(S) where S is403

a sample, i.e., S = {(xi, ĉ(xi))}, we mean that we feed the examples in S into RSOA sequentially,404

as in the online learning setting. We will prove this theorem in three parts, corresponding to the405

subsequent three sub-subsections:406

4The symbol T stands for ‘tube’ since for a member of the function ball, closeness to c must be satisfied at
not just a single point but all points in the domain. We usually omit mentioning the function class C, which is
usually taken to beR, the set of all functions output by RSOA. Because RSOA is an improper learner,R is not
the same as C.
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• Our Algorithm 2, is a tailoring algorithm that defines distributions ext(D, k) for k ∈ [d] as a407

function of the distributions D, to which we have black-box access. Just as in [7], the key408

idea for the tailoring is to inject examples into the sample that would force mistakes. We409

have adapted this idea for the robust, real-valued setting. Unfortunately, this algorithm could410

potentially use an unbounded number of examples (in the worst case), which we handle next.411

• Next, we seek to impose a cutoff on the number of examples drawn in the algorithm above.412

In Lemma C.5, we compute the expected number of examples drawn by Algorithm 2. Then,413

we use Markov’s inequality to compute what the cutoff should be. The final tailoring414

algorithm is simply Algorithm 2, cut off when the number of examples drawn exceeds this415

threshold.416

• Finally, we state the globally-stable learning algorithm Algorithm 3, which essentially417

invokes Algorithm 2 with the cutoff we defined above. In Theorem C.6 we prove the418

correctness and sample complexity of Algorithm 3.419

C.1.1 Sampling from the distributions ext(D, k)420

In the following, the symbol S ◦ T between two sets of examples means the concatenation of the two421

sets S, T . Intuitively our learning algorithm is going to obtain T examples overall and break these422

examples into blocks of size m (a parameter which will be fixed later in Theorem C.6), each block423

followed by a single mistake example, all of which which are fed to an online learner. Additionally,424

below we can think of k ≤ sfat(C) as the number of mistakes we want to inject into the examples we425

feed to an online learner.426

Algorithm 2 An algorithm to sample from distributions ext(D, k).
Input: Distribution D : X → [0, 1], m ≥ 1, k ∈ {0, . . . , d}.
Output: A sample from the distribution ext(D, k).

For k ≥ 0, the distributions ext(D, k) : X k(m+1) × [0, 1]→ [0, 1] are defined inductively as follows:

1. ext(D, 0) : output the empty sample ∅ with probability 1.
2. Sampling from ext(D, k) involves recursively sampling from ext(D, k − 1) as follows:

(a) Draw S(0), S(1) ∼ ext(D, k − 1) and two sets of m examples B(0), B(1) ∼ Dm.
(b) Letf0 = RSOAζ

(
S(0) ◦B(0)

)
, f1 = RSOAζ

(
S(1) ◦B(1)

)
.

(c) If |f0(x)− f1(x)| ≤ 11ζ for every x ∈ X then go back to step (i).
(d) Else pick x′ such that |f0(x′)− f1(x′)| > 11ζ and sample α ∼ Iζ uniformly.5

(e) LetMk := (x′, α) ∈ X ×[0, 1]. If |α−f0(x′)| < |α−f1(x′)|, output S(1)◦B(1)◦Mk,
else output S(0) ◦B(0) ◦Mk

Intuition of the algorithm. We first explain Algorithm 2 on an intuitive level. Recall the goal:427

using our RSOA online learning algorithm for C, we would like to design a globally stable PAC428

learner for C. To this end, let D be the unknown distribution (under which we need the PAC learner429

to work).430

Algorithm 2 ‘tailors’ a sample (fed to the online learner) as follows: in the kth iteration it repeatedly431

draws pairs of batches of (k − 1)(m+ 1) examples from ext(D, k − 1) and then decides whether to432

keep or discard each batch based on the outcome of running RSOA on the batches. If some batch433

is kept, it is appended with a single example which is guaranteed to force a mistake on RSOA, and434

the resulting sample S is output by the algorithm. This process of outputting S can be regarded as435

drawing sample S from the distribution ext(D, k). The structure of S is illustrated in Figure 2. Each436

Bi is a block of m examples each drawn i.i.d. from D. Each Mi = (xi, αi), forces a mistake when S437

is fed to RSOA. S has k blocks and k mistake examples in total.438

We now focus on explaining steps 2(i) to 2(v) which ‘force a mistake’. In step 2(i) we draw two439

examples, S(0) ◦ B(0) and S(1) ◦ B(1). In 2(ii), we feed S(0) ◦ B(0) into RSOA, which returns440

5Recall the definition of the ζ-cover, Iζ =
{
ζ/2, 3ζ/2, . . . , 1− ζ/2

}
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S = B1 ∼ Dm M1 B2 ∼ Dm M2 ··· Bk ∼ Dm Mk

Figure 2: Structure of curated sample S obtained resulting from Algorithm 2. Each Bi is a block of
m examples (x, c(x)) where x ∼ D and Mi = (x, b) is an example which forces a mistake.

function f0, and do the same for S(1) ◦ B(1), returning f1. There are now two possibilities, either441

f0, f1 are “close” or f0 and f1 differ significantly at some x ∈ X and step 2(iii) checks which is the442

case as follows.443

1. f0, f1 agree to within 11ζ on every point in X : then draw a new pair S(0) ◦ B(0) and444

S(1) ◦B(1) afresh, going back to step 2i).445

2. |f0(x) − f1(x)| > 11ζ for some x ∈ X . Note that this x need not be from an example446

previously given to the learner. Intuitively, in this case, the predictions f0 and f1 are so far447

apart at x that they cannot both be 5ζ-correct, and so at least one of them is a mistake. More448

precisely, in the ζ-cover, let bc ∈ Iε be the midpoint of the bin (of width ζ) that contains449

c(x). Since |f0(x) − f1(x)| > 11ζ, at least one of the predictions f0(x), f1(x) is 5ζ-far450

from bc (though we don’t know which it is, since we don’t know c!)451

Steps 2(i) to 2(iii) are repeated until we are in the second case. Note that steps 2(i) to 2(iii) could be452

repeated an unbounded number of times, each repetition drawing fresh examples. For the remainder453

of this section, we assume that steps 2(i) to 2(iii) terminate eventually so that we may argue about454

the final output sample. In Section C.1.2, we show it suffices to “impose” a cut-off of T examples so455

that with high probability the algorithm (with an appropriate value of k) terminates before drawing456

T -many examples.457

In order to create Mk, we uniformly draw some α ∼ Iζ (the set of all possible bin midpoints),458

which means α = bc with probability ζ.6 If α = bc, we are guaranteed that fi is a mistake for459

i := arg maxi |α−fi(x)|. Therefore, we concatenate our mistake example with S(i)◦B(i), eventually460

outputting S := S(i) ◦ B(i) ◦ (x, α) as the output of Algorithm 2. By the end of these steps, we461

will have a sample S′ ◦B′ ◦Mk where S′ ∼ ext(D, k − 1), B′ ∼ Dm and Mk is a single ‘mistake’462

example with the following two properties: (i) Mk = (x′, α) is a valid example (i.e., |α−c(x′)| ≤ ζ).463

(ii) If RSOA is fed S′ ◦B′ ◦Mk, RSOA will make a mistake upon seeing the example Mk, i.e., at464

the round corresponding to Mk, RSOA predicts ŷ such that |ŷ − c(x′)| > 5ζ.465

Key Lemma. We now prove our key lemma on global stability. Let R be the set of all possible466

functions that could be output by the RSOA algorithm when run for arbitrarily many rounds.467

Lemma C.3 (Some function ball is output by RSOA with high probability). Let sfat2ζ(C) = d.468

There exists k ≤ d and some f ∈ R such that469

Pr
S∼ext(D,k),
B∼Dm

[RSOAζ(S ◦B) ∈ T (5ζ, f)] ≥ ζd. (10)

Proof. Towards contradiction, suppose for every k ≤ d and f ∈ R, we have470

Pr
S∼ext(D,d),
B∼Dm

[RSOAζ(S ◦B) ∈ T (5ζ, f)] < ζd. (11)

In particular, Eq. (11) holds for f = c where c is the target concept.471

In Step 2(iv), Algorithm 2 picks α uniformly from the set of midpoints in Iζ . Call a mistake example472

(x, α) ‘valid’ if |α− c(x)| ≤ ζ. Notice there are actually two midpoints in Iζ which are less than ζ473

6Note that this step crucially differs from [7] since for them the true value of f0(x) or f1(x) is always 0 or 1,
so they can flip a coin and force a mistake with probability at least 1/2.
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away from any c(x), and hence, the probability that a mistake example is valid is 2ζ > ζ. Hence the474

probability that all d mistake examples are valid is at least ζd. In the event that all mistake examples475

are valid, S is a valid sample. Since S contains d mistake examples, and Theorem B.4 guarantees476

that RSOAζ on a valid sample always outputs some hypothesis function in T (5ζ, c) after making d477

mistakes, this contradicts Eq. (11).478

Lemma C.4 (Generalization). Let ext(D, `) be such that ` ≥ 1 and there exists f such that479

Pr
S∼ext(D,`),
B∼Dm

[RSOAζ(S ◦B) ∈ T (5ζ, f)] ≥ ζd. (12)

(The above property is the analog of the distribution ext(D, `) being ‘well-defined’ in [7].)480

Then, every f satisfying Eq. (12) also satisfies LossD(f, c, 6ζ) ≤ d ln(1/ζ)/m.481

Proof. Let S ∼ ext(D, `) and B ∼ Dm. Suppose RSOAζ(S ◦B) outputs a function f ′ ∈ T (5ζ, f).482

Now, for f ′ ∈ R, let Ef ′ be the event that RSOAζ(S ◦B) outputs f ′. Then observe that483

Pr
S∼ext(D,`),
B∼Dm

[RSOAζ(S ◦B) ∈ T (5ζ, f)] =
∑

f ′: f ′∈T (5ζ,f)

Pr
S∼ext(D,`),
B∼Dm

[Ef ′ ]

≤
∑

f ′: f ′∈T (5ζ,f)

Pr
S∼ext(D,`),
B∼Dm

[B is ζ-consistent with f ′]

≤ Pr
S∼ext(D,`),
B∼Dm

[B is 6ζ-consistent with f ],

(13)

where the first inequality follows from combining two observations:484

1. Since B is a subset of the examples fed to RSOAζ , by Property 1 in Lemma B.3, if485

RSOAζ(S ◦B) outputs f ′ then f ′ is ζ-consistent with all m examples in B;486

2. By Property 4 of Lemma B.3 (for a fixed sample, no two different functions can be output487

by RSOA), {Ef ′}f ′∈R are disjoint on the sample space;488

and the last inequality used that f ′ is in a 5ζ-ball of f , hence f is ζ + 5ζ = 6ζ consistent with489

B. Recall that Eq. (12) shows that the LHS of Eq. (13) is lower-bounded by ζd. If we define490

LossD(f, c, 6ζ) := α, then by the definition of loss, since B is a sample of m i.i.d. examples drawn491

from D, the RHS of the inequality above is (1− α)m. Putting together the lower and upper bound492

ζd ≤ (1− α)m ≤ e−αm, proves the lemma statement.493

C.1.2 A Monte Carlo version of the tailoring algorithm494

Algorithm 2 that we described in the previous section could potentially run steps (i)− (iii) forever.495

Apriori it is not clear why this algorithm terminates. In this section, we compute the expected number496

of examples drawn by Algorithm 2 and eventually use Markov’s inequality to define a “stopping497

criterion” (a sample complexity cutoff) on Algorithm 2 so that the algorithm eventually stops drawing498

a certain number of examples. The reason the number of examples drawn is a random variable is499

that steps 2(i) to 2(iii) of Algorithm 2 must be repeated until there is one round where f0, f1 are500

distance more than 11ζ apart, i.e., there exists x ∈ X satisfying |f0(x)− f1(x)| > 11ζ.501

Lemma C.5 (Expected number of examples drawn in Steps 2(i) to 2(iii)). Let ζ ∈ [0, 1/2] and502

let k∗ be the smallest value (guaranteed to exist by Lemma C.3) for which503

Pr
S∼ext(D,k∗),

B∼Dm
[RSOAζ(S ◦B) ∈ T (11ζ, f)] ≥ ζd (14)

holds. Let ` ≤ k∗ and M` denote the number of examples drawn from D in order to generate a504

sample S ∼ ext(D, `). Then505

E [M`] ≤ 4`+1 ·m,
where the expectation is taken over the random sampling process in Algorithm 2.506
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Proof. Because we have chosen k∗ to be the smallest value for which Eq. (14) is true, this implies
that for every `′ < k∗ and f ∈ R, we have

Pr
S∼ext(D,`′),
B∼Dm

[RSOAζ(S ◦B) ∈ T (11ζ, f)] < ζd

which is equivalent to

Pr
S∼ext(D,`′),
B∼Dm

[RSOAζ(S ◦B) /∈ T (11ζ, f)] ≥ 1− ζd.

Now consider sampling from ext(D, `) such that 0 ≤ ` ≤ k∗. Call each round of 2(i) to 2(iii)507

‘successful’ if it results in f0, f1 such that |f0(x) − f1(x)| > 11ζ for some x. Upon success, the508

algorithm proceeds to step 2(iv). Let us assume that the probability of success for the `th round is θ.509

Then one can express θ as follows:510

θ =
∑
f0∈R

Pr
S0∼ext(D,`−1),

B0∼Dm
[RSOA(S0 ◦B0) = f0] · Pr

S1∼ext(D,`−1),
B1∼Dm

[RSOA(S1 ◦B1) = f1, f1 6∈ T (11ζ, f0)]

≥ (1− ζd)
∑
f0∈R

Pr
S0∼ext(D,`−1),

B0∼Dm
[RSOA(S0 ◦B0) = f0] = 1− ζd,

where the first equality is because ‘success’ is defined as |f0(x)−f1(x)| > 11ζ at some x, equivalently511

f1 6∈ T (11ζ, f0), and we used Eq. (C.1.2) in the inequality.512

Furthermore, sampling from ext(D, `) involves sampling from ext(D, `− 1), . . . , ext(D, 0). There-513

fore, the number of examples drawn to sample from ext(D, `), M`, is a function of M`−1, . . . ,M0.514

Let M (j)
` be the number of examples drawn during the jth attempt at sampling from distribution515

ext(D, `) and write M` =
∑∞
j=1M

(j)
` . While sampling from distribution ext(D, `), if we succeed516

prior to the j-th attempt, M (j)
` = 0; otherwise, if the first j − 1 attempts end in failure, we have to517

draw two examples from ext(D, `− 1) and two examples from Dm. Therefore, we may define the518

recursive equation519

E
[
M

(j)
`

]
= (1− θ)j−1 · (2E [M`−1] + 2m) , (15)

since each attempt involves drawing two examples from ext(D, `− 1) and two examples from Dm520

and we used the fact that the probability of failure is (1− θ)j−1. Therefore, we have521

E [M`] =
∑
j

E
[
M

(j)
`

]
=

∞∑
j=1

(1− θ)j−1 · (2E [M`−1] + 2m)

=
1

θ
· (2E [M`−1] + 2m)

≤ 1

1− ζd · (2E [M`−1] + 2m) ≤ 4 · (E [M`−1] +m),

(16)

where we have used the fact that ζ < 1/2 to obtain the last inequality. Using that E[M0] = 0 and522

using induction on Eq. (16) gives us the lemma statement.523

C.1.3 Final algorithm524

Putting together these pieces, we now prove our main theorem.525

Theorem C.6 (Globally stable learner from online learner). Let α > 0. Let C ⊆ {f : X → [0, 1]}526

be a concept class with sfat2ζ(C) = d. Let c ∈ C be the target concept. Let527

T =
(
2 · (4/ζ)d+1 + 1

)
· d ln(1/ζ)

α
.

Let D : X → [0, 1] be a distribution. There exists a randomized algorithm G : (X × [0, 1])T →528

[0, 1]X that satisfies the following: given T many examples S = {(xi, ĉ(xi))} where x ∼ D, there529

exists a hypothesis f such that530

Pr[G(S) ∈ T (11ζ, f)] ≥ ζd

2(d+ 1)
and LossD(f, c, 12ζ) ≤ α (17)
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Algorithm 3 Final globally-stable algorithm G to learn concept class C ⊆ {f : X → [0, 1]}.

1. Draw k ∈ {0, 1, . . . , d} uniformly at random.

2. Let ext(D, k) be the distribution described in Algorithm 2 but additionally imposing a cutoff
T on sample complexity (i.e. we output ‘fail’ if the number of examples drawn in sampling
from ext(D, k) ever exceeds T ), where the auxiliary sample size is set to m = d ln(1/ζ)/α
and cutoff T = 2 · (4/ζ)d+1 ·m.7

Let B ∼ Dm and S ∼ ext(D, k) and output h = RSOAζ(S ◦B).

Proof. The algorithm G in the theorem statement is exactly the algorithm we defined in the previous531

two sections along with a cutoff at T examples.532

Note that because we have enforced the cutoff at T examples in drawing S ∼ ext(D, k), the sample533

complexity of G is |S| + |B| ≤ T + m =
(
2 · (4/ζ)d+1 + 1

)
· d ln(1/ζ)α as stated in the theorem534

statement. Lemma C.3 guarantees that there exists k ≤ d and f∗ such that Eq. (12) holds. Let k∗ be535

the smallest k such that Lemma C.3 holds with the constant 5ζ replaced by 11ζ, and536

Pr
S∼ext(D,k∗),

B∼Dm
[RSOAζ(S ◦B) ∈ T (11ζ, f∗)] ≥ ζd. (18)

Then Lemma C.4 (with a simple modification for the new constant) implies that LossD(f, c, 12ζ) ≤537

d ln(1/ζ)/m ≤ α.538

We now show that the probability that G outputs some function in T (11ζ, f∗) is 1
2(d+1) · ζd. Firstly,539

with probability 1
d+1 , the randomly drawn k in step 2 is k∗. Conditioned on this, we now show that540

with high probability, the loop in Steps 2(i) to 2(iii) will terminate after drawing T = 2 ·(4/ζ)d+1 ·m541

examples.542

Pr
[
Mk∗ > 2 · (4/ζ)d+1 ·m

]
≤ Pr

[
Mk∗ > 2 · ζ−d · 4k∗+1 ·m

]
≤ ζd/2, (19)

where the first inequality used k∗ ≤ d and the second inequality is by Markov’s inequality and543

Lemma C.5. Putting together Eq. (18) and (19) the probability that RSOA(S ◦B) outputs a function544

in T (11ζ, f∗) and also Algorithm 2 terminates before the cutoff T is545

Pr
S∼ext(D,k∗),

B∼Dm

[
RSOA(S ◦B) ∈ T (11ζ, f∗) and Mk∗ ≤ 2 · (4/ζ)d+1 ·m

]
≥ ζd − ζd/2 = ζd/2

(20)
Multiplying this together with 1/(d+ 1) yields our claim.546

C.2 Quantum stability does not imply quantum approximate DP (without a domain-size547

dependence)548

In the previous section we showed that if a concept class C can be learned in the quantum online549

learning framework, then there exists a globally stable learner (with appropriate parameters) for C as550

well. This implication was first pointed out by [7] for Boolean-valued Cs. In fact, they went one step551

further and created a approximately differentially-private learner from a stable learner. In this sense,552

stability can be viewed as an intermediate property between online learnability and approximate553

differential privacy in the Boolean setting. Jung et al. [4] used the same technique to show that554

stability implies approximate differential privacy in the multiclass learning setting as well (i.e., when555

the concept class to be learned maps to a discrete set {1, . . . , k}), but they do not show that an556

analogous implication holds for real-valued learning, which they mention briefly. Note that their557

real-valued learning setting is less general than ours, as they assume that they receive exact feedback558

on each example (we discuss this at the end of this section).559

A natural question is: does this result still hold in the quantum learning setting, i.e. does quantum560

stability imply quantum differential privacy? In this section, we show that the [7] method for showing561

7For simplicity in notation, we assume cd/α is an integer. If not, one can set m = dcd/αe.
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this implication for Boolean functions – which held up in the case of learning multiclass functions562

– fails for learning real-valued functions with imprecise feedback. Unlike in the former two cases,563

the transformation from stable learner to approximate DP learner necessarily incurs a domain-size564

dependence in the sample complexity. This is undesirable because, when X is a real-interval or if it565

is unbounded, this quantity could potentially be infinite.566

C.2.1 Lower-bounding the sample complexity of the stability→ privacy transformation567

In the Boolean setting, [7] showed that one could use the stable histograms algorithm [14] and the568

Generic Private Learner of [11], to convert a Boolean globally-stable learner, in a black-box fashion,569

to a private learner. This learner’s sample complexity depends on Ldim(C) and the privacy and570

accuracy parameters of the stable learner, but not the domain size of the function class. We now show571

that this technique cannot possibly yield a domain size-independent sample complexity for quantum572

learning.573

Our stable learner G has the following guarantees (given in Theorem C.6): there exists some function574

ball (around the target concept) such that the collective probability of G outputting its member575

functions is high. Contrast this with the global stability guarantee for learning Boolean functions [7],576

which says that G outputs some fixed function with high probability. The stability guarantees differ577

because, in our setting, the learner only obtains ε-accurate feedback from the adversary. Hence the578

learner cannot uniquely identify the target concept c, since all functions that are in the ε-ball of c579

would be consistent with the feedback of the adversary, and we thus allow the learner to output a580

function in the ε-ball around the target concept. However, this difference critically prevents us from581

using the [7] technique to transform a stable learner into a private learner in the quantum case. We582

sketch this argument below8, which relies on ideas from classical fingerprinting codes [16] (which583

were also used earlier by Aaronson and Rothblum [17] in order to give lower bounds on gentle584

shadow tomography).585

[7]’s transformation from stable learner to private learner, applied to our setting, would be as follows:586

generate a list of functions in C by running the stable learner G(S) of Theorem C.6, n many times,587

each of which outputs a single fi ∈ C. By Theorem C.6 and a Chernoff bound, one can show588

that with high probability, an η = ζd-fraction of the list should be in T (ζ, f∗) for some f∗. Next589

one would like to privately output some function in T (ζ, f∗). We now cast this in terms of the590

following problem:591

Problem C.7 (Query release for function balls). Given a list of n functions {fi : X → R}i∈[n], an592

η-fraction of which are in T (ζ, f∗) for some f∗ : X → R, output some function g ∈ T (ζ, f∗).593

We could also consider the following problem of clique identification on a discrete domain.594

Problem C.8 (Clique identification on a discrete domain ). Given a symmetric, reflexive relation595

R ⊆ Y × Y and a dataset D ∈ Yn under the promise that (x, y) ∈ R for every x, y ∈ D, find any596

point z ∈ Y such that (x, z) ∈ R for every x ∈ D. Clique identification on a discrete domain is597

clique identification with Y = [4]d and R = {(x, y) ∈ Y × Y : ‖x− y‖∞ ≤ 1}.598

Problem C.8 reduces to Problem C.7. To see this, note that when we choose the functions f in599

Problem C.7 to be of the form f : [d]→ [4], η = 1 and ζ = 1/2, and let D consist of the n vectors600

[fi(1), . . . fi(d)], i ∈ [n], we recover Problem C.8. Hence, any DP algorithm for query release for601

function balls is also a DP algorithm for clique identification on a discrete domain. However, we602

claim the following:603

Claim C.9. For δ < 1/500, any (1, δ < 1/n)-DP algorithm9 solving Problem C.8 with probability604

at least 1499/1500 requires n ≥ Ω̃(
√
d).605

We will prove the claim later, but we first explain why it implies a necessary domain size dependence606

in the transformation we hope to achieve. Noting that d = |X | in the translation from Problem C.7 to607

Problem C.8, we conclude from Claim C.9 that any (1, δ)-DP algorithm for Problem C.7 requires608

n ≥ Ω̃(
√
|X |). Hence, any algorithm to convert the stable real-valued learner G of Theorem C.6609

into an approximate-DP learner that also solves Problem C.7, also requires to run the stable learner610

8The following argument was communicated to us by Mark Bun [15].
9It is not hard to modify this proof so as to allow an ε privacy parameter.
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n-many times, each of which consumes T examples. Hence the total number of examples needed is611

Ω̃

(√
|X |
(
2 · (4/ζ)d+1 + 1

)
· d ln(1/ζ)

α

)
. (21)

In particular, this lower bound is also optimal for query release up to poly-logarithmic factors, i.e.,612

using Õ(
√
|X |) examples one can solve Problem C.7 using the Private Multiplicative Weights method613

by Hardt and Rothblum [18] (as also referenced in the work of Bun et al. [16]).614

To prove Claim C.9, we first need to first define weakly-robust fingerprinting codes (first introduced615

by Boneh and Shaw [19], then developed in [16]).616

Definition C.10. An (n, d)-fingerprinting code with security s and robustness r is a pair of random617

variables (G,T ) where G ∈ {2, 3}n×d and T : {2, 3}d → 2[n] that satisfy the following. We say618

that a column j ∈ [d] is marked if there exists b ∈ {2, 3} such that xi;j = b for all i ∈ [n]. Similarly,619

we say a string w ∈ {2, 3}d is feasible for G if for at least a 1− r fraction of the marked columns620

j ∈ G, the entry wj agrees with the common value in that column. Moreover, we need the notion of621

soundness and completeness as follows:622

• Completeness For every A : {2, 3}n×d → {2, 3}d, we have623

Prw←A(G)[w is feasible for G and T (w) = ∅] ≤ s624

• Soundness For every i ∈ [n] and algorithm A : {2, 3}n×d → {2, 3}d, we have625

Prw←A(G−i)[T (w) 3 i] ≤ s626

We will also need the following theorem by [20] who gave explicit construction of fingerprinting627

codes.628

Theorem C.11 ([20]). Then, for every s ∈ (0, 1), there exists an (n, d)-fingerprinting code with629

security s and robustness r = 1/25 with d = Õ(n2 log(1/s)).630

With this we now prove our main claim.631

Proof of Claim C.9. The idea is to construct, from any (ε = 1, δ = 1/4n)-DP clique identification632

algorithm with success probability at least 1499/1500, an adversary A : {2, 3}n×d → {2, 3}d for633

any (n, d) fingerprinting code with robustness 1/25, such that the code cannot be 1/20n-secure634

against the adversary. However, because Theorem C.11 guarantees the existence of a sound and635

complete (n, d)-fingerprinting code with (s = 1/20n, r = 1/25)-parameters as long as n < Ω̃(
√
d),636

the claimed clique identification algorithm M must have n ≥ Ω̃(
√
d). We now go into more detail637

about how to construct the adversary.638

Let M be the alleged DP algorithm for clique identification, and let G ∈ {2, 3}n×d be the G
corresponding to the fingerprinting code. If we regard each of the rows of G as being a point in
Y = [4]d, then taking D to be the set of all rows of G, D fulfils the promise of Problem C.8.
Then the adversary A is constructed out of M as follows: on input D, run M(D) producing a
string w ∈ [4]d. Return the string w′ ∈ {2, 3}d where w′i = 2 if wi ∈ {1, 2} and w′i = 3 if
wi ∈ {3, 4}. A proof by contradiction, which we omit, shows that the string w′ produced in this
manner is feasible for the fingerprinting code with probability at least 2/3. By completeness of the
code, Pr[T (A(D)) ∈ [n]] ≥ 2/3 − s ≥ 1/2. In particular, there exists some i∗ ∈ [n] such that
Pr [T (A(D)) = i∗] ≥ 1/2n. Now by differential privacy,

Pr [T (A (D−i∗)) = i∗] ≥ e−ε (Pr [T (A(D)) = i∗]− δ) ≥ e−1
(

1

2n
− 1

4n

)
≥ 1

20n
.

This contradicts the soundness of the code.639

C.2.2 A quadratically worse upper bound on the sample complexity of privacy640

The previous subsection showed that going from a stable learner to a private learner of real-valued641

function classes should incur a sample complexity at least the root of domain size. Now we mention642

an explicit algorithm for pure-DP learning real-valued function classes over a finite domain – with no643
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need for the stability intermediate step – that needs at most linear-in-|X | examples. (This was also644

pointed out in the Appendix of Jung et al. [4].)645

The private algorithm that accomplishes this is the Generic Private Learner of [11, 7]. We give its646

guarantees in the lemma below. Intuitively, this lemma states that given a collection of hypotheses,647

one of which is guaranteed to have low loss α with respect to some unknown distribution and target648

concept, by adding Laplace noise, one can privately output with high probability a hypothesis with649

loss at most 2α with respect to the unknown target concept and distribution.650

Lemma C.12 (Generic Private Learner [11, 7]). Let H ⊆ {h : X → [0, 1]} be a set of hypotheses.
For

m = O

(
log |H|
αε

)
there exists an (ε, 0)-differentially private generic learner GL : (X × [0, 1])m → H such that651

the following holds. Let D : X × [0, 1] → [0, 1] be a distribution, c : X → [0, 1] be a target652

function, ζ be a distance parameter and h∗ ∈ H be such that with LossD (h∗, c, ζ) ≤ α. Then on653

input S ∼ Dm, algorithm GL outputs, with probability at least 2/3, a hypothesis ĥ ∈ H such that654

LossD(ĥ, c, ζ) ≤ 2α.655

For every real-valued function class C, one could discretize the [0, 1]-range of its functions h : X →656

[0, 1] into bins of size ζ. This obtains a discretized function classH with at most (1/ζ)|X | functions.657

Plugging this bound into the lemma above, we obtain a private learner with sample complexity658

m = O

( |X | log(1/ζ)

αε

)
. (22)

C.3 The quantum implications659

We now turn to the quantum implications of the results in the previous sections. While we have stated660

all our results for the case of learning real-valued functions with imprecise adversarial feedback, we661

now expressly translate them to the setting of learning quantum states. Recall that, as stated in Section662

A, in quantum learning we are given U , a class of n-qubit quantum states from which the state to be663

learned is drawn;M, a set of 2-outcome measurements and D :M→ [0, 1], a distribution on the664

set of measurements.10 Our results apply to quantum learning by associating, to every ρ ∈ U , the665

real-valued function cρ :M→ [0, 1] defined as cρ(M) = Tr(Mρ) ∈ [0, 1] for every M ∈ X , and666

taking the function class to be CU = {cρ}ρ∈U .667

Section C.1 implies that given a CU with bounded sfat dimension, a stable learner for CU also exists.668

To translate this result into the quantum learning setting, we define quantum stability as follows:669

Definition C.13 (Quantum stability). A quantum learning algorithm A : (M× [0, 1])T → U is670

(T, ε, η)-stable with respect to distribution D : M → [0, 1] if, given T many labelled examples671

S = {(Ei, yi)}i∈[T ] where |Tr(ρEi)− yi| < ζ, there exists a state σ such that672

Pr[A(S) ∈ BM(ε, σ)] ≥ η, (23)

where the probability is taken over the examples in S and BM(ε, σ) := {ρ : |Tr(Eρ)−Tr(Eσ)| ≤ ε},673

that is to say, the ball of states within distance ε of σ onM.674

In other words, quantum stability means that up to an ε-distance on the measurements inM, there is675

some σ that is output byA with “high” (at least η) probability. Then the quantum version of Theorem676

C.6 is the following:677

Theorem C.14 (Quantum-stable learner from online learner). Let U be a class of quantum states678

with sfat2ζ(CU ) = d, letM be a set of orthogonal 2-outcome measurements and let D :M→ [0, 1]679

be a distribution over measurements. There exists an algorithm G : (M× [0, 1])T → U that satisfies680

the following: for every ρ ∈ U , given681

T =
(
2 · (4/ζ)d+1 + 1

)
· d ln(1/ζ)

α
.

10To be more clear, D can be viewed as a distribution over {(Ei, I − Ei)}i where {Ei}i is an orthogonal
basis for the space of operators on n-qubits satisfying ‖Ei‖ ≤ 1.
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many labelled examples S = {(Ei, yi)}i∈[T ] where |Tr(ρEi)− yi| < ζ and Ei ∼ D, there exists a σ682

such that PrS∼DT [G(S) ∈ BM(11ζ, σ)] ≥ ζd

2(d+1) and PrE∼D
[
|Tr(ρE)−Tr(σE)| ≤ 12ζ

]
≥ 1−α.683

Namely, G is (T, 11ζ, ζd

2(d+1) )-stable and furthermore, the state σ at the center of its ‘output ball’ has684

loss α.685

Section C.2 now gives a no-go result for going from the above-mentioned quantum-stable learner to686

an approximate-DP one. It shows that the technique of [7] to convert a stable learner to a private one687

necessarily incurs a domain-size dependence in the sample complexity.688

We say a few words about the implications of this on quantum learning. As explained earlier, it is689

often of most interest to chooseM to be some orthogonal set of measurements. If, say, we choose it690

to be the orthogonal basis of n-qubit Paulis, then |M| = 4n and so Equation (21) implies that one691

needs sample complexity Ω̃(4n/2) in order to go from stability to approximate differential privacy,692

whereas Equation (22) implies that even without stability, there exists a simple (pure) private learner693

for CU whose sample complexity is Õ(4n), which is quadratically worse.694

Comparison to prior work [4]. After completion of this work, we were made aware by an695

anonymous referee of the paper by Jung, Kim and Tewari [4] that extends the work of Bun et al. [7] to696

two other classical settings – namely, multi-class learning (i.e., when the concept class to be learned C697

maps to a discrete set {1, . . . , k}) and real-valued learning (when C takes on values in [−1, 1]). The698

latter is relevant, because learning an unknown quantum state ρ amounts to learning the real-valued699

function Tr(·ρ). Despite this similarity, our quantum learning setting and resulting analysis differs700

from theirs in several crucial ways, which we now outline.701

Firstly, [4]’s notion of stability for learning real-valued functions resembles our definition, however702

in order to prove that online learnability implies stability, they modify the definition of Littlestone703

dimension and use this modified notion in their work (in fact, we couldn’t find a version of the paper704

that spells out the proof that online learnability implies a stable real-valued learner, but this seems705

implicit from their proof for the multi-class case). In this work, we use the standard notion of sfat(·)706

– which we also bound in the case of quantum states – and still show this implication. Secondly,707

for both PAC learning and online learning settings, [4] assume that the feedback received by the708

learner is exact, i.e. for online learning, on input x, the adversary produces c(x) ∈ [0, 1]; for PAC709

learning, the examples are of the form (x, c(x)). By contrast, in this work, we only assume that the710

feedback in all learning models we consider (which includes both these settings) is a ε-approximation711

of c(x). This generalizes the previous settings and arises from the fact that, in quantum learning,712

the feedback comes from some quantum estimation process or quantum measurement. Thus, all713

implications proven in this work are robust to such adversarial imprecision. This imprecision crucially714

bars the usage of [7]’s technique, developed for Boolean functions, to conclude that quantum stability715

implies approximate differential private PAC learning with sample complexity independent of domain716

size. Finally, one important contribution in this paper is to provide the implications of these real-717

valued results in the quantum setting, for example the connections to shadow tomography, quantum718

information theory, quantum one-way communication complexity.719

D Pure differential privacy implies online learnability720

In this section we will prove the converse direction of the implication we showed in the previous721

section, namely that DP PAC learnability of a concept class C implies online learnability of C. To be722

more precise, we will show that the sample complexity of pure DP PAC learning C is linearly related723

to the sfat(·) dimension of C. Combining this with Theorem B.4 implies learnability in the pure DP724

PAC setting implies online learnability of C in the strong feedback setting. The implications we will725

show are summarized in the diagram below:726

This section is organized as follows. In Section D.1 we show that the sample complexity of pure727

DP PAC is linearly related to the communication complexity of one-way public communication. As728

shown in Figure 3, the link between these two notions goes through representation dimension. In729

Section D.2 we show that one-way communication complexity is, in turn, characterized by sfat(·).730

Additionally, we know from Theorem B.4 that this combinatorial dimension upper-bounds the mistake731

bound of online learning C, and this completes the chain of implications shown in Figure 3.732
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Figure 3: Sample complexity of pure DP PAC upper-bounds sfat(·).

D.1 Pure DP PAC implies one-way communication733

In this section we prove that the sample complexity of pure DP PAC learning upper bounds one-way734

communication complexity of a concept class C.735

D.1.1 Pure differential privacy and PRdim736

We start by relating the sample complexity of differentially-private PAC (PPAC) learning (see737

Definition A.5) a concept class C, to the probabilistic representation dimension of C. As in the previous738

section, we use the shorthand S ∼ Dm to mean that the sample S is of the form {(xi, ĉ(xi))}mi=1739

where each xi ∼ D and for all i, ĉ(xi) satisfies |ĉ(xi)− c(xi)| < ζ/5.740

Lemma D.1 (Sample complexity of (ζ, α, ε, 0)-PPAC learning and PRdim). Let α < 1/4. Suppose741

there exists an algorithm A that (ζ, α, ε, 0)-PPAC learns a real-valued concept class C ⊆ {f : X →742

[0, 1]} with sample size m, then there exists a set of concept classes H and a distribution over their743

indices P , such that (H ,P) (ζ, 1/4, 1/4)-probabilistically represents C, with size(H ) = O(mεα).744

This implies that the sample complexity of (ζ, α, ε, 0)-PPAC learning C is745

Ω

(
1

αε
PRdimζ,1/4,1/4(C)

)
. (24)

Proof. Our proof extends the work of [13] to the case of robust real-valued PAC learning. We assume746

we are given a (ζ, α, ε, 0)-PPAC learner A of C that outputs some function in hypothesis class F747

with sample complexity m. The PAC guarantees hold whenever the feedback is a ζ/5 approximation748

of c(xi), so for the rest of this proof, we will fix the examples (xi, ĉ(xi)) to have feedback of the749

form: ĉ(xi) := bc(xi)cζ/5, where b cζ/5 denotes rounding to the nearest point in Iζ/5.750

For every target concept c ∈ C and distribution D on the input space X , define the following subset751

of F :752

GαD,ζ = {h ∈ F : LossD(h, c, ζ) ≤ α}, (25)

where LossD(h, c, ζ) := Prx∼D
[
|h(x)−c(x)| > ζ

]
, soGαD,ζ may be interpreted as a set of probably-753

ζ-consistent hypotheses in F . In [13], they show that for every distribution D, there exists another754

distribution D̃ on the input space, defined as755

D̃(x) =

{
1− 4α+ 4α ·D(x), x = 0
4α ·D(x), x 6= 0

}
(26)

(where 0 is some arbitrary point in the domain) which has the property756

Pr
S∼D̃m,A

[
A(S) ∈ G1/4

D,ζ

]
≥ 3

4
(27)

where A(S) means A is fed with the sample S. The property in Eq. (27) follows from the fact that757

PrD̃[x] ≥ 4α ·PrD[x] ∀x ∈ X by Eq. (26) which implies Gα
D̃,ζ
⊆ G1/4

D,ζ , and the assumption that A758

is (ζ, α)-PAC which can be re-written as PrD̃,A[A(S) ∈ Gα
D̃,ζ

] > 3/4.759

Let us now call a sample S ‘good’ if ~x has at least (1 − 8α)m occurrences of 0. Eq. (27) may be760

rewritten as761

Pr
S∼D̃,A

[
A(S) ∈ G1/4

D,ζ

]
(28)

= Pr
S∼D̃,A

[
A(S) ∈ G1/4

D,ζ ∧ S is good
]

+ Pr
S∼D̃,A

[
A(S) ∈ G1/4

D,ζ ∧ S is not good
]
≥ 3

4
(29)
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Letting the random variable XS denote the number of occurrences of 0 in S,762

Eq. (26) shows that E[XS ] ≥ (1 − 4α)m. With this we upper bound the term763

PrS∼D̃,A

[
A(S) ∈ G1/4

D,ζ ∧ S is not good
]

by764

Pr
S∼D̃,A

[S is not good] = Pr
S∼D̃,A

[XS < (1− 8α)m] (30)

= Pr
S∼D̃,A

[XS ≤ (1− δ)(1− 4α)m] ≤ e−δ2(1−4α)m/2 = e−2α
2m/(1−4α),

(31)

where the first inequality used δ = 4α
1−4α and the second inequality follows from a Chernoff bound765

with E[XS ] replaced with the upper bound (1− 4α)m on its expectation.766

Therefore, one can bound the first term on the right hand side of Eq. (28) by767

Pr
S∼D̃,A

[
A(S) ∈ G1/4

D,ζ ∧ S is good
]
≥ 3

4
− e−2α2m/(1−4α) ≥ 1

4
. (32)

Eq. (32) implies that there exists some sample, Sgood such that768

Pr
A

[
A(Sgood) ∈ G1/4

D,ζ

]
≥ 1

4
. (33)

Without loss of generality we may write down Sgood as769

Sgood := ((0, bc(0)cζ/5), . . . (0, bc(0)cζ/5)︸ ︷︷ ︸
k examples

, (xk+1, bc(xk+1)cζ/5) . . . (xm, bc(xm)cζ/5)) (34)

for some k ≥ (1− 8α)m. Consider an alternative sample, Salt, which takes the form
Salt = ((0, bc(0)cζ/5), . . . , (0, bc(0)cζ/5)︸ ︷︷ ︸

m examples

).

Salt differs from Sgood in exactly m − k < 8αm examples, and so by the ε-DP property of A,770

we have771

Pr
A

[A(Salt) ∈ G1/4
D,ζ ] ≥ exp(−8αεm) Pr

A
[A(Sgood) ∈ G1/4

D,ζ ] ≥
1

4
exp(−8αεm). (35)

For the remainder of this proof, we will use Eq. (35) to construct the pair (H ,P). Define the
examples

Sz = ((0, z), . . . , (0, z)︸ ︷︷ ︸
m examples

).

Now, for each z ∈ Iζ/5, run A(Sz) repeatedly 4 ln(4)e8αεm times. Store all the outputs in set H,772

which has size |H| = 5/ζ · 4 ln(4)e8αεm. It is clear that for z = bc(0)cζ/5, Sz = Salt, and Eq. (35)773

therefore gives us guarantees on the output of A(Sz). We may conclude from Eq. (35) that for setH774

generated in the above fashion,775

Pr[H ∩G1/4
D,ζ = ∅] ≤

(
1− 1

4
e−8αεm

)4 ln(4)e8αεm

≤ 1

4
. (36)

Rearranging gives m = 1
8αε

(
PRdimζ,1/4,1/4(C)− ln(5/ζ · 4 ln 4)

)
.776

We may therefore define H :=
{
G ⊆ F : |G| ≤ 5/ζ · 4 ln(4)e8αεm

}
(note thatH ∈H ) and further777

define P to be the distribution that puts all probability mass on H. Comparing Eq. (36) with the778

definition of PRdim, Definition A.9, observe that (H ,P) make up a (ζ, 1/4, 1/4) -probabilistic779

representation for the class C. Hence PRDimζ,1/4,1/4 ≤ ln(5/ζ · 4 ln(4)) + 8αεm.780

The following lemma is an immediate corollary of [21] who proved it for Boolean functions and the781

exact same proof carries over for our definition of PRdim and randomized one-way communication782

model in the real-valued setting.783

Lemma D.2 (PRdim � Randomized Communication Complexity for real-valued functions). Let C784

be a concept class of real-valued functions. The following relations hold:785

1. PRdimζ,ε,δ(C) ≤ R→,pubζ,εδ (C)786

2. R→,pubζ,ε+δ−εδ(C) ≤ PRdimζ,ε,δ(C)787
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D.2 One-way communication is characterized by sfat(·)788

We next prove that for every real-valued concept class C ⊆ {f : X → [0, 1]}, the sequential fat-789

shattering dimension lower bounds the randomized communication complexity of C. Namely, we790

prove the following lemma:791

Lemma D.3. Let C ⊆ {f : X → [0, 1]} be a concept class. Then R→ζ,ε(C) ≥ (1−H(ε)) · sfatζ(C).792

With this lemma, we complete our chain of implications, and obtain the conclusion of this section,793

that the sample complexity of pure DP PAC learning upper-bounds the sfat(·) dimension. We remark794

that the statement above is the real-valued version of the relationship exhibited in [21], wherein795

the Littlestone dimension (Boolean analog of sfat(·)) lower-bounds the randomized communication796

complexity of Boolean function classes. The proof of Lemma D.3 proceeds in two steps. First, we797

define the communication problem AugIndexd and show that R→ζ,ε(C) ≥ R→ε (AugIndexd) for d the798

sfat dimension of C. (We refer the reader to Section A.2.2 for the definitions of the quantities R→ζ,ε(·)799

and R→ε (·) which pertain respectively to real- and Boolean-function communication complexity.)800

Next, we use the known relation R→ε (AugIndexd) > (1−H(ε))d where H : [0, 1]→ [0, 1] is the801

binary entropy function H(x) := −x log x− (1− x) log(1− x).802

To do the first of the two steps, we will relate the one-way classical communication complexities of803

two communication tasks. The first is the task AugIndexd for d ∈ Z+ which is defined as follows:804

Alice gets string x ∈ {0, 1}d, while Bob gets x[i−1] for some i ∈ [d], which is the length-(i−1) prefix805

of x. The task is for Bob to output the bit xi and we say that AugIndexd(x, i) = xi. The second is806

the task EvalC , defined in Section A.2.2, for some real-valued function class C ⊆ {f : X → [0, 1]}.807

We repeat the definition for convenience: Alice is given a function f ∈ C and Bob a z ∈ X and Bob’s808

goal is to approximately compute f(z), i.e. Bob has to compute b ∈ [0, 1] satisfying809

Pr
[
|b− f(z)| ≤ ζ

]
≥ 1− ε, (37)

where the probability is taken over the local randomness of Alice and Bob respectively. We denote810

the one-way randomized communication complexity of EvalC as R→ζ,ε(C) for short.811

Lemma D.4. If C ⊆ {f : X → [0, 1]} satisfies sfatζ(C) = d, then R→ζ,ε(C) ≥ R→ε (AugIndexd).812

Proof. The idea of the proof is to show that a a one-way communication protocol for EvalC can also813

be used to compute AugIndexd for d = sfatζ(C). The protocol for AugIndexd is as follows:814

1. Alice and Bob agree on the ζ-fat-shattering tree for the concept class C ahead of time.815

2. Upon being given an instance of the AugIndexd problem, Alice (who has the d-bit string816

x) identifies some function in C as follows: she follows the ζ-fat-shattering tree down the817

path of left-right turns defined by string x. This takes her to a leaf ` which is associated with818

some unique function cAlice ∈ C. Bob (who has the (i− 1)-bit string x[i−1]) identifies some819

zBob ∈ X , aBob ∈ [0, 1] as follows: he follows the ζ-fat-shattering tree down the path of820

left-right turns defined by x[i−1]. This takes him to some node w at level i− 1 and Bob sets821

zBob, aBob to be the domain point and threshold associated with that node.822

3. Alice and Bob use their protocol π for EvalC on the inputs cAlice, zBob, and following this823

protocol allows Bob to compute a b that satisfies824

Pr
[
|b− cAlice(zBob)| ≤ ζ

]
≥ 1− ε. (38)

4. If b > aBob, Bob outputs 1; else output 0.825

We now prove the correctness of this protocol. Eq. (38) states that with probability 1− ε, b is a ζ-826

approximation of cAlice(zBob). Condition on this. In parallel, observe that the Alice’s leaf ` associated827

with the function cAlice is a descendent of Bob’s node w associated with the values (zBob, aBob),828

therefore one of the following two statements must be true by definition of ζ-fat-shattering tree and829

by the procedure outlined in Step 2:830

• ` is in the right subtree of w i.e. cAlice(zBob) > aBob + ζ , and xi = 1. By Eq. (38), this im-831

plies b > aBob. By Step 4, Bob outputs 1, which is also the value of xi = AugIndexd(x, i).832

22



• ` is in the left subtree ofw i.e. cAlice(zBob) < aBob−ζ , and xi = 0. By Eq. (38), this implies833

b < aBob. By Step 4, Bob outputs 0, which is also the value of xi = AugIndexd(x, i).834

This means that the output of Bob in Step 4, b̃, satisfies835

Pr[b̃ = AugIndexd(x, i)] ≥ 1− ε, (39)

where again the probability is taken over the randomness of Alice and Bob. Hence, the protocol836

above is a valid protocol for computing AugIndexd.837

Finally we can prove the lemma stated at the beginning of the section.838

Proof of Lemma D.3. Follows from Lemma D.4 combined with the inequality R→ε (AugIndexd) ≥839

(1−H(ε))d which was proven in [21].840

In fact, below we strengthen the above into a bound on the one-way quantum communication841

complexity of computing real-valued concept classes.842

Corollary D.5. Let C ⊆ {f : X → [0, 1]} be a concept class. ThenQ→ζ,ε(C) ≥ (1−H(ε)) · sfatζ(C).843

Proof of Corollary D.5. In the proof of Lemma D.4, simply replace the classical one-way random-844

ized protocol to compute EvalC with the quantum one-way randomized protocol. This gives that845

Q→ζ,ε(C) ≥ Q→ε (AugIndexd). Next, [22] provides a bound for the complexity of quantum serial846

encoding that amounts to the statement Q→ε (AugIndexd) ≥ (1−H(1− ε))d. Combining the two847

yields the claim.848

We remark that a similar corollary for Boolean valued concept classes was proven earlier by [23]849

(where the RHS of Corollary D.5 is replaced by Littlestone dimension). Our proof technique is easily850

generalized to the Boolean setting and significantly simplifies his proof [23].851

E Applications of our results852

We now present a few applications of the results we established in the previous sections. For the853

rest of this section, let U be a class of quantum states on n qubits, and let Un refer to the the set of854

all quantum states on n qubits. So far, we have shown that the complexity of learning the quantum855

states from the class U , in two models of learning (pure DP PAC and online learning in the mistake856

bound model), depends on the sequential fat shattering dimension of the real-valued function class CU857

associated with U : here CU := {fρ : X → [0, 1]}ρ∈U , where X is the set of all possible two-outcome858

measurements, and fρ is given by fρ(E) = Tr(Eρ) for every E ∈ X .859

In the online learning work of [2] they consider the setting where U is the set of all n-qubit states860

Un. Let us denote the corresponding function class as Cn. In this case, [2] showed that sfatε(Cn) ≤861

O(n/ε2), thus effectively upper-bounding the sfat(·) dimension of the class of all n-qubit quantum862

states by n. This section asks what happens when we allow U ⊆ Un – for instance, when U is a863

special class of states that may be of particular interest or more experimentally feasible to prepare.864

Are there any meaningful such classes for which we can improve this bound? We first answer this865

affirmatively for a few classes of quantum states and finally improve the sample complexity of gentle866

shadow tomography for these classes of states.867

E.1 Holevo information and sequential fat shattering dimension868

In this subsection we provide an upper bound on sfat(CU ) in terms of the Holevo information of869

an ensemble defined on the class of states U . Using this new upper bound leads to improved upper870

bounds on sfat(·) for many classes of quantum states U , and hence improved upper bounds on the871

sample complexity of learning U . Previously for U = Un, [24, 2] observed that one could use872

arguments from quantum random access code by [22] to obtain a combinatorial upper bound on873

learning. In this section we show that a better upper bound can be achieved by maximizing the Holevo874
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information, χ({pi, ρi}ρi∈U ) (over all possible distributions ~p on U), where Holevo information is875

defined as876

χ
(
{pi, ρi}ρi∈U

)
= S(ρ̄)−

∑
i:ρi∈U

piS (ρi) , ρ̄ =
∑
i:ρi∈U

piρi, (40)

where ~p is a distribution and S is the von Neumann entropy S(ρ) := −Tr[ρ log ρ].877

E.1.1 Quantum Random Access Codes878

We first define random access codes and serial random access codes over the set U , modifying the879

definition in [22] so that U – the set of states from which the code states may be chosen – is part of880

the definition of these codes.881

Definition E.1 (Random access codes and serial random access codes). Let U be a class of quan-882

tum states over n qubits. A (k, n, p,U)-random access code (RAC) consists of a set of 2k code883

states {ρs}s∈{0,1}k ⊆ U such that, for every i ∈ [k] and s ∈ {0, 1}k, there exists a 2-outcome884

measurement Oi such that885

Pr [Oi(ρs) = si] ≥ p. (41)

A (k, n, p,U)-serial random access code (SRAC) consists of 2k code states {ρs}s∈{0,1}k ⊆ U such886

that, for every i ∈ [k], and for all s ∈ {0, 1}k, there exists a measurement with outcome 0 or 1,887

possibly depending on the last k − i bits xi+1, . . . , xk, such that Eq. (41) holds.888

In words, a RAC over U is a way of encoding k classical bits into n-qubit states from U , such that for889

every i ∈ [k] and x ∈ {0, 1}k, the probability of ‘recovering’ the bit xi by performing the 2-outcome890

measurement Oi on ρx is at least p. A serial RAC (denoted SRAC) is defined similarly except that891

one is allowed to use information from decoding the subsequent bits to decode xi. [22] showed the892

following relation between the number of encodable classical bits and the number of qubits in the893

code states894

Every (k, n, p,Un)-RAC or (k, n, p,Un)-SRAC satisfies n ≥ (1−H(p))k. (42)

Here, H(·) is the binary entropy function, and note that the statement applies to code states drawn895

from the entire class of n-qubit states.896

[2] in a recent work showed the surprising connection that a p-sequential fat-shattering tree for U of897

depth k can be used to construct a (k, n, p,U)-SRAC.11 As a corollary of this observation, we have898

sfatp(CU ) ≤ max{k : there exists (k, n, p,U)− SRAC}. (43)

Combining Eq. (42), (43) yields sfatp(CU ) ≤ n/(1−H(p)). In this section, we consider the scenario899

where U ⊆ Un and show that this bound can be improved to the following.900

Theorem E.2 (Bounding sfat(·) by the Holevo information). Let p ∈ [0, 1] and U be some class of
quantum states over n qubits. Then

sfatp(CU ) ≤ 1

1−H(p)
max

{
χ
(
{(qi, σi)}σi∈U

)
:
∑
i

qi = 1
}
.

To do so, we tighten the argument of [22] which was originally derived for U = Un. To prove our901

result, we make use of the following lemma.902

Lemma E.3 ([22]). Let σ0, σ1 be density matrices and σ = 1
2 (σ0 + σ1). If O is a measurement

with {0, 1}-outcome such that making the measurement on σb yields the bit b with probability p, then

S(σ) ≥ 1

2
[S (σ0) + S (σ1)] + (1−H(p)).

We now state and prove our main lemma.903

11We remark that such a connection between RAC and learnability was established in an earlier work by [24]
to understand PAC learnability of quantum states.
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Lemma E.4. Let U be some class of quantum states over n qubits. Every (k, n, p,U)-RAC or904

(k, n, p,U)-SRAC satisfies905

(1−H(p))k ≤ max
{
χ
(
{(qi, σi)}σi∈U

)
:
∑
i

qi = 1
}
, (44)

where H(·) is the binary entropy function and χ is the Holevo information χ
(
{(qi, σi)}σi∈U

)
=906

S(
∑
i piσi)−

∑
i piS(σi) and S(·) is the von Neumann entropy function.907

Proof. Using Definition E.1, a (k, n, p,U)-RAC consists of a set of code states {ρx}x∈{0,1}k ⊆ U
and measurements {Oi}i∈[k] satisfying Pr [Oi(ρx) = xi] ≥ p. Proceeding as in [22], we first define
the following states which are derived from the code states: For every 0 ≤ ` ≤ k and y ∈ {0, 1}`, let

σy =
1

2k−`

∑
z∈{0,1}k−`

ρzy.

In words, for a `-bit string y, let σy be a uniform superposition over all 2n−` code states with the908

suffix y. Let ψ = 1
2n

∑
z∈{0,1}n ρz be the uniform superposition over all code states. Then we have909

S(ψ) ≥ 1

2k

∑
z∈{0,1}k

S(ρz) + k(1−H(p)). (45)

To see this, first one can use Lemma E.3 to show S(ψ) ≥ 1
2 (S(σ0) + S(σ1)) + 1 − H(p) and910

recursively applying this lemma to each of the S(·) quantities, we get the equation above (observe911

that each application of the lemma is justified because for every y ∈ {0, 1}`, we may write σy =912
1
2 (S(σ0y) + S(σ1y)); and by assumption of a (k, n, p,U)-RAC, O`+1 can distinguish σ0y, σ1y with913

success probability p and thus is a measurement that meets the conditions of Lemma E.3.) Using914

Eq. (45) it now follows that915

k(1−H(p)) ≤ S(ψ)− 1

2k

∑
z∈{0,1}k

S(ρz) = χ
({ 1

2k
, ρx
}
x∈{0,1}k

)
≤ max

T⊆U
χ
({ 1

|T | , σi
}
σi∈T

)
.

(46)

where the last inequality follows because the uniform ensemble of code states
{

1
2k
, ρx
}
x∈{0,1}k is916

precisely of the form {pi, σi
}
σi∈U

with zero weight on non-code states in U . In Eq. (44), to get a917

simpler-looking bound, we further relax this inequality by taking the optimization over arbitrary918

probability distributions on the code states, not just the ones that are uniform on a subset. Eq. (44)919

also holds for SRAC by noting that the argument above doesn’t change by allowing Oi to depend on920

bits xi+1, . . . , xk.921

The proof of Theorem E.2 follows immediately from combining Lemma E.4 and Observation (43).922

An interesting consequence of our result is the following. As far as we are aware, there is no way of923

computing sfat(·) directly, but there exist algorithms to compute our bound in Theorem E.2. For a set924

U of states, performing the maximization max{χ
(
{(qi, σi)}

)
:
∑
i qi = 1} is a convex optimization925

problem which can be solved using the Blahut-Arimoto algorithm[25]. However, for certain special926

classes of states, one can present simple bounds on the maximal Holevo information which we present927

next.928

E.1.2 Classes of states with bounded sfat(·) dimension929

A natural question is, how does the new upper bound on sfat(U) in Theorem E.2 compare to the930

previous upper bound sfat(Un) < n/ε2 given in [2]. Observe that that the ε dependence comes about931

from a Taylor expansion of 1−H((1− ε)/2) and our new bounds do not change this dependence,932

hence for the remainder of this section we set ε = 1 for simplicity. We now mention a few classes of933

states for which our new bound improves the n dependence of the previous bound.934
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• Suppose our quantum states are “k-juntas”, i.e., each n-qubit quantum state lives in the same935

unknown k-dimensional subspace of the 2n-dimensional Hilbert space. Then clearly, the936

right-hand-side of Eq. (44) is upper-bounded by log k < n. In particular for n-juntas the937

sfat(·) dimension is O(log n), hence the sample complexity of learning scales as O(log n)938

which is exponentially better than the prior upper bounds of n.939

• U consists of a small set of states with small pairwise trace distance; in [26] and [27] they940

showed that941

χ({pi, ρi}) ≤ vm log |U| (47)
where vm = 1

2 supi,j ‖ρi − ρj‖1 is the maximal trace norm distance between the states942

in the class U . This bound could be significantly better than the trivial log |U| if vm is943

sufficiently small.944

• Let U = N (Un) be the set of all n-qubit states obtained after passing the states in Un through945

the channel N . That is, we would like to learn some arbitrary n-qubit state that has been946

passed through an unknown quantum channel N . This is the case in many experimentally-947

relevant settings and is in fact one way to understand the effect of experimental noise (which948

can be modelled by a quantum channel during state preparation). The Holevo information949

of the quantum channel N is the following quantity950

χ(N ) := max
~p,ρi

S
(∑

i

piN (ρi)
)
−
∑
i

piS(N (ρi)), (48)

where the maximization is over (arbitrary-sized) ensembles {(pi, ρi)}. Observe that using951

Eq. (44) one can upper bound sfat(·) dimension of the set U = N (Un) in terms of χ(N ).952

A centerpiece of quantum Shannon theory is the Holevo-Schumacher-Westmoreland (HSW)953

theorem [28], which states that (see for example [29] for a pedagogical proof) χ(N ) ≤954

C(N ) where C(N ) is the classical capacity of the channel. Putting these two bounds955

together gives956

sfat(N (Un)) ≤ C(N ). (49)
Now, using the connection above one can upper bound sfat(·) of noisy quantum states using957

results developed in quantum Shannon theory to bound the classical channel capacity. For958

a depolarizing channel acting on d-dimensional states with parameter λ for instance (a959

common noise model), one can upper bound C(N ) in Eq. (49) by a result of [30] as follows960

log d− Smin (∆λ) (50)

where Smin (∆λ) = −
(
λ+ 1−λ

d

)
log
(
λ+ 1−λ

d

)
− (d− 1)

(
1−λ
d

)
log
(
1−λ
d

)
and the sub-961

tractive quantity in the quantity above makes this bound strictly better than [2]. Similar962

upper bounds on channel capacity are also known for Pauli channels [31] and generalized963

Pauli channels [32].964

• Interestingly, we may now also bound sfat(·) of the class of quantum Gaussian states. Since965

these states are infinite-dimensional, the previous bound of [2] is not useful. However, our966

channel capacity upper-bound on sfat(·) yields a finite bound: It is known from [33] that the967

channel capacity of a pure-loss bosonic channel with transmissivity η ∈ [0, 1],12 when the968

input Gaussian states have photon number at most Np (and hence bounded energy, which is969

physically realistic), is g(ηNp) where g(x) ≡ (x+ 1) log2(x+ 1)− x log2 x. In particular,970

the case η = 1 corresponds to zero loss, hence g(Np) bounds sfat(·) for the entire class of971

Gaussian states with Np photons.972

Alternatively, one might be interested in states prepared through phase-insensitive bosonic973

channels. These model other kinds of noise, such as thermalizing or amplifying processes.974

A recent breakthrough [34] allows one to bound the capacities of these channels, and hence975

the sfat(·) dimensions of these noisy Gaussian states.976

E.2 Faster online shadow tomography977

We now discuss how our results can also improve shadow tomography, a learning framework recently978

introduced by Aaronson [35]. This is a variant of quantum state tomography in which the goal is not979

12This channel is a simple model for communication over free space or through a fiber optic link, where η
models how much noise is ‘mixed’ into the states.
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to learn ρ completely, but to learn its ‘shadows’, i.e., the expectation values of ρ on a fixed (known)980

set of measurements.981

To be precise, let U be a subset of n-qubit states. Given T copies of an unknown state ρ ∈ U ,982

and a set of known two-outcome measurements E1, . . . , Em. The goal is to learn (with probability983

at least 2/3) Tr(Eiρ) upto additive error ε for every i ∈ [m]. A trivial learning algorithm uses984

T = O((2n +m) · ε−2) many copies of ρ to solve the task, and surprisingly Aaronson showed how985

to solve this task using T = poly(n, logm, ε−1) copies of ρ, exponentially better than the trivial986

algorithm. An intriguing open question left open by Aaronson [35] and others is, is the n dependence987

necessary? There have been follow up results by [36] that improved Aaronson’s procedure when the988

goal is obtain ‘classical shadows’ and more recently [37] gave a procedure which has the best known989

dependence on all parameters for standard shadow tomography.990

Subsequently [17] considered gentle shadow tomography a (stronger) variant of shadow tomography991

(we do not define gentleness here and refer the interested reader to [17]). Here, we show that suppose992

we were performing gentle shadow tomography with the prior knowledge that the unknown state ρ993

came from a class of states U , then the n-dependence in the sample complexity can be replaced with994

sfat(CU ). As we discussed in the previous section, clearly sfat(CU ) ≤ O(n/ε2), but for many class995

of states sfat(CU ) could be much lesser than n, giving us a significant improvement over Aaronson’s996

result. We first state our main statement.997

Theorem E.5 (Faster gentle shadow tomography). The complexity of gentle shadow tomography on998

a class of states U is999

O

(
sfatε(CU )2 log2m log(1/δ)

ε2 min{α2, ε2}

)
. (51)

where α, δ are gentleness parameters and the goal is to learn Pr[Ei(ρ) accepts] to within an additive1000

error of ε for every i ∈ [m].13 Moreover, there exists an explicit algorithm that achieves this.1001

Indeed the parameter sfat(CU ) in this bound means that for the classes of states mentioned in1002

Section E.1.2, the sample complexity of shadow tomography is better than the complexity in [35] (in1003

terms of n). We now prove Theorem E.5. The connection comes from the implication in [17] that1004

under certain conditions, an online learner for quantum states can be used as a black box for what1005

they term ‘Quantum Private Multiplicative Weights’, an algorithm that performs shadow tomography1006

in both an online and a gentle manner. We now state the precise setting in which this black box online1007

learner must operate. As usual, we are concerned with the function class CU := {fρ}ρ∈U where the1008

domain X is the set of all possible two-outcome measurements E on the states in U and the functions1009

in the class are defined as fρ(E) = Tr(Eρ) for every E. The unknown state ρ defines some target1010

function c ∈ CU .1011

1. Adversary provides input point in the domain: xt ∈ X .1012

2. Learner outputs a prediction ŷt ∈ [0, 1].1013

3. If the learner makes a mistake, i.e., if |ŷt − c(xt)| > ε, then adversary provides strong1014

feedback ĉ(xt) ∈ [0, 1] where ĉ(xt) is an ε/10-approximation of c(xt), i.e., |ĉ(xt) −1015

c(xt)| < ε/10, and the learner is allowed to update its hypothesis. Else, the adversary does1016

not provide any feedback, and the learner must use the same hypothesis on the next round.1017

4. Learner suffers loss |ŷt − c(xt)| .1018

Observe that this is a close variant of our setting in Section A.1, the only difference being that the1019

adversary here only gives feedback on rounds where the learner makes a mistake (i.e., when the1020

learner’s prediction is grossly wrong). This means that the learner updates her hypothesis if and1021

only if it makes a mistake. Given an online learner A in the above setting that makes at most `1022

updates, [17] shows that there exists a randomized algorithm B for shadow tomography using1023

n = O

(
`2 log2m log(1/δ)

ε2 min{α2, ε2}

)
. (52)

many examples of the unknown state ρ where such that algorithm B’s error is bounded by ε with1024

probability at least 1− β. Moreover, this algorithm is (α, δ)-gentle. We are now equipped with all1025

13Implicitly in the complexity above we have assumed that the algorithm succeeds with probability at least 2/3.
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we need to prove Theorem E.5. The proof boils down to the observation that for any concept class C,1026

we can always construct an online learner that is guaranteed to make at most sfat(C) mistakes, and1027

therefore ` = sfat(C) in Eq. (52). The online learner we construct is a variant of the proper version1028

of our RSOA Algorithm 1.1029

Proof of Theorem E.5. The proof follows from the Quantum Private Multiplicative Weights algorithm1030

in [17] and its accompanying Theorem 39, simply by exhibiting an online learner A for U in the1031

setting described above, that makes at most ` = sfatε(CS) mistakes. In the rest of this proof, we1032

exhibit just such an algorithm, which is a variant of the proper version of RSOA.1033

Algorithm 4 Alternative Robust Standard Optimal Algorithm
Input: Concept class C ⊆ {f : X → [0, 1]}, target (unknown) concept c ∈ C, and ε ∈ [0, 1].
Initialize: V1 ← C

1: for t = 1, . . . , T do
2: A learner receives xt and maintains set Vt, a set of “surviving functions”.
3: For every super-bin midpoint r ∈ Ĩ2ε/5 the learner computes the set of functions Vt(r, xt).
4: A learner finds the super-bin which achieves the maximum sfat(·) dimension

Rt(xt) :=

{
arg max
r∈Ĩ2ε/5

sfat2ε/5 (Vt(r, xt)) ∈ Ĩ2ε/5

}
5: The learner computes the mean of the set Rt(xt), i.e., let

ŷt :=
1

|Rt(xt)|
∑

r∈Rt(xt)

r.

6: The learner outputs ŷt, receives feedback ĉ(xt) if it has made a mistake, i.e., if |ŷt− c(xt)| >
ε.

7: If the learner received feedback, update Vt+1 ← {g ∈ Vt | g(xt) ∈ Bε/5(ĉ(xt))}; else
Vt+1 ← Vt.

8: end for
Outputs: The intermediate predictions ŷt for t ∈ [T ], and a final prediction function/hypothesis
which is given by f(x) := RT+1(x).

The difference between Algorithm 4 and RSOA is that in RSOA, the learner is allowed to update1034

the set Vt on all rounds t ∈ [T ], while in Algorithm 4, the update happens only on the rounds for1035

which it made a mistake (‘mistake rounds’). Because the learner’s current hypothesis for the target1036

concept is computed based on the ‘set of surviving functions’ Vt, updating Vt amounts to updating1037

the algorithm’s hypothesis. We thus aim to show that Algorithm 4 has no more than sfat(·) mistake1038

rounds. However, we observe that we may directly import the proof of Theorem B.4 to do so. This is1039

because that proof is independent of what happened on the non-mistake rounds, which are the only1040

rounds that differ between RSOA and Algorithm 4. Rather, it argues that on the rounds on which1041

RSOA made a mistake, sfat(Vt) decreases by at least 1 due to the update on Vt, and having initialized1042

V1 = C, no more than sfat(C) updates may happen in total. Exactly the same argument can be used1043

to bound the mistakes of Algorithm 4, though note that for the constants to work out, the ε of RSOA1044

must be multiplied by 5.1045
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