
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MIXTURE OF PARROTS: EXPERTS IMPROVE
MEMORIZATION MORE THAN REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

The Mixture-of-Experts (MoE) architecture enables a significant increase in the
total number of model parameters with minimal computational overhead. However,
it is not clear what performance tradeoffs, if any, exist between MoEs and standard
dense transformers. In this paper, we show that as we increase the number of experts
(while fixing the number of active parameters), the memorization performance
consistently increases while the reasoning capabilities saturate.
We begin by analyzing the theoretical limitations of MoEs at reasoning. We prove
that there exist graph problems that cannot be solved by any number of experts of
a certain width; however, the same task can be easily solved by a dense model with
a slightly larger width. On the other hand, we find that on memory-intensive tasks,
MoEs can effectively leverage a small number of active parameters with a large
number of experts to memorize the data. We empirically validate these findings
on synthetic graph problems and memory-intensive closed book retrieval tasks.
Lastly, we pre-train a series of MoEs and dense transformers and evaluate them on
commonly used benchmarks in math and natural language. We find that increasing
the number of experts helps solve knowledge-intensive tasks, but fails to yield the
same benefits for reasoning tasks.

1 INTRODUCTION

The explosion in capabilities of large language models in recent years has largely been enabled by
scaling their size, as measured by the number of parameters in the model. In the standard Transformer
architecture, scaling the number of parameters entails a proportional increase in computational cost,
e.g. doubling the number of parameters requires doubling the number of floating-point operations
(FLOPs), making training and inference more computational intensive. Mixture-of-Experts (MoE)
were introduced as a solution for this problem (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al.,
2022). MoEs replace the single MLP in each Transformer block with multiple MLPs (called experts),
where each token is routed to a few experts based on a linear routing function. The number of
parameters in the MoE layer therefore increases with the total number of experts, while the compute
increases only with the number of “active” experts (i.e., the number of experts to which the token is
routed to). This offers a promising option for scaling models: increase the number of experts instead
of the model dimension or its depth. For this reason, MoEs have become very popular, and many
frontier models today are based on the MoE architecture (Achiam et al., 2023; Databricks, 2023; Anil
et al., 2023; Dai et al., 2024; Jiang et al., 2024; Yang et al., 2024).

In this work we study whether MoE indeed offers a “free-lunch”, enabling gains in performance with
no computational cost. Interestingly, we find that the benefit from MoEs greatly depends on the task
at hand. We show that for reasoning-based tasks, such as graph problems and mathematical reasoning,
MoEs offer limited performance gains, and increasing the number of experts cannot compete with
scaling the dimension (width) of the model. On the other hand, for memory-intensive tasks, we show
that scaling the number of experts is competitive with scaling standard “dense” MLPs.

To demonstrate these claims, we begin with a theoretical analysis of MoEs and dense models. We
use communication-complexity lower bounds to show that a single-layer MoE requires a critical
dimension to solve a simple graph connectivity problem, implying that MoEs offer no benefit for
solving this problem and only consume unnecessary memory. On the other hand, we show that for a
pure memorization task, where the model only needs to “remember” an arbitrary set of examples,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

16M 49M 159M 569M 2.1B

Number of total parameters

6
8

14

20

26

35

F
1

A
cc

u
ra

cy
(%

)

NLP (world knowledge)

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

(a) Evaluation: world knowledge

16M 49M 159M 569M 2.1B

Number of total parameters

39

42

46

50

53

A
cc

u
ra

cy
(%

)

NLP (commonsense)

(b) Evaluation: commonsense

16M 49M 159M 569M 2.1B

Number of total parameters

2
7

18

32

44

A
cc

u
ra

cy
(%

)

MATH

(c) Evaluation: math

Figure 1: (a) Evaluation: world knowledge. We train a series of dense transformers and MoEs
on 65B tokens from a corpus essentially made of Fineweb-edu, Cosmopedia and Wikipedia (see
Section 5 for details). We then evaluate the models on several world knowledge benchmarks (e.g.,
TriviaQA (Joshi et al., 2017), Natural Questions (Kwiatkowski et al., 2019)) and report the average
F1 accuracy. Surprisingly, at a fixed number of total parameters, MoEs with substantially fewer active
parameters approximately match the performance of dense models. This highlights the importance of
experts in tasks that require memorization. (b) Evaluation: commonsense. Here we evaluate the
aforementioned pre-trained models on natural language commonsense benchmarks (e.g., HellaSwag
(Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021)). On these reasoning tasks, we observe
that MoEs perform worse than dense models and more significant benefits are obtained by increasing
the number of active parameters. (c) Evaluation: math. Here we train a series of dense transformers
and MoEs on 65B tokens from a corpus essentially made of Proof-Pile2 (Azerbayev et al., 2023) (see
Section 5 for details). The results are consistent with the ones in (b): MoEs perform worse than dense
models at equal number of total parameters.

scaling the number of experts is equivalent to scaling the number of parameters in dense transformers,
implying a significant computational gain when fixing the number of active parameters (Section 3).
We continue by experimentally validating these results, comparing MoEs against dense models on
synthetic training data. We train these models on finding the shortest path in random graphs, where
we show that MoE accuracy does not improve as we increase the number of experts, but that accuracy
consistently increases with width for a dense transformer (Figure 4b). Following this, we train
different models on the task of memorizing a large phone-book. We demonstrate that MoEs excel
in memorization, matching the performance of dense transformers with the same number of total
parameters but with substantially less computational cost (Figure 4a).

Finally, we train dense transformers and MoEs on real datasets of mathematical reasoning and natural
language, and perform intensive benchmarking of these models on a wide variety of downstream
tasks. For memory-intensive tasks, MoEs surprisingly have a great advantage, where increasing the
number of experts can match the performance of large dense models (Figure 1a). However, we show
that for tasks that rely on reasoning, scaling the number of experts cannot compete with increasing
the model dimension (Figures 1b-1c). Moreover, MoEs exhibit some memorization behaviors when
trained on math problems (Figure 5). Taken together, our results show that the gains from using
MoEs depend greatly on the nature of the training data and downstream task, and that while MoEs
can improve performance in certain cases, sometimes increasing the effective size (width) of the
model is unavoidable.

2 RELATED WORK

Mixture of Experts. Mixture-of-Experts (MoE) date back to the work of Jacobs et al. (1991);
Jordan & Jacobs (1994). Shazeer et al. (2017); Fedus et al. (2022) were the first to scale this idea to
deep learning and obtain state-of-the-art models in machine translation. Since then, several works
have improved their routing algorithms (Lepikhin et al., 2020; Lewis et al., 2021; Roller et al., 2021;
Clark et al., 2022; Zhou et al., 2022; Antoniak et al., 2023; Zhong et al., 2024), have improved their
downstream performance after finetuning (Du et al., 2022; Zoph et al., 2022) or made their training
and inference more efficient (Rajbhandari et al., 2022; Gale et al., 2023; Pan et al., 2024; Tan et al.,
2024). However, only a few papers have studied the science of MoEs and their comparison with

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

dense transformers. Clark et al. (2022); Krajewski et al. (2024) establish scaling laws for MoEs.
Chen et al. (2022) design a specific classification problem where a model with multiple experts
provably outperforms one with only one expert. Shazeer et al. (2017); Lepikhin et al. (2020); Artetxe
et al. (2021); Lewis et al. (2021); Fedus et al. (2022); Du et al. (2022) show that given a fixed FLOP
budget, MoEs are always better. However, these papers claim that on a per parameter basis, MoEs
always seem comparatively worse than dense models. In this paper, we temper this claim by showing
that it depends on the nature of the task at hand: on reasoning tasks, we validate this claim but on
memory-intensive tasks, equally-sized MoEs perform as well as dense transformers.

Language models and memorization. Large language models (LLMs) store a considerable amount
of knowledge in their parameters (Petroni et al., 2019; Heinzerling & Inui, 2020). They memorize
useful knowledge such as facts and commonsense (Zhao et al., 2024). Many works studied how
memorization occurs in LLMs by developing tools to locate the knowledge in the model (Meng et al.,
2022; Allen-Zhu & Li, 2023; Liu et al., 2024) or by tracking the training dynamics (Tirumala et al.,
2022; Speicher et al., 2024). We draw inspiration from Allen-Zhu & Li (2023) and evaluate the
memorization of our models by pre-training them on a mixture of datasets that includes Wikipedia,
and at test time, evaluate them on world knowledge benchmarks, which are essentially question
answering tasks on Wikipedia facts. With respect to theoretical findings, Kim et al. (2023); Mahdavi
et al. (2023); Madden et al. (2024) provide upper bounds on the number of parameters needed for
dense transformers to perform memorization tasks under various conditions.

Language models and reasoning. In recent years, transformer-based language models have
displayed remarkable effectiveness in solving a broad range of reasoning tasks. Specifically, the
reasoning capabilities of transformers have been studied in the context of arithmetic problems (Jelassi
et al., 2023; Cho et al., 2024; Hou et al., 2024; Zhou et al., 2024; McLeish et al., 2024; Lee et al.,
2023), mathematical reasoning (Zhang et al., 2022; Imani et al., 2023; Wei et al., 2022) graph
problems (Sanford et al., 2024; Fatemi et al., 2023; Jin et al., 2023; Wang et al., 2024) and code
challenges (Shi et al., 2024; Zhu et al., 2024). Recently, state-of-the-art language models were used
for solving complex math olympiad problems (DeepMind, 2024; NuminaMath, 2024; OpenAI, 2024).
With respect to theoretical findings, various works study the reasoning capabilities of transformers,
relating their expressive power to other complexity classes and formal languages (Weiss et al., 2021;
Zhou et al., 2023; Strobl et al., 2024). Other works study how chain-of-thought can improve the
reasoning capabilities of language models in terms of expressive power and learnability (Abbe et al.,
2024; Merrill & Sabharwal, 2023; Malach, 2023). However, the reasoning capabilities of MoE
language models compared to their dense counterparts have received comparatively less attention.

3 THEORY: REPRESENTATIONAL CAPACITY

In this section, we analyze the capability of MoE transformers compared to standard (dense) models.
We begin by studying a simple graph problem that requires scaling the hidden dimension of the
transformer, showing that MoEs with small hidden dimension cannot solve this problem, regardless
of the number of experts used. Then, we show that MoEs can effectively memorize random inputs,
requiring significantly less computational resources (active parameters) compared to dense models.

3.1 SETTING

Consider a one-layer transformer f ∈ TransformerNm,H,1 which takes as input a sequence of length
N and has logarithmic bit-precision. f embeds the input into dimension m via the function ϕ. f has
H ≥ 1 attention heads, whose outputs are combined via concatenation before we apply point-wise
function ψ 1. f is a dense transformer, if ψ is an MLP, i.e. function of the form:

ψ(x) = u⊤σ(Wx+ b), forW ∈ Rm′×m, b ∈ Rm′
,u ∈ Rm′

1In multi-layer Transformers, each layer outputs a vector of size m. However, since our focus in this section
will be on binary classification problems, we will let the transformer output a single scalar, and we interpret the
output of the final token as the prediction for the classification task.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where σ is the ReLU activation function. f ∈ TransformerNm,H,1,K is an MoE transformer with K
experts if ψ is a function of the form:

ψ(x) = u⊤
i σ(Wix+ bi) for i = argmax

j
r⊤j x

where W1, . . . ,Wk ∈ Rm′×m, b1, . . . , bk ∈ Rm′
, u1, . . . ,uk ∈ Rm′

are the parameters of each
expert and r1, . . . , rk define the routing function (we use top-1 routing).

Define the parameters as Qh, Vh,Kh ∈ Rm×m, ϕ : X → Rm, ψ : Rm → R. The output of f is:

f(x1, . . . ,xN) = ψ
([

softmax
(
ϕ(xN)⊤QhK

⊤
h ϕ(X)

)
ϕ(X)Vh

]
h∈[H]

)
.

3.2 MOES REQUIRE A CRITICAL HIDDEN SIZE TO SOLVE GRAPH REASONING TASKS

In this section, we analyze the graph reasoning capabilities of dense and sparse transformers. We
define the length-2 path problem on a graph, and use it as a means to understand other graph reasoning
tasks such as graph connectivity, shortest path, and cycle detection.
Definition 3.1 (Length-2 Path Problem). The inputs is a graph G = (V,E). The source s ∈ V and
a destination d ∈ V are fixed for all tasks as the 0 and |V | vertex. The length-2 path problem asks
whether there is a path of length 2 from s to d.

Graph connectivity, shortest path, and cycle detection are all graph reasoning tasks which reduce to
the length-2 path problem due to (Sanford et al., 2024) and Lemma C.2. We provide a lower-bound
on the width required for a sparse transformer to solve the length-2 path problem, and an upper-bound
on the width required for a dense transformer to solve the problem. Further, we show a separation
between dense and sparse transformers with the same number of parameters: for a sufficiently large
amount of experts in the sparse model, it cannot solve the same problem that a dense model can solve
with the same amount of total parameters.

Lower bound on width of depth-1 MoE for reasoning. We begin by showing a lower-bound on
the width for a depth-1 mixture of expert model for the length-2 path problem. This lower bound
implies a lower bound for search and retrieval tasks such as graph connectivity, shortest path, and
cycle detection.
Theorem 3.2 (Length-2 path lower-bound on sparse transformers). For some input sequence G =
(V,E), fix two disjoint subsets A,B ⊂ [N − 1], and consider a single-layer transformer f ∈
TransformerNm,H,1,K with O(logN)-bit precision that solves length-2 path for any input X where
XA is a function of edges with the source s, XB is a function of edges with the destination d. Then,
f has width satisfying mH = Ω(|V |/ logN).

The proof follows almost identically from the proof in (Sanford et al., 2024) for the class
TransformerNm,H,1. The original proof does not place constraints on the function ψ and is based on
a communication-complexity argument. As such we may design ψ so that it first routes and then
chooses which expert to apply. We give a complete proof in Appendix C. As such, the result of
(Sanford et al., 2024) can also be extended to the class TransformerNm,H,1,K .

Upper bound on width of depth-1 dense transformer for reasoning. In this section we give an
upper bound for the width required for a dense model to solve the length-2 path problem.
Theorem 3.3 (Length-2 path width upper bound for transformer). There exists a transformer of width
|V | and O(logN)-bit precision that solves length-2 path problem for any input.

The proof relies on an encoding of the inputs where the output values only exceed a certain threshold
when u and v, the source and destination vertices, have edges with a common vertex. We defer the
proof to Appendix C.

Parameter-matched comparison of dense and sparse depth-1 transformers. Using the lower-
bound on width required for a sparse transformer (Theorem 3.2) and the upper-bound on width
required for a dense transformer (Theorem 3.3), we compare dense and sparse transformers when
they have the same number of total parameters. We find that when the number of experts exceeds
(logN)2, the sparse model is unable to solve the same task as the dense model.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Corollary 3.4. Consider a sparse transformer (with K experts) and a dense transformer with the
same number of parameters. There exists a number of experts K so that the the sparse model is not
able to solve the reasoning task, but the dense transformer solves the task.

Proof. Suppose we have two depth-1 transformers, where one is a dense model and the other is a
mixture of experts with K experts. Let the width of the dense model be md, and the width of the
sparse model be ms. The number of parameters in the dense model is O(m2

d) and the number of
parameters in the sparse model is O(Km2

s). In order to match the number of parameters, it must be
the case that ms =

md√
K

. Suppose we let md = |V |, as this is sufficient to solve the above problems.
For any K ≥ Ω

(
(logN)2

)
, the sparse model is not sufficiently wide to solve the problem.

3.3 MOES USE THEIR EXPERTS TO SOLVE MEMORY-INTENSIVE TASKS

In this section, we provide an upper-bound on the number of parameters necessary for a sparse trans-
former to solve memorization tasks, followed by a lower-bound on the number of parameters needed
for a dense transformer to solve the same task. We use these results to compare the memorization
capabilities of dense and sparse transformers with the same number of active parameters. We find
that with enough experts, the sparse transformer is able to solve memorization tasks with less active
parameters than the dense transformer. In both bounds we assume that transformer has logarithmic
number of bits to encode each parameter.

We consider sequences {(Xi, yi)}ni=1 where Xi ∈ RN×m are input sequences of length N in
dimension m such that Xi[j] is sampled from a Gaussian distribution N (0, Im). We assume
y1, . . . , yN ∈ {±1} are arbitrary labels for the n sequences. The objective is for a transformer to
memorize these sequences, i.e. map each input Xi to a label yi. The classification is determined by
the sign of the last token output.

Upper-bound on MoE for memorization. We begin by showing that, with high probability over
the choice of the inputs, the MoE architecture can memorize (i.e., arbitrarily label the examples),
with a small number of active parameters.
Theorem 3.5. With probability at least 0.99, there exists a one-layer MoE transformer withK experts,
using O

(mn
K

+mK
)

active parameters and O (mn+mK) total parameters that, when applied

to each sequence Xi, outputs at the last token a value whose sign matches yi, i.e., sign(f(Xi)) =
yi for all i = 1, . . . , n.

Specifically, if we choose K =
√
n we get that an MoE architecture can solve the memorization

problem with O(m
√
n) active parameters 2. To prove this result, we show that for a random linear

routing function, the number of examples routed to each expert is approximately n/K. Then, we
show that an expert with O(n/K) neurons can memorize a sample of size O(n/K). We present the
full proof in Appendix C.

Lower bound on memorization with dense Transformer. Next, we give a lower-bound on the
number of parameters for a dense transformer to perform memorization.
Theorem 3.6 (Lower bound for dense model). Given the same task as above, a dense Transformer
requires Ω̃(n) parameters to solve the memorization task.

This bound follows from the fact that there are 2n possible labels for any fixed set of n inputs, and at
most 2cW functions with W parameters and c bit per parameters.

Separation between MoEs and Dense Models. Observe that the previous results on memorization
imply a separation between MoEs and dense models in terms of the number of active parameters.
Namely, we showed that an MoE withO(m

√
n) active parameters can memorize, while a dense model

requires Ω̃(n) parameters. So, for large enough n (i.e. when n≫ m2), MoEs are significantly more
efficient. Comparing the number of total parameters, MoEs require O(mn) parameters (assuming
K ≤ n), so both MoE and dense models have linear dependence on n in the total parameter count.

2We believe that this bound can be improved using more complicated analysis, to show that only O(
√
n)

parameters are required. However, we leave this result to future work.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 SYNTHETIC EXPERIMENTS

In the previous section, we proved that there exist graph connectivity problems that cannot be solved
by any number of experts of a certain width but the same task can be solved by a dense model with
a slightly larger width. Our goal in this section is to verify that our theoretical analysis bears out
experimentally when training models from scratch on synthetic data, before moving on to study
pre-trained models in Section 5. We mainly focus on two tasks: the shortest path problem (Figure 2),
which we use as a synthetic task to represent reasoning problems, and the phone-book task (Figure 3),
to measure the memorization ability of our models. Our experiments in this section highlight that
adding experts yields greater performance improvements on memorization tasks than reasoning tasks.

Figure 2: Illustration of the shortest path task. We feed the model with a sequence that lists all the edges in the
input graph and ends with the query (in green) which asks the model to find a shortest path between two vertices
(from vertex 1 to vertex 4 in the figure). The model then autoregressively returns the shortest path (in purple).

4.1 EXPERIMENTAL SETUP

Architecture. We opt for the Mistral (Jiang et al., 2023) and Mixtral (Jiang et al., 2024) architectures
as the backbones of our Transformer and MoE models, respectively. The two architectures are
identical and only differ by the addition of a gating module and multiple experts in Mixtral. For both
model types, we fix the number of layers to L = 12. For the dense transformers, we vary model size
by sweeping the width d ∈ {256, 512, 1024}. For MoEs, we sweep over widths d ∈ {256, 512} and
the number of experts E ∈ {8, 16, 32, 64}. To be consistent with our experiments in Section 5, we
set the intermediate dimension in the FFN block to be equal to d (and not 4d). We use token-choice
routing, do not apply any token dropping and each token is routed to the top-2 experts. Lastly, in both
this section and Section 5, we report for each model the number of non-embedding parameters which
we refer to as the total number of parameters.

Shortest path task. For a graph with n vertices, our token space V is of size n + 6 with tokens
encoding the vertices and some special tokens: V = {1, . . . , n, ⟨EDGE⟩ , ⟨BOS⟩ , ⟨EOS⟩ , ⟨PAD⟩ , ⟨SEP⟩ , /}
where ⟨BOS⟩ is the beginning of sentence token, ⟨EOS⟩ the end of sentence token, ⟨PAD⟩ the padding
token, ⟨EDGE⟩ is the token indicating an edge between two vertices and, ⟨SEP⟩ and “/” are separator
tokens. Each sequences describes the graph by a list of all the edges followed by two randomly
sampled vertices and the shortest path between these latter (see Figure 2). All the graphs are directed
and sampled according to the Erdös-Rényi model, with n vertices and probability p for each edge to
exist. We vary n ∈ {25, 30, 50, 40, 45, 50, 55} and set p such that the average length of the shortest
path is 3.5. Each train/test pair corresponds to one value of (n, p), we do not mix graph sizes.

Phone-book task. Our token space V is of size 39 and made of the alphabet letters, digits and
special tokens: V = {a, . . . , z, 0, . . . , 9, ⟨BOS⟩ , ⟨EOS⟩ , ⟨SEP⟩}. We generate phone-books where the
names consist of 5 letters and the phone numbers of 8 digits (see Figure 3). We ensure that both the
names and numbers are unique.

Datasets. For the graph experiments, the training set size is 1e6 and the test set consists of 1e3
held-out examples that are sampled from the same distribution as the training examples. For the
phone-book experiments, we vary the training set size over {1e5, 5e5, 1e6, 1.5e6, 2e6, 2.5e6, 3e6}
and the test set consists of 1e3 queries from the training set.

Optimization. We use the AdamW optimizer (Loshchilov et al., 2017) with a weight decay equal
to 0.1. We sweep the learning rate over {5e−5, 1e−4, 5e−4, 1e−3}, the number of epochs over

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Name T
abcde 60907642

fghij 40652457

klmno 20826343

pqrst 53143138

uvwxy 80506194

Figure 3: Illustration of the phone-book task for closed-book retrieval. The model is first trained to memorize a
phone-book (illustrated on the right). Then, we randomly select a name in the phone-book (in green) and ask the
model to return their phone number (in purple) without access to the phone-book.

5M 22M 88M 352M 700M

Number of total parameters

50k

100k

500k

1M

3M
5.5M

P
h

on
eb

o
ok

si
ze

PHONE-BOOK

Dense transformer MoE (10M active parameters) MoE (42M active parameters)

(a) Phone-book memorization

5M 22M 88M 352M 700M

Number of total parameters

49

58

67

73

A
cc

u
ra

cy
(%

)

SHORTEST PATH (n=50)

(b) Shortest path (50-node graphs)

Figure 4: (a) Phone-book memorization: We train a series of dense transformers and MoEs on phone-books
of varying sizes and then evaluate their memorization capacity. We report the maximal phone-book size where
the model obtains more than 90% accuracy. The maximal phone-book size correlates with the total (and not
active) number of parameters. (b) Shortest path (total parameters): We train models to find the shortest
path in 50-node graphs and report the test accuracy. Here, increasing the number of experts provides limited
improvements and the performance rather correlates with the number of active parameters.

{2, 5, 10, 15}, and set the maximal possible batch size among {8, 16, 32}. We use a warmup during
the 20% first training steps and a linear decay scheduler. All models are trained by next-token
prediction. In the graph task, we apply a mask on the input instance so that we only penalize the
model whenever it makes a mistake on the labels (and not on the inputs and labels jointly). In the
phone-book experiment, we do not apply any masking.

Evaluation. For each task we compute the exact accuracy, i.e. we count the generation as correct
only if it fully matches the ground truth. For the phone-book task, we report the size of the maximal
phone-book where we observe at least 90% exact accuracy.

4.2 MEMORIZATION: TOTAL PARAMETERS PREDICT PERFORMANCE

We train dense transformers and MoEs on phone-books of different sizes and at test time, evaluate
whether they memorize the phone number of some names. Figure 4a reports the maximal phone-book
size where the model manages to get an accuracy greater than 90%. This gives us an estimate of the
memorization capacity of the model.

The findings are clear: no matter the number of active parameters, MoEs match the performance of
dense transformers with the same number of total parameters. This suggests that MoEs are able to
effectively leverage the extra parameters in additional experts by routing tokens to the experts that
contain the necessary information from the training corpus. This scaling is remarkable in this case
since it even holds when we are only routing to 2 out of 64 experts. For instance, we find that an MoE
model with only 42M active parameters outperforms a dense model with 10x as many parameters.
This type of impressively efficient memorization capacity may be a major reason behind the success
of MoE architectures.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 REASONING: TOTAL PARAMETERS DO NOT PREDICT PERFORMANCE

We train dense transformers and MoEs on the shortest path task and then query the models to find the
shortest paths in novel, held-out graphs. Figure 4b reports the performance on graphs with 50 nodes
with respect to their number of total parameters. Contrary to the phone-book experiment, increasing
the number of experts does not consistently improve the performance of MoEs. Essentially, we
find that active parameters rather than total parameters is a better predictor of performance for these
reasoning tasks.

To connect back to the theory from Section 3, note that active parameters is directly determined by the
width of the network since we always route to exactly 2 experts and fix the depth. Thus, these results
corroborate the theory by showing that width (i.e. active parameters) determines the performance on
these graph reasoning problems and that increasing the number of experts is not helpful. In Section 5,
we will further corroborate this idea through evaluation of pre-trained models on commonsense and
math reasoning benchmarks.

5 PRE-TRAINED MODELS

In this section, we pre-train dense transformers and MoEs and compare their performance on standard
math and natural language benchmarks. We break the downstream tasks into those that require
more memorization and those that require more reasoning. The memorization-intensive tasks test
for “world knowledge” and consist of benchmarks like TriviaQA (Joshi et al., 2017). We break
the reasoning-intensive tasks into two subcategories: one for natural language reasoning tasks like
WinoGrande (Sakaguchi et al., 2021) and another for mathematical reasoning tasks like Hendrycks-
MATH (Hendrycks et al., 2021). These tasks may be seen as real-world analogs of the stylized
phone-book and shortest path tasks studied in Section 4.

We observe that performance on world-knowledge tasks is governed by the total number of parameters
while performance on reasoning tasks depends more on the number of active parameters (Figure 1).
Additionally, we conduct an experiment that indicates memorization from MoEs may be harming
reasoning performance since there is a larger gap between train and test accuracy for MoEs than
dense models at fixed total parameters (Figure 5). Finally, we conduct an ablation where we compare
models at fixed validation perplexity rather than model size. We find that MoEs perform better on
world knowledge tasks and similarly on reasoning tasks compared to dense models (Figure 6).

5.1 SETUP

Architecture. We train dense transformers and MoEs using the OLMoE codebase (Muen-
nighoff et al., 2024). We set the number of layers L = 20 and vary the width d ∈
{256, 512, 1024, 2048, 4096} for dense transformers and d ∈ {256, 512, 1024}. Similarly to Muen-
nighoff et al. (2024), we consistently set the intermediate dimension in the FFN/MoE blocks to be
equal to d (and not 4d). For MoEs, we vary the number of experts E ∈ {8, 16, 32, 64}. For the
specific case of width 256, we also train a MoE with 256 experts because its parameter count approx-
imately matches the one of a width-2048 dense model and thus, we can compare the downstream
performance of the two models. We use top-2 token-choice routing, without token dropping which is
implemented in the dMoE function from the Megablocks package (Gale et al., 2023).

Training hyperparameters. We use the AdamW optimizer (Loshchilov et al., 2017) with a weight
decay equal to 0.1. We set the learning rate to 0.001, train on 63B tokens (60k steps) with batch size
512 and sequence length of 2048. We use warmup during the 20% first training steps and a linear
decay scheduler. We train our models using FSDP (Zhao et al., 2023).

Pre-training datasets. We train two collections of models, one series on natural language and
another one on math. The “natural language” dataset is a mixture constituted of FineWeb-edu (Penedo
et al., 2024), Cosmopedia (Ben Allal et al., 2024), Wikipedia and the training sets of the downstream
tasks we evaluate on. The “math” dataset is a mixture made of Proof-Pile 2 (Azerbayev et al., 2023)
and instruction datasets such as OpenMathInstruct (Toshniwal et al., 2024) and MetaMathQA (Yu
et al., 2023). Each of the two training mixture approximately totals 65B tokens. A precise description
of the training mixtures can be found in Appendix A.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Evaluation. We measure the validation perplexity on 5,000 held-out sequences sampled from
the training distribution. And we evaluate our models on a series of natural language and math
benchmarks. Explicitly, we divide them into three categories:

– World-knowledge tasks: TriviaQA (Joshi et al., 2017), Natural Questions (Kwiatkowski et al.,
2019), HotpotQA (Yang et al., 2018), WebQuestions (Berant et al., 2013), ComplexWebQuestions
(Talmor & Berant, 2018).

– Commonsense tasks: ARC-C and ARC-E (Clark et al., 2018), CommonsenseQA (Talmor et al.,
2018), HellaSwag (Zellers et al., 2019), OpenbookQA (Mihaylov et al., 2018), PIQA (Bisk et al.,
2020), SciQ (Welbl et al., 2017), SIQA (Sap et al., 2019), WinoGrande (Sakaguchi et al., 2021).

– Math benchmarks: SVAMP (Patel et al., 2021), GSM8k (Cobbe et al., 2021), GSM-Hard (Gao
et al., 2023), Hendrycks-MATH (Hendrycks et al., 2021) and Minerva-MATH (Lewkowycz et al.,
2022).

16M 49M 159M 569M 2.1B

Number of total parameters

3

7

11
14

18

25

30

G
en

er
al

iz
at

io
n

ga
p

GSM8k

(a)

16M 49M 159M 569M 2.1B

Number of total parameters

2
8

20

31
37

45

G
en

er
al

iz
at

io
n

ga
p

HENDRYCKS-MATH

(b)
Dense transformer
MoE (18M active parameters)
MoE (58M active parameters)
MoE (200M active parameters)

Figure 5: Generalization gap i.e., differ-
ence between the training and test accura-
cies, when the test set is GSM8k (a) and
Hendrycks-MATH (b).

In all our experiments, we plot the average accuracy for
each of these three categories. We report the corresponding
per-task performance in Appendix B.

5.2 RESULTS

Experts improve memorization more than reasoning.
We observe that our theoretical results from Section 3 and
the synthetic experiments also hold when pre-training and
evaluating language models on natural language and math.
In Figure 1a, we report the accuracy of our models with re-
spect to the number of total parameters. All the lines in the
plot approximately coincide which implies that regardless
of the number of active parameters, MoEs can effectively
use their routing to leverage all of their parameters to solve
memory-intensive tasks. On the other hand, on common-
sense and math benchmarks (Figures 1b,1c) we find that
MoEs do not reach the performance of dense models with
the same number of total parameters. This indicates that
for these reasoning tasks, increasing the dense model width
is more effective that adding experts.

On mathematics tasks, MoEs display a higher train-
test gap than dense models, suggestive of memorization.
We provide additional evidence that memorization occurs
in pre-trained MoEs by considering the generalization gap.
In Figure 5 we select 6,319 random problems from the
OpenMathInstruct dataset, which is part of the training mixture data. More precisely, we pick 5,000
Hendrycks-MATH like examples and 1,319 GSM8k-like examples to ensure that the number of
training examples matches with the corresponding number of examples in GSM8k and Hendrycks-
MATH test sets. We then report the generalization gap, which is the gap between the accuracy
on training examples and test examples. Despite making a single pass on the OpenMathInstruct
dataset, Figure 5 shows that at scales beyond 159M parameters, MoEs suffer from a more significant
generalization gap than dense transformers. This is suggestive that MoEs are more liable to memorize
training data than dense models.

MoE models excel at world knowledge tasks but match dense models in reasoning when perplex-
ity is fixed. Finally, we focus on the relationship between validation perplexity and downstream
performance in Figure 6. Rather than comparing models by their parameter count, we can compare
them based on how well they fit the training distribution as measured by validation perplexity. Even
though two models may have the same perplexity, they will have learned different functions. The
question is then if we can see any high level patterns in which types of functions a particular model
class is more likely to learn. Figure 6a shows that at a fixed perplexity, the MoE models outperform
the dense models on world knowledge tasks. This suggests that MoEs do have a bias towards learning
functions that memorize training data. On the other hand, Figures 6b and 6c show that MoEs and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6.1 7.3 9.2 12.2 17.6

Validation perplexity

26

20

14

8
6

F
1

A
cc

u
ra

cy
(%

)

NLP (world knowledge)

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

(a)

6.1 7.3 9.2 12.2 17.6

Validation perplexity

53

50

46

42

39

A
cc

u
ra

cy
(%

)

NLP (commonsense)

(b)

3.2 3.5 3.9 4.5 5.5

Validation perplexity

44

32

18

7
2

A
cc

u
ra

cy
(%

)

MATH

(c)

Figure 6: (a) On world knowledge benchmarks, MoEs consistently outperform dense transformers in
downstream performance when fixing the validation perplexity. (b-c) In reasoning benchmarks, dense
transformers perform about the same as MoEs at a fixed validation perplexity. MoEs can achieve
these perplexities with less active parameters, but may require substantially more total parameters.

dense models perform about the same on the reasoning tasks at fixed validation perplexity. We can
square this with the results from Figure 1 by noting that at equal total number of parameters an MoE
has worse validation perplexity than the corresponding dense model. This suggests that while MoEs
do not change the relationship between perplexity and downstream accuracy on reasoning tasks
relative to dense models, they may struggle to learn the reasoning parts of the training distribution as
well.

Overall, our main findings in Figure 1 and supplementary experiments in Figures 5 and 6 corroborate
the hypothesis that MoEs can effectively use more experts to increase their memory capacity, but not
necessarily their capability to reason.

6 DISCUSSION

In recent years, scaling up the number of parameters in Transformers has been the dominant approach
for improving performance on language modeling. A standard Transformer of dimension d and
sequence length L has number of parameters which scales with O(d2), and run-time that scales
with O(d2L2). Improving the efficiency can either attempt to reduce the dependence on L or d.
Sub-quadratic attention variants attempt to improve dependence on L (Katharopoulos et al., 2020;
Peng et al., 2023; Fu et al., 2022; Gu & Dao, 2023), while MoEs attempt to improve dependence on
d by scaling the number of parameters without scaling the dimension of the model.

This paper illuminates the costs and benefits of this reduced dependence on d. We show that for some
reasoning-intensive tasks increasing the dimension d is inevitable, and scaling the computation with
O(d2) seems unavoidable. This remains true regardless of the different design choices in the MoE
architecture and is backed up empirically. We note that there is increasing interest in developing
non-MoE models with sub-quadratic dependence on d, using some structural assumptions on the
weight layers (Kamalakara et al., 2022; Dao et al., 2021; 2022; Fu et al., 2024), which could provide
an alternative.

On the other hand, we find that MoEs are highly effective at knowledge intensive tasks. They are
able to much more efficiently memorize facts than dense models with a similar number of active
parameters, even matching the performance of dense models with the same number of total parameters.
This suggests that MoEs are valuable as memorization machines and perhaps this particular capability
can be leveraged while relying on other architectures for more reasoning-intensive tasks.

Limitations and future work. While we provide substantial experiments on pre-trained models
with up to ≤ 2.1B parameters, we recognize that large scale MoEs like Mixtral (Jiang et al.,
2024), DeepSeek-V2 (Dai et al., 2024), and others have orders of magnitude more parameters. We
hypothesize that our results would still be meaningful at larger scales due to the strong theoretical
underpinning, but it is not guaranteed. Moreover, as suggested above, it would be an interesting
direction for future work to propose new architectures with reduced d dependence that can get the
best of both worlds and solve reasoning and memorization tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, Colin Sandon, and Omid Saremi. How far can
transformers reason? the locality barrier and inductive scratchpad, 2024. URL https:
//arxiv.org/abs/2406.06467.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. arXiv preprint arXiv:2309.14316, 2023.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: A family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 1, 2023.

Szymon Antoniak, Sebastian Jaszczur, Michał Krutul, Maciej Pióro, Jakub Krajewski, Jan Ludziejew-
ski, Tomasz Odrzygóźdź, and Marek Cygan. Mixture of tokens: Efficient llms through cross-
example aggregation. arXiv preprint arXiv:2310.15961, 2023.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria
Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, et al. Efficient large scale language
modeling with mixtures of experts. arXiv preprint arXiv:2112.10684, 2021.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics, 2023.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Cosmopedia, 2024. URL https://huggingface.co/datasets/HuggingFaceTB/
cosmopedia.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pp. 1533–1544, 2013.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding mixture
of experts in deep learning. arXiv preprint arXiv:2208.02813, 2022.

Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, and Chul-
hee Yun. Position coupling: Leveraging task structure for improved length generalization of
transformers. arXiv preprint arXiv:2405.20671, 2024.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann,
Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling laws for
routed language models. In International conference on machine learning, pp. 4057–4086. PMLR,
2022.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

11

https://arxiv.org/abs/2406.06467
https://arxiv.org/abs/2406.06467
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tri Dao, Beidi Chen, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
Pixelated butterfly: Simple and efficient sparse training for neural network models. arXiv preprint
arXiv:2112.00029, 2021.

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for
efficient and accurate training. In International Conference on Machine Learning, pp. 4690–4721.
PMLR, 2022.

Databricks. Introducing dbrx: A new state-of-the-art open llm.
Databricks Blog, 2023. URL https://www.databricks.com/blog/
introducing-dbrx-new-state-art-open-llm. Accessed: 2023-10-12.

DeepMind. Ai achieves silver-medal standard solving international mathemati-
cal olympiad problems. https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/, 2024.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–5569.
PMLR, 2022.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. arXiv preprint arXiv:2310.04560, 2023.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Dan Fu, Simran Arora, Jessica Grogan, Isys Johnson, Evan Sabri Eyuboglu, Armin Thomas, Benjamin
Spector, Michael Poli, Atri Rudra, and Christopher Ré. Monarch mixer: A simple sub-quadratic
gemm-based architecture. Advances in Neural Information Processing Systems, 36, 2024.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse
training with mixture-of-experts. Proceedings of Machine Learning and Systems, 5:288–304, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Benjamin Heinzerling and Kentaro Inui. Language models as knowledge bases: On entity representa-
tions, storage capacity, and paraphrased queries. arXiv preprint arXiv:2008.09036, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Kaiying Hou, David Brandfonbrener, Sham Kakade, Samy Jelassi, and Eran Malach. Universal
length generalization with turing programs. arXiv preprint arXiv:2407.03310, 2024.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

12

https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and Franccois
Charton. Length generalization in arithmetic transformers. arXiv preprint arXiv:2306.15400,
2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
graphs: A comprehensive survey. arXiv preprint arXiv:2312.02783, 2023.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214, 1994.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat Venkitesh, Jimmy Ba, Yarin Gal, and Aidan N
Gomez. Exploring low rank training of deep neural networks. arXiv preprint arXiv:2209.13569,
2022.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Franccois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Junghwan Kim, Michelle Kim, and Barzan Mozafari. Provable memorization capacity of transformers.
In The Eleventh International Conference on Learning Representations, 2023.

Jakub Krajewski, Jan Ludziejewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon
Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, et al. Scaling
laws for fine-grained mixture of experts. arXiv preprint arXiv:2402.07871, 2024.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
pp. 6265–6274. PMLR, 2021.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel
Ward, and Yi Zhang. Tinygsm: achieving¿ 80% on gsm8k with small language models. arXiv
preprint arXiv:2312.09241, 2023.

Yan Liu, Yu Liu, Xiaokang Chen, Pin-Yu Chen, Daoguang Zan, Min-Yen Kan, and Tsung-Yi Ho.
The devil is in the neurons: Interpreting and mitigating social biases in language models. In The
Twelfth International Conference on Learning Representations, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5, 2017.

Liam Madden, Curtis Fox, and Christos Thrampoulidis. Upper and lower memory capacity bounds
of transformers for next-token prediction. arXiv preprint arXiv:2405.13718, 2024.

Sadegh Mahdavi, Renjie Liao, and Christos Thrampoulidis. Memorization capacity of multi-head
attention in transformers. arXiv preprint arXiv:2306.02010, 2023.

Eran Malach. Auto-regressive next-token predictors are universal learners. arXiv preprint
arXiv:2309.06979, 2023.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Transformers
can do arithmetic with the right embeddings, 2024. URL https://arxiv.org/abs/2405.
17399.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

William Merrill and Ashish Sabharwal. The expresssive power of transformers with chain of thought.
arXiv preprint arXiv:2310.07923, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking the
potential of slms in grade school math, 2024.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali
Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe: Open
mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2409.02060.

NuminaMath. How numinamath won the 1st aimo progress prize. https://huggingface.co/
blog/winning-aimo-progress-prize, 2024.

OpenAI. Introducing openai o1. https://openai.com/o1/, 2024.

Bowen Pan, Yikang Shen, Haokun Liu, Mayank Mishra, Gaoyuan Zhang, Aude Oliva, Colin Raffel,
and Rameswar Panda. Dense training, sparse inference: Rethinking training of mixture-of-experts
language models. arXiv preprint arXiv:2404.05567, 2024.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text. arXiv preprint arXiv:2310.06786, 2023.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Guilherme Penedo, Hynek Kydlı́vcek, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
scale. arXiv preprint arXiv:2406.17557, 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer
era. arXiv preprint arXiv:2305.13048, 2023.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H Miller,
and Sebastian Riedel. Language models as knowledge bases? arXiv preprint arXiv:1909.01066,
2019.

14

https://arxiv.org/abs/2405.17399
https://arxiv.org/abs/2405.17399
https://arxiv.org/abs/2409.02060
https://huggingface.co/blog/winning-aimo-progress-prize
https://huggingface.co/blog/winning-aimo-progress-prize
https://openai.com/o1/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International conference on machine
learning, pp. 18332–18346. PMLR, 2022.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.
Advances in Neural Information Processing Systems, 34:17555–17566, 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
algorithms. arXiv preprint arXiv:2405.18512, 2024.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can language models solve olympiad
programming? arXiv preprint arXiv:2404.10952, 2024.

Till Speicher, Aflah Mohammad Khan, Qinyuan Wu, Vedant Nanda, Soumi Das, Bishwamittra
Ghosh, Krishna P Gummadi, and Evimaria Terzi. Understanding the mechanics and dynamics of
memorisation in large language models: A case study with random strings. 2024.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
can transformers express? a survey. Transactions of the Association for Computational Linguistics,
12:543–561, 2024.

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
arXiv preprint arXiv:1803.06643, 2018.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Shawn Tan, Yikang Shen, Rameswar Panda, and Aaron Courville. Scattered mixture-of-experts
implementation. arXiv preprint arXiv:2403.08245, 2024.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. Advances in Neural
Information Processing Systems, 35:38274–38290, 2022.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Git-
man. Openmathinstruct-1: A 1.8 million math instruction tuning dataset. arXiv preprint
arXiv:2402.10176, 2024.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? Advances in Neural Information
Processing Systems, 36, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In Marina Meila and
Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Re-
search, pp. 11080–11090. PMLR, 2021. URL http://proceedings.mlr.press/v139/
weiss21a.html.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. arXiv preprint arXiv:2405.03548, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301,
2022.

Yifan Zhang. Stackmathqa: A curated collection of 2 million mathematical questions and an-
swers sourced from stack exchange, 2024. URL https://huggingface.co/datasets/
math-ai/StackMathQA.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
parallel. arXiv preprint arXiv:2304.11277, 2023.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in Neural Information Processing Systems, 36, 2024.

Zexuan Zhong, Mengzhou Xia, Danqi Chen, and Mike Lewis. Lory: Fully differentiable mixture-
of-experts for autoregressive language model pre-training. arXiv preprint arXiv:2405.03133,
2024.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization,
2023. URL https://arxiv.org/abs/2310.16028.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly. arXiv preprint arXiv:2402.09371,
2024.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

16

http://proceedings.mlr.press/v139/weiss21a.html
http://proceedings.mlr.press/v139/weiss21a.html
https://huggingface.co/datasets/math-ai/StackMathQA
https://huggingface.co/datasets/math-ai/StackMathQA
https://arxiv.org/abs/2310.16028

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A DETAILS ON THE PRE-TRAINING DATASETS

In Section 5, we pretrain two collections of models, one on “natural language” and the other on
“math”. Here, we give a precise breakdown of our training mixtures. We start with the “natural
language” training mixture that totals 64B tokens:

– 37B tokens from Fineweb-edu dedup (Penedo et al., 2024).
– 14B tokens from Cosmopedia (Ben Allal et al., 2024).
– 12B tokens from Wikipedia (we loop over Wikipedia 3 times).
– 1B tokens from the training set of the downstream tasks we test on. We create 3 copies of

each of these to increase their presence in the mixture. The presence of these datasets is
pretty important as argued in Allen-Zhu & Li (2023) so that the model is familiar with the
downstream tasks at test time.
∗ ComplexWebQuestions training set (Talmor & Berant, 2018)
∗ HotPotQA training set (Yang et al., 2018)
∗ Natural Questions training set (Kwiatkowski et al., 2019)
∗ TriviaQA training set (Joshi et al., 2017)
∗ WebQuestions training set (Berant et al., 2013)
∗ ARC-Easy and ARC-Challenge training sets (Clark et al., 2018)
∗ Hellaswag training set (Zellers et al., 2019)
∗ OpenBookQA training set (Mihaylov et al., 2018)
∗ PIQA training set (Bisk et al., 2020)
∗ SciQ training set (Welbl et al., 2017)
∗ SIQA training set (Sap et al., 2019)
∗ Winogrande training set (Sakaguchi et al., 2021)

Our “math” training mixture that totals 66B tokens gathers:

– 55B tokens from Proof-Pile 2 (Azerbayev et al., 2023) that contain AlgebraicStack (11B),
OpenWebMath (Paster et al., 2023) and ArXiv (29B).

– 2B tokens from OpenMathInstruct-1: we select the instances with a correct answer from the
training set (Toshniwal et al., 2024)

– 7B tokens from DeepMind math (Saxton et al., 2019)
– 2B tokens from the following instruction-like datasets:

∗ Math-Orca (Mitra et al., 2024)
∗ TinyGSM (Liu et al., 2023) (we only select 1 million examples from there).
∗ StackMathQA (Zhang, 2024)
∗ MAmmoTH2 (Yue et al., 2024) (we only select the mathstackexchange subset).
∗ NuminaMath-CoT (NuminaMath, 2024) (duplicated 3 times)
∗ MetaMathQA (Yu et al., 2023) (duplicated 3 times)

B ADDITIONAL EXPERIMENTS

In all our experiments in Section 5, we report the average accuracy performance obtained by our
pre-trained models on respectively world knowledge, commonsense and math benchmarks. Here, we
provide the results per task. In Subsection B.1, we display for each task, the downstream performance
on a per parameter basis (similar to Figure 1) and in Subsection B.2, we plot for each task, the
downstream performance on a per validation perplexity basis (similar to Figure 6).

B.1 DOWNSTREAM PERFORMANCE ON A PER PARAMETER BASIS

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

16M 49M 159M 569M 2.1B

Number of total parameters

7
9

14

19

27

F
1

A
cc

u
ra

cy
(%

)

COMPLEXWEBQUESTIONS

16M 49M 159M 569M 2.1B

Number of total parameters

7

11

15

18

21

F
1

A
cc

u
ra

cy
(%

)

HOTPOT-QA

16M 49M 159M 569M 2.1B

Number of total parameters

23

7

12

16

F
1

A
cc

u
ra

cy
(%

)

NQ

16M 49M 159M 569M 2.1B

Number of total parameters

911

18

27

38
F

1
A

cc
u

ra
cy

(%
)

TRIVIA-QA

16M 49M 159M 569M 2.1B

Number of total parameters

77

16

25

30

F
1

A
cc

u
ra

cy
(%

)

WEBQUESTIONS

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

Figure 7: Downstream performance on the world knowledge tasks with respect to the total number of
parameters of the models.

16M 49M 159M 569M 2.1B

Number of total parameters

22
20

25

34

37

A
cc

u
ra

cy
(%

)

ARCC

16M 49M 159M 569M 2.1B

Number of total parameters

34

40

49

57

64

A
cc

u
ra

cy
(%

)

ARCE

16M 49M 159M 569M 2.1B

Number of total parameters

26

30

37

44

48

A
cc

u
ra

cy
(%

)

COMMONSENSEQA

16M 49M 159M 569M 2.1B

Number of total parameters

34
35

43

47

51

A
cc

u
ra

cy
(%

)

HELLASWAG

16M 49M 159M 569M 2.1B

Number of total parameters

2828

30

33

38

A
cc

u
ra

cy
(%

)

OPENBOOKQA

16M 49M 159M 569M 2.1B

Number of total parameters

53

57
59

64
65

A
cc

u
ra

cy
(%

)

PIQA

16M 49M 159M 569M 2.1B

Number of total parameters

69

78

85
87
89

A
cc

u
ra

cy
(%

)

SCIQ

16M 49M 159M 569M 2.1B

Number of total parameters

37

39

42

45

48

A
cc

u
ra

cy
(%

)

SIQA

16M 49M 159M 569M 2.1B

Number of total parameters

51

52

52

54

55

A
cc

u
ra

cy
(%

)

WINOGRANDE

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

Figure 8: Downstream performance on the commonsense tasks with respect to the total number of
parameters of the models.

B.2 DOWNSTREAM PERFORMANCE ON A PER VAL PERPLEXITY BASIS

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

16M 49M 159M 569M 2.1B

Number of total parameters

2
6

16

34

45

A
cc

u
ra

cy
(%

)

GSM-HARD

16M 49M 159M 569M 2.1B

Number of total parameters

1
5

19

35

49

A
cc

u
ra

cy
(%

)

GSM8K

16M 49M 159M 569M 2.1B

Number of total parameters

2
5

10

19

30

A
cc

u
ra

cy
(%

)

HENDRYCKS-MATH

16M 49M 159M 569M 2.1B

Number of total parameters

2
5

9

18

28
A

cc
u

ra
cy

(%
)

MINERVA

16M 49M 159M 569M 2.1B

Number of total parameters

4

14

34

54

67

A
cc

u
ra

cy
(%

)

SVAMP

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

Figure 9: Downstream performance on the math benchmarks with respect to the total number of
parameters of the models.

6.1 7.3 9.2 12.2 17.6

Validation perplexity

27

19

14

9
7

F
1

A
cc

u
ra

cy
(%

)

COMPLEXWEBQUESTIONS

6.1 7.3 9.2 12.2 17.6

Validation perplexity

21

18

15

11

7

F
1

A
cc

u
ra

cy
(%

)

HOTPOT-QA

6.1 7.3 9.2 12.2 17.6

Validation perplexity

16

12

7

32

F
1

A
cc

u
ra

cy
(%

)

NQ

6.1 7.3 9.2 12.2 17.6

Validation perplexity

38

27

18

119

F
1

A
cc

u
ra

cy
(%

)

TRIVIA-QA

6.1 7.3 9.2 12.2 17.6

Validation perplexity

30

25

16

77

F
1

A
cc

u
ra

cy
(%

)

WEBQUESTIONS

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

Figure 10: Downstream performance on the world knowledge tasks with respect to the validation
perplexity.

C PROOFS

C.1 REASONING PROOFS

Definition C.1 (Set-disjointness task). Set disjointness is the following task: given two inputs
A,B ∈ {0, 1}r for some r ∈ N, compute maxiAiBi.

Set-disjointness can be thought of as follows: Alice and Bob are given sets A and B respectively.
Their objective is to determine whether they have any overlapping items in their sets.

Lemma C.2 (Equivalence of set-disjointness and length-2 path). The set-disjointness task is equiva-
lent to the length-2 path task.

Proof. (=⇒): Given an instance of set-disjointness, we can encode it into a length-2 path problem.
Denote every item i as a vertex. Denote two extra vertices as A, B, corresponding to Alice and Bob.
For every element i that Alice has, draw an edge between A and i. For every element i that Bob
has, draw an edge between B to i. If and only if there are any overlapping elements, then there is

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

6.1 7.3 9.2 12.2 17.6

Validation perplexity

37

34

25

20
22

A
cc

u
ra

cy
(%

)

ARCC

6.1 7.3 9.2 12.2 17.6

Validation perplexity

64

57

49

40

34

A
cc

u
ra

cy
(%

)

ARCE

6.1 7.3 9.2 12.2 17.6

Validation perplexity

48

44

37

30

26

A
cc

u
ra

cy
(%

)

COMMONSENSEQA

6.1 7.3 9.2 12.2 17.6

Validation perplexity

51

47

43

35
34

A
cc

u
ra

cy
(%

)

HELLASWAG

6.1 7.3 9.2 12.2 17.6

Validation perplexity

38

33

30

2828

A
cc

u
ra

cy
(%

)

OPENBOOKQA

6.1 7.3 9.2 12.2 17.6

Validation perplexity

65
64

59
57

53

A
cc

u
ra

cy
(%

)

PIQA

6.1 7.3 9.2 12.2 17.6

Validation perplexity

89
87
85

78

69

A
cc

u
ra

cy
(%

)

SCIQ

6.1 7.3 9.2 12.2 17.6

Validation perplexity

48

45

42

39

37

A
cc

u
ra

cy
(%

)

SIQA

6.1 7.3 9.2 12.2 17.6

Validation perplexity

55

54

52

52

51

A
cc

u
ra

cy
(%

)

WINOGRANDE

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

Figure 11: Performance on the commonsense tasks with respect to the validation perplexity.

3.2 3.5 3.9 4.5 5.5

Validation perplexity

45

34

16

6
2

A
cc

u
ra

cy
(%

)

GSM-HARD

3.2 3.5 3.9 4.5 5.5

Validation perplexity

49

35

19

5
1

A
cc

u
ra

cy
(%

)

GSM8K

3.2 3.5 3.9 4.5 5.5

Validation perplexity

30

19

10

5
2

A
cc

u
ra

cy
(%

)

MATH

3.2 3.5 3.9 4.5 5.5

Validation perplexity

28

18

9

5
2

A
cc

u
ra

cy
(%

)

MINERVA

3.2 3.5 3.9 4.5 5.5

Validation perplexity

67

54

34

14

4

A
cc

u
ra

cy
(%

)

SVAMP

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

Figure 12: Downstream performance on the math benchmarks with respect to the validation perplexity.

a length-2 path from A to B. The number of elements because the number of vertices that do not
belong to Alice or Bob.

(⇐=): Consider an instance G = (V,E), s, d of length-2 path, where s is the source vertex and d is
the sink vertex. For all vertices with an edge with s, put this element into Alice’s set of elements. For
all vertices with an edge with d, put this element into Bobs’s set of elements. If and only if there is a
length-2 path, then Alice and Bob’s sets are overlapping. Then, r is the number of vertices.

Lemma C.3 (Communication complexity lower-bound on concatenated outputs). For some sequence
length, fix two disjoint subsets A,B ⊂ [N − 1], and consider a single-layer transformer f ∈
TransformerNm,H,1 with O(logN)-bit precision that solves set disjointness for any input X where

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

XA is a function of Alice’s input a ∈ {0, 1}r, XB is a function of Bob’s input b ∈ {0, 1}r, and
X[N]\(A∪B) is fixed regardless of a, b. Then, f has width satisfying mH = Ω(r/ logN).

Proof. By re-writing the following, the remainder of the proof from Sanford et al. (2024) still holds.

DISJ(a, b) = ψ
([

softmax
(
ϕ(xN)⊤QhK

⊤
h ϕ(X)

)
ϕ(X)vh

]
h∈[H]

)
.

This is because we may still use the same definition for Zh,S , Lh,S as in the proof. Hence, this
concludes the proof.

C.1.1 PROOF OF THEOREM 3.2

We restate the corollary.

Theorem C.4 (Theorem 3.2). For some input sequence G = (V,E), fix two disjoint subsets A,B ⊂
[N − 1], and consider a single-layer transformer f ∈ TransformerNm,H,1,K with O(logN)-bit
precision that solves length-2 path for any input X where XA is a function of edges with the source s,
XB is a function of edges with the destination d. Then, f has width satisfying mH = Ω(|V |/ logN).

Proof. The proof outline is as follows:

1. Adapt Lemma 39 (Sanford et al., 2024) to support concatenation instead of addition from
different attention heads.

2. The lower bound with concatenation holds for length-2 path because set-disjointness and
length-2 path are equivalent.

3. Extend the result to sparse transformers.

We complete the first step with Lemma C.3. We complete the second set due to Lemma C.2. It
remains to show that a router function also yields the same lower bound. We show that Lemma
39 of Sanford et al. (2024) can be generalized to the case in which ψ is applied according to a
routing function. Specifically, consider a top-1 routing function r : Rm → [K], and K element-wise
functions ψ1, . . . , ψK : Rm → R. For shorthand, define:

Y (XN) =
[
softmax

(
ϕ(xN)⊤QhK

⊤
h ϕ(X)

)
ϕ(X)vh

]
h∈[H]

,

which is the output of the attention head prior to applying the element-wise transformation. Next, we
define f(XN) as the output when the router function r is used to select ψi.

f(XN) =
∑
i∈K

I{r(Y (XN)) = i}ψi(Y (XN)).

Because the lower bound does not place any restrictions on the function ψ and rather argues a
communication-complexity lower bound due to information from Y (XN), the lower bound also
holds for a routing function.

C.1.2 PROOF OF THEOREM 3.3

We re-state Theorem 3.3 and give its proof.

Theorem C.5 (Theorem 3.3). For sequence length N , f ∈ TransformerNm,H,1 with O(logN)-bit
precision that solves length-2 path for any input X . Then, there exists a dense transformer with width
|V | which solves the problem.

Proof. Tokens are elements in V = V ∪ {0} × V ∪ {0}. The input is as follows: for vertex i, if the
source shares an edge with that vertex, then the i’th input value is (s, i). Otherwise, it is (s, 0). The
first |V | tokens we see correspond to edges possibly shared with the source vertex. Then, the last
|V | input tokens correspond to edges possibly shared with the destination vertex and share the same

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

format as the first r tokens. In between, we can have arbitrary edges (u, v). We define an embedding
function where ei is the i’th standard basis vector in dimension r.

ϕ : V → R|V |

(u, v) 7→
{
ei if i > 0 and u = s or u = v

0 if i = 0.

Next, we define Vh ∈ R|V |×|V | to be the identity matrix, and Qh, Vh ∈ R|V |×|V | both to have 0
everywhere. Consequently, the attention matrix is given by:

1/|V | . . . 1/|V |
...

. . .
1/|V | 1/|V |

ϕ(X)


j,i

=


2/|V | if there is a path through ii
1/|V | if one target vertex shares an edge with i
0 otherwise.

For any entry that exceeds 1
|V | , the correct answer is there is a length-2 path. Hence, any thresholding

function which achieves this separation suffices.

C.2 MEMORIZATION PROOFS

In this section, we use d to denote the input dimension, N to denote the number of examples and n to
denote the sequence length.

Lemma C.6. Let x1, x2, . . . , xN ∈ Rd be independently sampled from the multivariate normal
distribution N (0, σ2Id), where σ > 0 and Id is the d× d identity matrix. For any δ ∈ (0, 1), with
probability at least 1− δ, every pair of distinct vectors xi and xj satisfies

|x⊤i xj | ≤ σ2

√
2d

(
2 lnN + ln

2

δ

)
.

Proof. We aim to bound the inner product x⊤i xj for each pair (i, j) with i ̸= j. Since the vectors are
sampled independently from N (0, σ2Id), each component xik and xjk is independently distributed
as N (0, σ2).

For fixed i ̸= j, the inner product Sij = x⊤i xj =
∑d

k=1 xikxjk is the sum of d independent random
variables. Each term xikxjk has:

• Mean:
E[xikxjk] = E[xik]E[xjk] = 0.

• Variance:
Var[xikxjk] = E[x2ik]E[x2jk] = σ4.

Since Sij is a sum of independent, zero-mean random variables with variance σ4, the variance of Sij

is:
Var[Sij] = dσ4.

We use the fact that Sij is approximately normally distributed due to the Central Limit Theorem. For
a normal distribution Z ∼ N (0, σ2

Z), the tail probability satisfies:

P(|Z| ≥ t) ≤ 2 exp

(
− t2

2σ2
Z

)
.

Applying this to Sij , we have:

P
(
|x⊤i xj | ≥ t

)
≤ 2 exp

(
− t2

2dσ4

)
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

There are
(
N
2

)
≤ N2

2
pairs of distinct vectors. Applying the union bound over all pairs:

P
(
∃ i ̸= j : |x⊤i xj | ≥ t

)
≤ N2 exp

(
− t2

2dσ4

)
.

To ensure that this probability is at most δ, set:

N2 exp

(
− t2

2dσ4

)
≤ δ.

Taking the natural logarithm:

− t2

2dσ4
+ 2 lnN ≤ ln δ.

Rewriting:
t2

2dσ4
≥ 2 lnN − ln δ.

Noting that − ln δ = ln
1

δ
, we have:

t2

2dσ4
≥ 2 lnN + ln

1

δ
.

Including the factor from the inequality, adjust as:

t2

2dσ4
≥ 2 lnN + ln

2

δ
.

Thus,

t ≥ σ2

√
2d

(
2 lnN + ln

2

δ

)
.

Therefore, with probability at least 1− δ, every pair of distinct vectors satisfies:

|x⊤i xj | ≤ σ2

√
2d

(
2 lnN + ln

2

δ

)
.

Lemma C.7. Let x1, x2, . . . , xN ∈ Rd be independently sampled from the multivariate normal
distribution N (0, σ2Id). For any δ ∈ (0, 1), with probability at least 1− δ, every vector xi satisfies

∥xi∥∞ ≤ σ

√
2 ln

(
2Nd

δ

)
.

Proof. Each component xik is independently distributed as N (0, σ2). For a Gaussian random
variable X ∼ N (0, σ2), the tail probability is:

P(|X| ≥ t) ≤ 2 exp

(
− t2

2σ2

)
.

For a fixed vector xi, the probability that its L∞ norm exceeds t is:

P (∥xi∥∞ ≥ t) ≤ 2d exp

(
− t2

2σ2

)
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Applying the union bound over all N vectors:

P (∃ i : ∥xi∥∞ ≥ t) ≤ 2Nd exp

(
− t2

2σ2

)
.

To ensure this probability is at most δ, set:

2Nd exp

(
− t2

2σ2

)
≤ δ.

Taking logarithms:

− t2

2σ2
+ ln(2Nd) ≤ ln δ.

Rewriting:
t2

2σ2
≥ ln

2Nd

δ
.

Solving for t:

t ≥ σ

√
2 ln

(
2Nd

δ

)
.

Therefore, with probability at least 1− δ, every vector xi satisfies:

∥xi∥∞ ≤ σ

√
2 ln

(
2Nd

δ

)
.

Lemma C.8. Let x1, x2, . . . , xN ∈ Rd be independently sampled from the multivariate normal
distribution N (0, σ2Id). For any δ ∈ (0, 1), with probability at least 1− δ, every vector xi satisfies

∥xi∥2 ≥ σ
√
d

1−

√√√√√2 ln

(
N

δ

)
d

.

Proof. Each vector xi has components that are independent N (0, σ2) random variables. Thus,
∥xi∥22 =

∑d
k=1 x

2
ik is distributed as σ2χ2

d, where χ2
d denotes the chi-squared distribution with d

degrees of freedom.

Using concentration inequalities for chi-squared distributions, for any ε ∈ (0, 1):

P
(
∥xi∥22 ≤ σ2d(1− ε)

)
≤ exp

(
−dε

2

4

)
.

Applying the union bound over all N vectors:

P
(
∃ i : ∥xi∥22 ≤ σ2d(1− ε)

)
≤ N exp

(
−dε

2

4

)
.

To ensure this probability is at most δ, set:

N exp

(
−dε

2

4

)
≤ δ.

Taking logarithms:

−dε
2

4
+ lnN ≤ ln δ.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Rewriting:
dε2

4
≥ ln

N

δ
.

Solving for ε:

ε ≥ 2

√√√√√ ln

(
N

δ

)
d

.

Since ε ∈ (0, 1), we can use the inequality
√
1− ε ≥ 1− ε

2
for ε ∈ (0, 1). Therefore, with probability

at least 1− δ, every vector xi satisfies:

∥xi∥2 ≥ σ
√
d(1− ε)

≥ σ
√
d
(
1− ε

2

)

≥ σ
√
d

1−

√√√√√2 ln

(
N

δ

)
d

 .

Theorem C.9. Let x1, x2, . . . , xN ∈ Rd be independently sampled from the multivariate normal
distribution N (0, σ2Id), and let y1, y2, . . . , yN ∈ {±1} be arbitrary labels. Then, with probability
at least 1− δ, there exists a one-hidden-layer ReLU neural network with N neurons that correctly
classifies the points xi according to their labels yi, i.e.,

sign(f(xi)) = yi for all i = 1, . . . , N,

where f is the function computed by the network. Furthermore, the L∞-norms of the weights and
biases are bounded as follows:

• Input weights: ∥wi∥∞ ≤ σ

√
2 ln

(
2Nd

δ

)
.

• Biases: |bi| ≤ σ2d

1 +

√√√√2 ln

(
N

δ

)
d

.

• Output weights: |αi| = 1.

Proof. We will construct a one-hidden-layer ReLU network that correctly classifies the points xi
with the specified labels yi. The network has the following structure:

• Hidden layer: Consists of N neurons with weights wi ∈ Rd and biases bi.

• Output layer: Computes the function f(x) =
∑N

i=1 αi ReLU(w⊤
i x+ bi), where αi = yi.

Step 1: High-Probability Bounds

From Lemmas C.6, C.7, and C.8, with probability at least 1− δ, the following hold simultaneously
for all i ̸= j:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

1. Bound on ∥xi∥∞ (Lemma C.7):

∥xi∥∞ ≤ σ

√
2 ln

(
2Nd

δ

)
.

2. Lower bound on ∥xi∥2 (Lemma C.8):

∥xi∥2 ≥ σ
√
d

1−

√√√√√2 ln

(
N

δ

)
d

 .

3. Bound on |x⊤i xj | (Lemma C.6):

|x⊤i xj | ≤ σ2

√
2d

(
2 lnN + ln

2

δ

)
.

Step 2: Constructing the Network

We define the weights and biases as follows:

• Input weights: wi = xi.

• Biases: bi = −x⊤i xi + s, where s =
σ2d

2
.

• Output weights: αi = yi.

Step 3: Network Output on Training Points

For each training point xj , the pre-activation of the i-th hidden neuron is:

zij = w⊤
i xj + bi = x⊤i xj − x⊤i xi + s.

We consider two cases:

Case 1: i = j

zjj = x⊤j xj − x⊤j xj + s = s > 0.

Therefore,
ReLU(zjj) = s.

Case 2: i ̸= j

Using the bounds from Step 1:

zij = x⊤i xj − x⊤i xi + s

≤ |x⊤i xj | − ∥xi∥22 + s

≤ σ2

√
2d

(
2 lnN + ln

2

δ

)
− σ2d

1−

√√√√√2 ln

(
N

δ

)
d


2

+ s.

Simplify the expression (assuming d is large enough that terms involving
lnN

d
are small):

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Let ε =

√√√√2 ln

(
N

δ

)
d

, and γ =

√√√√2

(
2 lnN + ln

2

δ

)
d

.

Then:
zij ≤ σ2d

(
γ − (1− ε)

2
)
+ s.

Note that:
(1− ε)2 = 1− 2ε+ ε2.

Therefore,
zij ≤ σ2d

(
γ − 1 + 2ε− ε2

)
+ s.

Assuming ε and ε2 are small, and γ is small compared to 1 (since d is large), we have:

zij ≤ −cσ2d,

for some positive constant c > 0. Therefore,

ReLU(zij) = 0.

Step 4: Final Output

The network output for xj is:

f(xj) =

N∑
i=1

αi ReLU(zij) = yjs+
∑
i ̸=j

yi · 0 = yjs.

Since s > 0, the sign of f(xj) matches yj :

sign(f(xj)) = sign(yjs) = yj .

Step 5: Bounding the Weights and Biases

• Input Weights: From Lemma C.7:

∥wi∥∞ = ∥xi∥∞ ≤ σ

√
2 ln

(
2Nd

δ

)
.

• Biases: Using the bound on ∥xi∥2 from Lemma C.8:

|bi| =
∣∣−x⊤i xi + s

∣∣
≤ ∥xi∥22 + s

≤
(
σ
√
d (1− ε)

)2
+
σ2d

2

= σ2d

(
(1− ε)2 +

1

2

)
= σ2d

(
1− 2ε+ ε2 +

1

2

)
≤ σ2d

(
3

2
− 2ε

)
.

• Output Weights: |αi| = |yi| = 1.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Theorem C.10. Let X1, X2, . . . , XN ∈ Rn×d be N sequences of length n, where each token
Xik ∈ Rd is independently sampled from the multivariate normal distribution N (0, Id). Let
y1, y2, . . . , yN ∈ {±1} be arbitrary labels. Then, with probability at least 1 − δ, there exists
a one-layer transformer with inner dimension N Clara: should probably use a different variable
that, when applied to each sequence Xi, outputs at the last token a value whose sign matches yi, i.e.,

sign(f(Xi)) = yi for all i = 1, . . . , N,

where f is the function computed by the transformer. Furthermore, the L∞-norms of the weights and
biases of the transformer are explicitly bounded as follows:

• The L∞-norm of all weights in the attention mechanism is at most 1.

• The L∞-norm of the feed-forward weights is at most

∥Wff∥∞ ≤ 1√
n

√
2 ln

(
2Nd

δ

)
.

• The L∞-norm of the feed-forward biases is at most

∥bff∥∞ ≤ d

n

1 +

√√√√√2 ln

(
N

δ

)
d

 .

• The output weights satisfy |αi| = 1 for all i.

Proof. We will construct a one-layer transformer with inner dimension N that correctly classifies the
sequences Xi according to their labels yi. The transformer consists of:

• Self-Attention Layer: Configured to compute the average of the input tokens at the last
position.

• Feed-Forward Network: Applied at the last token to classify the averaged input.

Step 1: Configure Self-Attention to Compute Token Averages

Our goal is to compute the average of the input tokens Xi1, Xi2, . . . , Xin at the last token position.
To achieve uniform attention, we set the query and key matrices to zero:

• WQ = 0 ∈ Rd×dk

• WK = 0 ∈ Rd×dk

Since Qt =WQXit = 0 and Kt′ =WKXit′ = 0 for all tokens t, t′, the attention scores become:

AttentionScoret,t′ =
Q⊤

t Kt′√
dk

= 0.

The softmax of a vector of zeros yields uniform attention weights:

αt,t′ =
1

n
.

We set the value matrix WV = Id (the identity matrix), so the output of the attention layer at the last
token t = n is:

hn =

n∑
t′=1

αn,t′Vt′ =
1

n

n∑
t′=1

Xit′ = Si,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

where Si ∈ Rd is the average of the input tokens for sequence Xi:

Si =
1

n

n∑
k=1

Xik.

Step 2: Distribution of Si

Since each Xik is independently sampled from N (0, Id), the average Si is distributed as:

Si ∼ N
(
0,

1

n
Id

)
.

Step 3: Apply the Feed-Forward Network Theorem

We now apply the previous theorem (Theorem C.9) to the vectors Si. Specifically, since Si are

independently sampled from N
(
0,

1

n
Id

)
, we set σ =

1√
n

in Theorem C.9. The theorem guarantees

that, with probability at least 1− δ, there exists a one-hidden-layer ReLU neural network with N
neurons that correctly classifies the vectors Si according to their labels yi, i.e.,

sign(f(Si)) = yi for all i = 1, . . . , N,

where

f(S) =

N∑
i=1

αi ReLU(w⊤
i S + bi),

with αi = yi.

Step 4: Bounding the Weights and Biases

From Theorem C.9, with σ =
1√
n

, the L∞-norms of the weights and biases are bounded as follows:

• Input Weights:

∥wi∥∞ ≤ 1√
n

√
2 ln

(
2Nd

δ

)
.

• Biases:

|bi| ≤
1

n
d

1 +

√√√√√2 ln

(
N

δ

)
d

 .

• Output Weights: |αi| = |yi| = 1.

Step 5: Mapping to Transformer Architecture

We design the feed-forward network at the last token to simulate the ReLU network operating on Si:

• Feed-Forward Network at Last Token: Consists of weights Wff ∈ Rd×N and biases
bff ∈ RN , where the i-th column of Wff is wi, and the i-th element of bff is bi.

• Output Layer: Computes f(Xi) = α⊤ ReLU(W⊤
ff Si + bff), where αi = yi.

Step 6: Bounding the Transformer Weights

The L∞-norms of the transformer weights and biases are explicitly bounded:

• Attention Weights: Since WQ = 0 and WK = 0, their L∞-norms are zero. The value
matrix WV = Id has L∞-norm equal to 1.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

• Feed-Forward Weights:

∥Wff∥∞ = max
i,k

|wik| ≤
1√
n

√
2 ln

(
2Nd

δ

)
.

• Feed-Forward Biases:

∥bff∥∞ = max
i

|bi| ≤
d

n

1 +

√√√√√2 ln

(
N

δ

)
d

 .

• Output Weights: |αi| = 1.

Step 7: Network Output on Sequences

For each sequence Xi, the transformer computes:

1. Attention Layer: Outputs Si at the last token.

2. Feed-Forward Network: Computes

hi = ReLU(W⊤
ff Si + bff) ∈ RN .

3. Final Output:

f(Xi) = α⊤hi =

N∑
j=1

yj ReLU(w⊤
j Si + bj).

Since the feed-forward network at the last token simulates the ReLU network from Step 3, we have:

sign(f(Xi)) = sign(f(Si)) = yi.

Conclusion

With the constructed transformer, all sequences Xi are correctly classified according to their labels
yi, and the L∞-norms of the weights and biases are explicitly bounded as specified.

Theorem C.11. Let X1, X2, . . . , XN ∈ Rn×d be N sequences of length n, where each token
Xik ∈ Rd is independently sampled from the multivariate normal distribution N (0, Id). Let
y1, y2, . . . , yN ∈ {±1} be arbitrary labels. Then, with probability at least 1 − δ, there exists

a one-layer Mixture-of-Experts (MoE) transformer with K experts, each having O
(
N

K

)
neurons,

that, when applied to each sequence Xi, outputs at the last token a value whose sign matches yi, i.e.,

sign(f(Xi)) = yi for all i = 1, . . . , N.

Furthermore, the L∞-norms of the weights and biases of the transformer are explicitly bounded, and
the bit-complexity (number of bits per parameter) is

O

(
log(nd) + log ln

(
NK

δ

))
.

Proof. We construct a one-layer MoE transformer with K experts to classify the sequences Xi

according to their labels yi. The transformer operates as follows:

1. Self-Attention Layer: Configured to compute the average of the input tokens at the last
position.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

2. Routing Function: Assigns each sequence to one of the K experts based on a routing
decision.

3. Expert Networks: Each expert processes its assigned sequences using a feed-forward
network.

Step 1: Configure Self-Attention to Compute Token Averages

As in the previous theorem, we set the query and key matrices to zero to achieve uniform attention
weights:

• WQ = 0 ∈ Rd×dk

• WK = 0 ∈ Rd×dk

The output at the last token t = n is the average of the input tokens:

hn =
1

n

n∑
k=1

Xik = Si,

where Si ∼ N
(
0,

1

n
Id

)
.

Step 2: Define Routing Vectors and Assign Inputs to Experts

We define routing vectors r1, r2, . . . , rK ∈ Rd, where each rj is independently sampled from
N (0, Id). For each sequence Xi, we compute routing scores:

sij = r⊤j Si, for j = 1, . . . ,K.

The sequence Xi is assigned to expert j∗ where:

j∗ = arg max
1≤j≤K

sij .

Since Si ∼ N
(
0,

1

n
Id

)
and rj ∼ N (0, Id), the routing scores sij are independent and distributed

as N
(
0,

1

n

)
.

Step 3: Balance Inputs Among Experts

For each input Si, the probability that it is assigned to expert j is:

P(Xi assigned to expert j) =
1

K
.

Let Nj denote the number of inputs assigned to expert j. Since assignments are independent, Nj

follows a binomial distribution Binomial(N,
1

K
).

Using Hoeffding’s inequality, for any ε > 0:

P
(∣∣∣∣Nj −

N

K

∣∣∣∣ ≥ εN

)
≤ 2 exp

(
−2ε2N

)
.

Set ε =

√
ln(2K/δ)

2N
. Then,

P
(∣∣∣∣Nj −

N

K

∣∣∣∣ ≥ εN

)
≤ δ

K
.

Applying the union bound over all experts:

P
(
∃ j :

∣∣∣∣Nj −
N

K

∣∣∣∣ ≥ εN

)
≤ δ.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Therefore, with probability at least 1− δ, each expert receives at most

Nj ≤
N

K
+ εN =

N

K
+N

√
ln(2K/δ)

2N
=
N

K
+

√
N ln(2K/δ)

2
.

Since N is large, Nj = O

(
N

K

)
.

Step 4: Apply the Feed-Forward Network Theorem to Each Expert

Within each expert j, we have Nj inputs Si assigned to it. We apply Theorem C.9 (from the previous
result) to construct a feed-forward ReLU network that correctly classifies these inputs. Specifically:

• Inputs: The vectors Si assigned to expert j, each sampled from N
(
0,

1

n
Id

)
.

• Labels: The corresponding yi for these inputs.

• Network Size: The network uses Nj neurons.

From Theorem C.9 (with σ =
1√
n

and N replaced by Nj), with probability at least 1 − δ

K
, the

network correctly classifies all inputs assigned to expert j. Applying the union bound over all experts,
with probability at least 1− δ, all experts correctly classify their assigned inputs.

Step 5: Bounding the Weights and Biases

From Theorem C.9, the L∞-norms of the weights and biases in each expert are bounded:

• Input Weights:

∥wi∥∞ ≤ 1√
n

√
2 ln

(
2Njd

δ/K

)
≤ 1√

n

√
2 ln

(
2NdK

δ

)
.

• Biases:

|bi| ≤
d

n

1 +

√√√√√2 ln

(
Nj

δ/K

)
d

 ≤ d

n

1 +

√√√√√2 ln

(
NK

δ

)
d

 .

• Output Weights: |αi| = 1.

Step 6: Bounding the Bit-Complexity

To determine the bit-complexity per parameter, we need to calculate the number of bits required to
represent the weights and biases with sufficient precision.

Let ϵ be the desired precision for representing each parameter.

Weights:

The maximum absolute value of the weights is:

Mw =
1√
n

√
2 ln

(
2NdK

δ

)
.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

The number of bits required per weight parameter is:

Bitsw = O

(
log

(
Mw

ϵ

))
= O

(
log

(
1√
n

√
2 ln

(
2NdK

δ

)
1

ϵ

))

= O

(
log

(
1√
n

)
+

1

2
log

(
2 ln

(
2NdK

δ

))
+ log

(
1

ϵ

))
= O

((
−1

2
log n

)
+

1

2
log ln

(
NK

δ

)
+

1

2
log (2 ln d) + log

(
1

ϵ

))
.

Simplifying, we have:

Bitsw = O

(
log n+ log d+ log ln

(
NK

δ

)
+ log

(
1

ϵ

))
.

Note that the negative term −1

2
log n becomes negligible in the overall O notation, as we are

concerned with the total number of bits required.

Biases:

The maximum absolute value of the biases is:

Mb =
d

n

1 +

√√√√√2 ln

(
NK

δ

)
d

 ≤ d

n

1 +

√√√√√2 ln

(
NK

δ

)
d

 .

Since

√√√√2 ln

(
NK

δ

)
d

is small for large d, we can approximate Mb ≈ d

n
. The number of bits

required per bias parameter is:

Bitsb = O

(
log

(
Mb

ϵ

))
= O

(
log

(
d

nϵ

))
= O

(
log d+ log n+ log

(
1

ϵ

))
.

Total Bit-Complexity per Parameter:

Combining the bits required for weights and biases, the bit-complexity per parameter is:

Bits = O

(
log n+ log d+ log ln

(
NK

δ

)
+ log

(
1

ϵ

))
.

Since ϵ is a constant precision (e.g., machine epsilon), we can omit log
(
1

ϵ

)
in the O notation.

Therefore, the bit-complexity per parameter depends logarithmically on n and d, and logarithmically
on the logarithm of N , K, and 1/δ. This means that n and d are inside a single logarithm, while N ,
K, and 1/δ are inside a double logarithm.

Step 7: Final Transformer Architecture

The MoE transformer consists of:

• Attention Layer: Computes Si =
1

n

∑n
k=1Xik at the last token.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

• Routing Function: Assigns Si to expert j∗ = argmaxj r
⊤
j Si.

• Experts: Each expert j has its own feed-forward network with weights and biases as
constructed in Step 4.

• Output: For each Xi, the transformer outputs f(Xi) = fj(Si) where fj is the function
computed by expert j.

Conclusion

With the constructed MoE transformer, all sequences Xi are correctly classified according to their
labels yi. The total number of neurons across all experts is:

K∑
j=1

Nj = N,

since each input is assigned to exactly one expert. The L∞-norms of the weights and biases are
explicitly bounded, and the bit-complexity per parameter is

O

(
log(nd) + log ln

(
NK

δ

))
.

This completes the proof.

Proof of Theorem 3.6. Let c be the number of bits used for encoding each parameters (and we assume
that c is logarithmic in the problem parameters). Denote by H the class of all transformers with W
parameters and c bits per parameters. Since H is a finite class, where each function in the class can
be encoded with cW bits, we have |H| ≤ 2cW . Let X1, . . . , XN ∈ Rn×d be the N input points.
Assume a H can solve the memorization task. Then, for every choice of y1, . . . , yN ∈ {±1}, there
exists a transformer f ∈ H s.t. f(Xi) = yi for all i ∈ [N]. There are 2N possible assignments for
y1, . . . yN and therefore there are at least 2N different functions in H. So, we get 2N ≤ |H| ≤ 2cW

and therefore W ≥ N/c.

34

	Introduction
	Related work
	Theory: representational capacity
	Setting
	MoEs require a critical hidden size to solve graph reasoning tasks
	MoEs use their experts to solve memory-intensive tasks

	Synthetic experiments
	Experimental setup
	Memorization: total parameters predict performance
	Reasoning: total parameters do not predict performance

	Pre-trained Models
	Setup
	Results

	Discussion
	Details on the pre-training datasets
	Additional experiments
	Downstream performance on a per parameter basis
	Downstream performance on a per val perplexity basis

	Proofs
	Reasoning proofs
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Memorization Proofs

