Under review as a conference paper at ICLR 2023

A STOCHASTIC DIFFERENTIAL EQUATION (SDE)

In (Song et al) 2021c)), three types of SDE diffusion processes are presented. Depending on the
type, f(x,t) and g(t) are defined as follows:

0, if VE-SDE,
f(x,t) =< —1B(t)x, if VP-SDE, ®)
—1B8(t)x, if sub-VP-SDE,
dlozl, if VE-SDE,
9(t) = § VB{1), if VP-SDE, ©)

\/ B(t)(1 — e=2Jo A=)ds) " if sub-VP-SDE,

where 02(t) and 3(t) are functions w.r.t. time . Full derivatives of VE, VP and sub-VP SDE are
presented in Song et al.|(2021cl Appendix. B).

B EXPERIMENTAL DETAILS

In this section, we describe the detailed experimental environments of SPI-GAN. We build our
experiments on top of |[Kang et al.|(2022)

B.1 EXPERIMENTAL ENVIRONMENTS

Our software and hardware environments are as follows: UBUNTU 18.04 LTS, PYTHON 3.9.7, Py-
TORCH 1.10.0, CUDA 11.1, NVIDIA Driver 417.22, 19 CPU, and NVIDIA RTX A6000.

B.2 TARGET DIFFUSION MODEL

Our model uses a forward SDE to transform an image (x) into a noise vector (x7). When generating
a noise vector, we use the forward equation of VP-SDE for its high efficacy/effectiveness. The 3(t)
function of VP-SDE is as follows:

/B(t) = ﬂmin + t(ﬁmax - ﬂmin) (10)

where Bumax = 20, Bmin = 0.1, and ¢’ := L which is normalized from ¢ € {0,1,...,T} to [0, 1].
Under these conditions, Song et al.|(2021c, Appendix B) proves that the noise vector at t’ = 1 (x7)
follows a unit Gaussian distribution.

B.3 DATA AUGMENTATION

Our model uses the adaptive discriminator augmentation (ADA) (Karras et al., 2020a), which has
shown good performance in StyleGANZ The ADA applies image augmentation adaptively to
training the discriminator. We can determine the maximum degree of the data augmentation, which
is known as an ADA target, and the number of the ADA learning can be determined through the ADA
interval. We also apply mixing regularization (Apizing) to encourage the styles to localize. Mixing
regularization determines how many percent of the generated images are generated from two noisy
images during training (a.k.a, style mixing). There are hyperparameters for the data augmentation
in Table

B.4 MODEL ARCHITECTURE

Our proposed model is similar to StyleGAN2. However, StyleGAN2 architecture is modified to
implement our proposed straight-path interpolation after adding the NODE-based mapping network
and customizing some parts.

Mapping network. Our mapping network consists of two parts. First, the network architecture
to define the function o is in Table Second, the NODE-based network has the following ODE
function r in Table

'"https://github.com/NVlabs/stylegan2|(Nvidia Source Code License)

14

https://github.com/NVlabs/stylegan2

Under review as a conference paper at ICLR 2023

Table 7: The architecture of the network o. Table 8: The architecture of the network r.
Layer Design Input Size Output Size Layer Design Input Size Output Size
1 LeakyReLU(Linear) C x H x W dim(h) 1 LeakyReLU(Linear) dim(h) dim(h)

Generator. We follow the original StyleGAN?2 architecture. However, we use the latent vector h(t)
instead of the intermediate latent code w of StyleGAN?2.

Discriminator. The network architecture of the discriminator also uses that of StyleGAN2. How-
ever, our discriminator receives time (t) as a conditional input. To this end, we use the positional
embedding of ¢ as in (2020). The hyperparameters for the discriminator are in Table [0}

B.5 TRAINING DETAILS

We train our model using the Adam optimizer for training both the generator and the discriminator.
We use the exponential moving average (EMA) when training the generator, which achieves high

performance in|Ho et al.|(2020); |Song et al.| (2021c); Karras et al.|(2020a). The hyperparameters for

the optimizer are in Table[9} The adversarial training object of our model is as follows:
m(;n Ei(t)wqi(,,) [-]Og(D¢(i(t), t)) + EZNN(O,UEI> [- lOg(l - D¢(G9(]\[U (Z))a t))}])

(1)

12‘}))(Ei(t)wqi(t) [EZNN(O,O’2I) [IOg(D(/,(GQ (]\/j’l/) (Z))7 IL))H)
where, qj;) is the interpolated image distribution, Dy is denoted as the discriminator, G'g is denoted
as the generator, and M, is denoted as the mapping network of our model. We also use the R;
regularization and the path length regularization (Karras et al| 2020b). Ag, (resp. A,q¢n) means
the coefficient of the R; regularization term (resp. the coefficient of the path length regularization
term). Each regularizer term is as follows:

R1(¢) =Ar, Eqi) [Vi (Do (i(1)[1)) [17], (12)
Path length =paenEn () i) ([Tnni(t) l2 — a), (13)

where Jy, 1) = 0Gg(h(t))/Oh(t) is the Jacobian matrix. The constant a is set dynamically during
optimization to find an appropriate global scale. The path length regularization helps with the map-
ping from latent vectors to images. The lazy regularization makes training stable by computing the
regularization terms (R;, path length) less frequently than the main loss function. In SPI-GAN, the
regularization term for the generator and the discriminator is calculated once every 4 iterations and
once every 16 iterations, respectively. The hyperparameters for the regularizers are in Table[J]

B.6 HYPERPARAMETERS
We list all the key hyperparameters in our experiments for each dataset. Our supplementary material

accompanies some trained checkpoints and one can easily reproduce.

Table 9: Hyperparameters set for SPI-GAN.
CIFAR-10 CelebA-HQ-256 LSUN-Church-256

ADA target 0.6 0.6 0.6
Augmentation ADA interval 4 4 4
Amizing (6) 0 90 90
. Mapping network 1 7 7
Architecture DIi)SCﬂ%ninator Original Residual Residual
Learning rate for generator 0.0025 0.0025 0.0025
Optimizer Learning rate for discriminator 0.0025 0.0025 0.0025
EMA 0.9999 0.999 0.999
ODE Solver 4th order Runge—Kutta
Lazy generator 4 4 4
Regularization Lazy discriminator 16 16 16
AR, 0.01 10 10
Apath 0 2 2

15

Under review as a conference paper at ICLR 2023

B.7 SAMPLING METHOD OF SPI-GAN

The sampling algorithm is similar to the training algorithm. The two main differences are i) we
sample a set of noisy vectors {z'}I¥ | whereas we use {x}}¥, in the training algorithm, and ii) for
sampling, we need only {h'(1)}Y,.

Algorithm 2: How to sampling SPI-GAN
Input: Noisy vectors z' ~ N (0,0°1)
1 Sample a set of noisy vectors {z'}{Y ;;
2 Calculate {h'(1)}#, via the mapping network which processes {z'}#_; by solving EquationElafter
setting j = K;
3 Generate a fake image {i'(1)}#, with the generator;
4 return fake image {i' (1)} ,;

C VISUALIZATION

We introduce several high-resolution generated samples.

C.1 CIFAR-10

Figure 12: Qualitative results on CIFAR-10.

16

Under review as a conference paper at ICLR 2023

C.2 CELEBA-HQ-256

Figure 13: Qualitative results on CelebA-HQ-256.

C.3 LSUN-CHURCH-256

Figure 14: Qualitative results on LSUN-Church-256.

17

