
* speaker

Efficient Reinforcement Learning

Development with RLzoo

Zihan Ding1*, Tianyang Yu2, Hongming Zhang3, Yanhua Huang4, Guo Li5,
Quancheng Guo6, Luo Mai6, Hao Dong3

1 Princeton University 2 Nanchang University 3 Peking University 4 Xiaohongshu Technology Co.

5 Imperial College London 6 University of Edinburgh

Presentation for paper at ACM Multimedia 2021 Open Source Software Competition

Open-source Repo: https://github.com/tensorlayer/RLzoo

Recent Progress in Reinforcement Learning (RL)

AlphaGo AlphaZero1

AlphaStar

1. https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

2. https://openai.com/blog/openai-five/

OpenAI Five: Dota2

Quadrupedal Robot3

3 .Lee, Joonho, et al. "Learning quadrupedal locomotion over challenging terrain." Science robotics 5.47 (2020).

Overview: Difficulties for a Reinforcement Learning Developer/Researcher

A typical procedure for developing with Deep Reinforcement Learning:

Prototyping

Phase

Customisation

Phase

Algorithm

Comparison

Phase

Incorporate environments, agents, model

learner, sampler, etc.

Determine hyperparameters, neural

network architecture, etc.

Evaluate and tune different algorithms,

benchmark the performances, etc.

It's usually an

iterative

procedure!

1. Hardness in hands-on coding

for developers.

2. Require extensive efforts,

effective evaluation framework

and expert experience.

3. Require in-depth knowledge

about DRL algorithms.

Difficulties:

What Are Provided in RLzoo

1. High-level yet flexible APIs for

declaring DRL agents

3. DRL model zoo

2. Automatic constructing process

for DRL agents

1. Hardness in hands-on coding

for developers.

2. Require extensive efforts,

effective evaluation framework

and expert experience.

3. Require in-depth knowledge

about DRL algorithms.

Difficulties:RLzoo Characteristics:

from rlzoo.common.env_wrappers import build_env

from rlzoo.common.utils import call_default_params

from rlzoo.algorithms import TD3

env_type = 'classic_control'

env_name = 'Pendulum−v0'

env = build_env (env_name, env_type) # Build environment

alg_params, learn_params = call_default_params(env,env_type, 'TD3') # Create configuration

agent = TD3(**alg_params) # Construct agent

agent.learn(env, 'train', **learn_params) # Launch training

1. High-level yet Flexible APIs

An example launch script with RLzoo (less than 10 lines):

API table:

2. Automatic Agent Construction

By applying three adaptor modules:

* observation adaptor

* policy adaptor

* action adaptor

3. DRL Model Zoo

Implemented DRL algorithms in RLzoo (more than 10 types):

DQN, double DQN, dueling DQN, noisy DQN, distributed DQN;

Hindsight experience replay (HER), DDPG, TD3, SAC, A2C, A3C, PPO, DPPO, TRPO, etc.

Comparison against other libraries: (in terms of alg., env. supports and script brevity)

RLzoo is rich but simple!

Additional: Distributed Training Framework

RLzoo also provides a distributed training

framework1 for training across multiple GPUs and

machines, based on KungFu2.

1. More details see the branch: https://github.com/tensorlayer/RLzoo/tree/distributed_rlzoo

2. KunFu: https://github.com/lsds/KungFu

https://github.com/lsds/KungFu

Community

RLzoo is jointly contributed by people from a variety

of institutes.

Based on RLzoo community, there is a featured

book Deep Reinforcement Learning:

Fundamentals, Research and Applications

published by Springer 2020 in English and

Publishing House of Electronics Industry in

Chinese.

THANKS

Thanks for the support of TensorLayer community.

Look forward to your contribution to RLzoo community!

Contact: zhding@mail.ustc.edu.cn

