
Under review as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS

Data sampling strategy. Most optical flow estimation models are trained in a curriculum-learning
way by starting on the hardest synthetic datasets, or on a large collection of data, and are then fine-
tune iteratively on each target domain data. For instance, they are pretrained on the Sintel raw Butler
et al. (2012), KITTI raw A. et al. (2013), or chairs dataset Yu et al. (2016), and are then specifically
fine-tuned on the KITTI multi-view extension Menze & Geiger (2015) or the Sintel clean and final
dataset. We do everything at the same time, we start by doing only SSL training on ImageNet Deng
et al. (2009), and during pretraining, at a given epoch which is an hyper-parameter of our model, we
introduce flow training with a mixture of all our training datasets at the same time. We randomly
sample one batch of sequences from one of our video datasets at each iteration. Doing so allows
us to remain general and not design the training procedure specifically for a given set of video
datasets, nor changing the training recipe when adding or removing a dataset from the collection of
pretraining datasets.

Training stability. Stabilizing the training is particularly challenging, as the two tasks are difficult
to optimize together. The norm and gradient of the flow estimator weights explode rapidly, causing
’NaN’ values that propagate to the loss. There are four essential parts of our method that help to
completely remove these instabilities. We introduce LayerNorm Ba et al. (2016) layers in the flow
estimator network, clip the value of the flow output to a valid flow range and carefully tune the
weight decay and the learning rate of the flow estimator network. Additional details about training
are given in Appendix B, and about the architecture in Appendix C.

Encoder details. We modify the ConvNeXt Liu et al. (2022) architecture, in particular the
ConvNeXt-T model with 21M parameters, and adapt it to produce a set of pyramidal features with
six levels, with a resolution that doubles between each level. We replace the stem layer with kernel
size 4 of ConvNeXt by two convolutional layers with kernels of size 2. We describe our modifica-
tions precisely in Appendix C.

Training details. We train our model on 8 Nvidia Tesla V100-32Gb GPUs, with the AdamW
optimizer Loshchilov & Hutter (2019), a weight decay of 1e−6, a batch size of 384 and a learning
rate of 3e−4 for the encoder and 1e−4 for the flow estimator. The learning rate follows a cosine
decay schedule, starting from 0 with 10 warmup epochs and with final value of 1e−5. The flow
estimation objective is trained after 10 epochs of only pretraining on ImageNet. The expander
architecture follows Bardes et al. (2022a) and is a fully-connected network with dimensions (768-
8192-8192-8192). We give a complete description of our training hyper-parameters in Appendix B
and the architecture of the flow estimator in Appendix C.

B HYPER-PARAMETERS

We provide in Table 6 the set of all hyper-parameters used to trained our MC-JEPA and M-JEPA
models. We follow the data augmentation protocol of Bardes et al. (2022a) and generate 2 views
by random cropping with uniform distribution cropping size, and random color jittering. We use
the same image resolution as Teed & Deng (2020) for the flow datasets. We found that having
specific optimization hyper-parameters for the flow estimator network and the backbone was bene-
ficial for the performance and stability of the training. We therefore first tune the hyper-parameters
with M-JEPA on flow estimation only and then fix the flow optimization hyper-parameters and tune
the general self-supervised learning optimization hyper-parameters of MC-JEPA. We increase the
flow consistency factor, which gave us a better performance, and decrease the clipping value of the
outputed flow from 256 to 128, which was necessary for the stability of the training. We detail in
Table 7 the precise list of all the datasets that we use to train the flow estimation objective. The
final dataset is built by repeating each of the datasets a given number of time that is indicated in the
Table. During training of MC-JEPA, we shuffle this dataset and sample one batch from it for every
batch that is sampled from ImageNet. Finally, Table 8 details the coefficients that are used for the
variance and covariance losses of Eq. (6), invariance loss, and flow loss of Eq. (7), at each layer of
the architecture. As we go further into the network we increase the coefficients, because we found
that the last layers need more regularization than the early layer. We do the the tuning in a greedy
way, cross-validating each layer coefficient one by one.

15



Under review as a conference paper at ICLR 2024

Table 6: Hyper-parameters. List of all the hyper-parameters used for MC-JEPA and M-JEPA
training. The values that are noted ”-” indicate that the corresponding parameter is not used.

Hyper-parameter MC-JEPA M-JEPA

data
ImageNet res. (224, 224) -
min scale crops 0.08 -
max scale crops 1.0 -
Sintel res. (384, 832) (384, 832)
KITTI res. (256, 832) (256, 832)
FlyingX res. (384, 512) (384, 512)

optimization
num gpus 8 8
epochs 100 100
warmump epochs 10 10
batch size 384 -
optimizer AdamW AdamW
lr 3e−4 -
scheduler cosine cosine
end lr 3e−8 -
weight decay 1e−6 -
betas (0.9, 0.999) (0.9, 0.999)

architecture
drop path rate 0.1 0.1
layer scale init value 0.0 0.0
expander dims. 8192-8192-8192 -

flow
flow alpha 0.1 1.0
flow coeff 1.0 1.0
flow clip value 128.0 256.0
flow start epoch 10 0
flow loss smooth factor 75.0 75.0
flow cycle consistency coeff 0.2 0.1
flow batch size 8 8
flow lr 1e−4 1e−4
flow weigth decay 1e−6 1e−6

16



Under review as a conference paper at ICLR 2024

Table 7: Flow datasets. List of all the datasets that we use for training the flow estimation objective.
The size is the total number of pairs on which the optical flow is estimated. Repetition is the number
of time the dataset is repeated to build the final dataset from which a random batch is sampled at
each iteration.

Dataset Size Repetition

FlyingThings 40302 1
FlyingChairs 22232 1
KITTI raw 42382 1
KITTI 2012 train 200 100
KITTI 2012 multiview train 3800 5
KITTI 2012 val 198 100
KITTI 2012 multiview val 3762 5
KITTI 2015 train 200 100
KITTI 2015 multiview train 3800 5
KITTI 2015 val 198 100
KITTI 2015 multiview val 3762 5
Sintel raw. 27858 1
Sintel clean 1041 5
Sintel final 1041 5
HD1k 1047 5

Table 8: Loss coefficients. The coefficients for each loss at each specific layer of the architecture.
Var and Cov are the variance and covariance regularization losses of Eq. (6). Invaraince is the
invariance loss of VICReg used only for self-supervised training on ImageNet. Flow is the sum of
all the flow losses, without the SSL loss, in Eq. (7). L1 to L6 are the features stages from lowest to
highest resolution of our modified ConvNeXt-T backbone.

Layer Var Cov Invariance Flow

Expander output 25.0 1.0 1.0 -
Encoder output (L1) 0.01 0.04 - 1.0
L2 0.01 0.04 - 1.0
L3 0.01 0.001 - 1.0
L4 0.01 0.0 - 1.0
L5 0.001 0.0 - 0.1
L6 0.0001 0.0 - 0.01

C ARCHITECTURE DETAILS

We describe in Figure 6 the modifications we make from the ConvNeXt-T architecture. We modify
the stem layer, with the objective of increasing from 5 to 6 the number of layers in our pyramidal
features, and to have the final flow prediction layer be right after the first layer of the architecture,
which makes it close to the pixels space. We split the stem convolutional layer with a wide kernel
of 7 ∗ 7 into two smaller layers with kernel sizes 3 ∗ 3 and 4 ∗ 4, and reduce the stride value from
4, to 2 for each layer, in order to make the flow regression process smoother from one step to the
next. We describe in Figure 7 the modifications we make to the PWC flow estimator architecture, we
add a LayerNorm after each convolutional layer except the last one, which greatly improves training
stability, and multiply the number of filters of these layers by a factor C that we fix to 2 in practice
for our final model. Not having a LayerNorm after the final layer of the flow estimator is essential
as it would bias the flow values toward a range that is different from the possible flow values range.

D ADDITIONAL RESULTS

We provide in Table 9 additional metrics, in Figure 8 additional visualizations, on the optical flow
benchmarks; and in Table 10 additional metrics, in Figure 9 additional visualizations, on the video
segmentation task on DAVIS.

17



Under review as a conference paper at ICLR 2024

I=3, O=48, K=7, S=4, P=0

LayerNorm

I=3 O=48, K=4, S=2, P=1

LayerNorm

I=48, O=48, K=3, S=2, P=1

LayerNorm

Figure 6: Backbone stem modifications. The stem convolutional layer in the ConvNeXt-T archi-
tecture is replaced in our backbone with two convolutional layers by reducing the kernel size and
stride. Blue boxes are convolutional layers. I: input channels, O: output channels, K: kernel size, S:
stride, P: padding.

I=X + C.Y, O=C.Y

LayerNorm

I=X+Y, O=Y

Figure 7: PWC estimator modifications. A layer norm layer is added after each convolutional
layer of the PWC estimator architecture, the coefficient C corresponds to the size factor parameter
discussed in Table 3. We use C = 2 in practice. Blue boxes are convolutional layers. I: input
channels, O: output channels.

Table 9: Additional optical flow results. We report
additionally to Table 1, EPE performance on non-
occluded (noc) and occluded (occ) pixels.

KITTI 2015 Sintel Clean Sintel Final

Method all noc occ all noc occ all noc occ

M-JPEA 3.01 2.26 6.98 2.98 1.54 23.99 3.82 2.17 24.68
MC-JEPA 2.67 2.08 6.24 2.81 1.25 23.82 3.51 1.99 24.23

Table 10: Additional video segmenta-
tion results. We report additionally to Ta-
ble 1, mean region similarity Jm and mean
contour-based accuracy Fm.

Method (J&F)m Jm Fm

VICReg 58.1 56.4 59.8
VICRegL 66.7 64.5 68.9
DINO 69.9 66.6 73.1
MC-JEPA 70.5 67.0 74.0

E ADDITIONAL ABLATION

One of the main issues with self-supervised learning is the collapse problem, where the network out-
puts a trivial solution. We prevent collapse by using variance-covariance (VC) regularization Bardes
et al. (2022a) and apply it at every layer of our architecture to deal with stability issues when working
in the multi-task setup. Table 11 presents an ablation of whether to use VC or not, and whether to
use it only at the last layer, which is enough to prevent collapse, or at every layer of the architecture,
and gives the best results for both flow estimation and segmentation. We also experiment with VC
warming, which consists of training the VC layers during a given number of epochs before starting
regular training, which helps fix stability issues and accelerate the convergence speed. Our results
show that doing a single epoch of warmup is enough and helps the performance.

18



Under review as a conference paper at ICLR 2024

Table 11: Ablation: variance-covariance. Influence of variance-covariance regularization (VC) on
performance. During warmup epochs, only the variance-covariance criteria are trained; this helps
stabilizing the training. VC is applied in the last layer, in the expander output, or in every layer, with
carefully chosen coefficients as described in Appendix B.

Warmup ep. Setup K15 clean final ISeg VSeg

- None 3.41 3.37 4.45 47.3 37.8
0 Last layer 2.77 2.88 3.55 65.6 69.2
0 All layers 2.65 2.80 3.48 66.2 69.4
1 All layers 2.67 2.81 3.51 67.1 70.5
2 All layers 2.91 2.99 3.78 62.5 64.1

Reference Image Ground Truth MC-JEPA M-JEPA ARFLow

KI
TT

I
Si

nt
el

Figure 8: Qualitative visualization: optical flow. We compare our results of our complete model
(MC-JEPA) and our model only pretrained on flow (M-JEPA) with ARFlow. Top 5 rows are from
KITTI-15, bottom 5 rows are from Sintel.

19



Under review as a conference paper at ICLR 2024

t=1 t=10 t=25 t=50

Figure 9: Qualitative visualization: video segmentation. We visualize the segmentation maps
obtained by the frozen features learnt with MC-JEPA on the video instance tracking task on DAVIS
2017, for several video sequences, at frames t=1,10,25,50. Frame 1 is given as ground truth, and the
others are predicted by our model.

20


