A Expressivity of Low-Rank Models

We focus on the simplest case of HMMs for an analysis of expressivity. In the case of Gaussian
emissions, a model with more states but low rank is more expressive than a model with fewer states
because for a single timestep, a larger mixture of Gaussians is more expressive. In the case of discrete
emissions, however, the emission distribution for a single timestep (i.e. ZZ p(z, z)) is not more
expressive. Instead, we show that there exists joint marginal distributions of discrete x over multiple
timesteps that are captured by large state but low-rank HMMs, but not expressible by models with
fewer states.

We construct a counter-example with a sequence of length 7" = 2 and emission space of z; € {0, 1,2}.
We show that a 3-state HMM with rank 2, HMM-3-2, with manually chosen transitions and emissions,
cannot be modeled by any 2-state HMM. The transition probabilities for the HMM-3-2 are given by
(rows zy, columns 2;41)

111 12
3 3 3 3 3 1

p(zg1lze) =0 1 0| =1 0 [(1) 0 (1)}—UVT7
3 0 3 0 1]1L2 2

emission probabilities by (rows z;, columns x;):
1 0 0
plaglze) = |0 1 0],
0 0 1

and starting distribution
101 1
Pzlz2)=[3 3 3]

This yields the following marginal distribution (row 21, column x5):

p(x1,x2) =

o= OOl
O wlo—
= OOl

Next, we show that there does not exist a 2-state HMM that can have this marginal distribution.
Assuming the contrary, that there exists a 2-state HMM that has this marginal distribution, we will
first show that there is only one possible emission matrix. We will then use that to further show that
the posterior, then transitions also must be sparse, resulting in a marginal emission distribution that
contradicts the original assumption.

We start by setting up a system of equations. The marginal distribution over observations is obtained
by summing over zj, za:

p(z1, 22) Z (ZP Z1, 21, 22)p(iﬂz | 22).

z2
Let the inner term be f(x1,21) = 221 p(x1, 21, 22) = p(x1, 22). In a small abuse of notation, let

p(z2 | 22 = 0) be a row vector with entries [p(x2 | 22 = 0)], = p(x2 = x | 22 = 0), and similarly
for p(x2 | z2 = 1). We then have, first summing over z1,

s 9 35| [f0,00 f(0,1)
1382 p(2]z2 = 0)

P(zi,z2)= [0 % 0| =1f(1,0 1,1
) 1§ o1 mzog %21%] [pm'@ 1)]

We can determine the first row of the emission matrix, p(z2 | z2 = 0) from the second row of this
system of equations, rewritten here:

plaz |21 =1) = f(1,00p(x2]z2 = 0) + f(1,1)p(a2|a =1) = [0 5 0.

We can deduce that f(1,0), f(1,1) > 0, otherwise p(z1,22 = 1) = 0 # . Without loss of
generality, assume f(1,0) > 0, then p(z2 = 0|za = 0) = p(x2 = 2|z2 = 0) = 0, since
p(r1 =1,29 =0) = p(z1 = 1,22 = 2) = 0. Therefore,

p(ra]z2 =0)=[0 1 0].

13

We can similarly determine the second row of the emission matrix, p(xs | zo = 1), from the last row
of the system of equations:

plaz | 21 =2) = f(2,0)p(w2]z2 = 0) + (2, Dp(az|zz =1) = [1 0

]

As we determined that p(z2]|ze = 0) = [0 1 0], f(2,0) must be 0, otherwise p(ze = 1|z, =
2) > 0. Therefore f(2,1)p(w2]z2 =1) = [0 g], yielding

]

o=

p(ra]za =1) = [% 0

N[

Putting it together, the full emission matrix is given by

0 1 0
p(zelz) = |1 o |-
2 2
This allows us to find the posterior distribution p(z; | 1) via Bayes’ rule:

plrr=1|2=1)p(z1) 0-p(z

pzr=1]a1=1)= plzy =1) B p(z1 =1)

:O7

implying p(z; = 0 | 1 = 1) = 1. By similar reasoning, we have p(z; = 1 | 21 = 0) = 1 and
plz1=1]x1=2)=1.

Given the sparse emissions and posteriors, we will show that the transitions must be similarly sparse,

resulting in an overly sparse marginal distribution over emissions (contradiction). We can lower
bound

O=plaa=1]a1=2)>plaa=1]220=0)p(22 =021 =1)p(z1 = 1| 21 = 2)

by the definition of total probability and nonnegativity of probability. Then, substituting p(zo = 1 |
2o = 0) = 1, we have

O=plze=1]21=2)>p(za=0]2 =1),

from which we can deduce p(ze =0 21 =1) =0.

Now, we will show that p(z2 = 1 | 1 = 0) = 0, which contradicts the marginal distribution. We
have

Pz =1[21=0)= 3 plws=1] 22)p(z2 | 21)p(21 | 21 = 0)

21,22

=plre=1]lzm=plza=1]2=1)p(z1 = 1|z =0),

where we obtained the second equality because p(z1 =0 |21 =0) =0andp(ze =0 21 = 1). As
plra=1]21=1)=0,wehavep(za=1]|2=1)=0# % As this is a contradiction, we have
shown that there exists a marginal distribution modelable with a 3-state HMM with rank 2, but not a
2-state HMM.

B Low-Rank Hypergraph Marginalization for HMMs and
PCFGs

We provide the low-rank hypergraph marginalization algorithms for HMMs and PCFGs in Alg.
with loops over labels z (and products of labels) and feature dimensions n left implicit for brevity.
We also assume that the label sets for PCFG are uniform for brevity — in practice, this can easily be
relaxed (this was not assumed in Alg.[2). We show how the normalizing constants ¢ are explicitly
computed using the unnormalized low-rank factors in each algorithm.

14

Algorithm 4 Low-rank hypergraph marginalization for HMMs and PCFGs

[HMM - Backward] [PCFG - CKY]
[Y]z n = [8(9(2))]n [Y]ZMZQJL = [#(9(21, 22))]n
Uz = [0(f(2))]n [Ulzuin = [6(f (2u))]n
[d. =[UVT1]. [, = [UVT1]., . .
for ¢t < (¢t + 1) in right-to-left order do for (z k) « (1,), (4, k) in span-size order do
Bev1lzeys = [~04t+1]zt+1 [Bi,,k) (21,20) = [O‘w]zl [tz
[V;]Zt“,n = [V}zul,n _ [4,7, k]Zl za,m = []217227n
[Ut]zf n =P | 2)[c]2[Ulzn [Uijk)zum = [€]z, [U]zu,n
Qi & Ut(5t+1) Qi k & Ui,j,k(v;:;',kﬁi,j,k)
return o 1 return o ;1

C Extension of the Low-Rank Constraint to Other Semirings

Enforcing low-rank constraints in the scoring matrices W, leads to a speedup for the key step in the
hypergraph marginalization algorithm:

VB, = (UV.") By = Ue (V. B), (8)

where [3]2, 2, = [04]2 [@2]2,. While the low-rank constraint allows for speedups in both the log
and probability semirings used for marginal inference, the low-rank constraint does not result in
speedups in the tropical semiring, used for MAP inference. To see this, we first review the low-rank
speedup in scalar form. The key matrix-vector product step of marginal inference in scalar form is

given by
Z [\I/e]zu,(zl,zz) 21,22 — Z Z e zu,n (z1 22),mn [5]21,22
21,22 21,22 M
= Z Z (21,22) n[ﬁ]zhm
n zi,z2
= Z e Zu s Z](zl z2),m [6]21’227

21,22

which must be computed for each z,. The first line takes O(L!¢/*1) computation, while the last line
takes O(L!°/ N') computation. The speedup comes rearranging the sum over (zy, z3) and n, then
pulling out the U, factor, thanks to the distributive propery of multiplication. When performing MAP
inference instead of marginal inference, we take a max over (21, 23) instead of a sum. Unfortunately,
in the case of the max-times semiring used for MAP inference, we cannot rearrange max and sum,
preventing low-rank models from obtaining a speedup:

max[\PE]zu,(zhz*z)[B]z“@ = maXZ[Ue]zu,n[Ve](zh@),n[ﬁ]m,@
21,22

21,72

2wl nlVelGr ooy Ple

D Data Details

For language modeling on PENN TREEBANK (PTB) [Marcus et al., [1993] we use the preprocessing
from |Mikolov et al.[[2011]], which lowercases all words and substitutes OOV words with UNKSs. The
dataset consists of 929k training words, 73k validation words, and 82k test words, with a vocabulary
of size 10k. Words outside of the vocabulary are mapped to the UNK token. We insert EOS tokens
after each sentence, and model each sentence, including the EOS token, independently.

The four polyphonic music datasets, Nottingham (Nott), Piano, MuseData (Muse), and JSB chorales
(JSB), are used with the same splits as Boulanger-Lewandowski et al.|[2012]]. The data is obtained via

15

Total Length

Dataset Avg Len Train Valid Text

Nott 2544 176,551 45,513 44,463
Piano 872.5 75911 8,540 19,036
Muse 4679 245,202 82,755 64,339
JSB 60.3 64,339 4,602 4,725

Table 3: The lengths for the four polyphonic music datasets. The average length of an example in the
training split for each dataset is given.

the following script. Each timestep consists of an 88-dimensional binary vector indicating whether
a particular note is played. Since multiple notes may be played at the same time, the effective
vocabulary size is extremely large. The dataset lengths are given in Table 3]

In experiments with PCFGs for language modeling, we also use PTB, but with the splits and
preprocessing used in unsupervised constituency parsing [Shen et al., 2018, 2019, |Kim et al., 2019].
This preprocessing discards punctuation, lowercases all tokens, and uses the 10k most frequent words
as the vocabulary. The splits are as follows: sections 2-21 for training, 22 for validation, 23 for test.
Performance is evaluated using perplexity.

In experiments with HSMMs for video modeling, we use the primary section of the CROSSTASK
dataset [Zhukov et al.;|2019], consisting of about 2.7k instructional videos from 18 different tasks
such as “Make Banana Ice Cream” or “Change a Tire”. We use the preprocessing from [Fried et al.
[2020]], where pretrained convolutional neural networks are first applied to extract continuous image
and audio features for each frame, followed by PCA to project features to 300 dimensionsE] We set
aside 10% of the training videos for validation.

E Generative Process of HSMM

We use an HSMM to model the generative process of the sequence of continuous features for each
video. The HSMM defines the following generative process: first, we sample a sequence of discrete
latent states z = (21, - , zx) with a first-order Markov model. Next, we sample the length of
observations under each state from a Poisson distribution [, ~ Poisson(,,) truncated at max length
M. The joint distribution is defined as

Iyl

K
p(z,2,1) H (2 |20 ok | 2e) [ol 2), €))

i=li++lk—1
where the sequence length 7" can be computed as T = Zle l.. In this work, we only consider
modeling continuous z;, so we use a Gaussian distribution for p(x; | z).

To compute p(z), we can marginalize [, z using dynamic programming similar to HMMs, except that
we have an additional factor of M: the overall complexity is O(T x M x L?) (ignoring the emission
part since they are usually not the bottleneck). We refer to|Yu| [2010] for more details.

F Full Parameterization of HMMs, PCFGs, and HSMMs

In this section, we present more details on the parameterizations of the HMM, PCFG, and HSMM.
The main detail is where and how are neural networks used to parameterize state representations.

Phttps://github.com/dpfried/action-segmentation

16

https://github.com/pyro-ppl/pyro/blob/d7687ae0f738bd81a792dabbb18a53c0fce73765/pyro/contrib/examples/polyphonic_data_loader.py
https://github.com/dpfried/action-segmentation

For low-rank HMMs (LHMMs) we use the following mixed parameterization that specifically targets

the state-state bottleneck:
p(z1 | 20) o< ¢(f1(uz,) " d(v,)
Pz | z-1) < p(u,) " é(vz,) (10)

Pt | 2) o< exp(uy, f2(va,)),

where u, is the embedding of z when z is used as head, v, its embedding when used as tail, fi, fo
are MLPs with two residual layers, and feature map ¢(z) = exp(Wz).

The PCFG uses a similar mixed parameterization. These probabilities correspond to start (S — A),
preterminal (7" — x), and standard productions (A — B C) respectively.

pla1n | S) o exp(fi(us) Tus,)
p(zi | 2i) o exp(ul, fo(va,))

T i+1=5v (in
expu,, V. . .. R
P(2i4s 2k | Zik) o ps b o) =k
: p(ul,,) O(vey;z0) OW.

where u,/u, is the embedding of z when z is used as head,v,/v, ., is the embedding of z/(z1, 22)
when they are used as tail, and f;, fo are MLPs with two residual layers as in|Kim et al.[[2019]. We
use the feature map ¢(r) = exp(Wz — ||x[|3/2).

For both HMMs and neural PCFG models, we use the same parameterization of the MLPs f; and f

as|Kim et al.|[2019]:
fi(x) = gi1(gi2(Wix)),
9i,j(y) = ReLU(U; ;ReLU(V; ;v)) + v,

with Z,j S {1, 2}, and Wi, V;;’j, Ui,j S RPxD,

For HSMM:s, the baseline (HSMM in Table [2)) follows the fully unsupervised setting in [Fried et al.
[2020] except that we don’t apply any state constraints from the prior knowledge of each task The
model maintains a log transition probability lookup table for p(z | zk—1), a lookup table for the log
of the parameters of the Poisson distribution A\, . We maintain a mean and a diagonal covariance
matrix for the Gaussian distribution p(z; | zx) for each zj. For low-rank HSMMs (LHSMMs), we
use the same parameterization for p(zy | zx—1) as in HMMs:

p(zk | 26-1) < d(uz,) d(v2,), (13)

where u, is the embedding of z when z is used as head, v, its embedding when used as tail, and the
feature map ¢(x) = exp(Wx). The emission parameterization is the same as in baseline HSMMs, a
Gaussian kernel.

12)

G Initialization and Optimization Hyperparameters

We initialize the parameters W, in ¢(z) = exp(W) and variants, of feature maps using orthogonal
feature projections [Choromanski et al.|, 2020], and update it alongside the model parameters during
training.

HMM parameters are initialized with the Xavier initialization [Glorot and Bengiol [2010] E] We use the
AdamW [Loshchilov and Hutter}[2017]] optimizer with a learning rate of 0.001, 51 = 0.9, 82 = 0.999,
weight decay 0.01, and a max grad norm of 5. We use a state dropout rate of 0.1, and additionally
have a dropout rate of 0.1 on the feature space of LHMMs. We train for 30 epochs with a max batch
size of 256 tokens, and anneal the learning rate by dividing by 4 if the validation perplexity fails to
improve after 4 evaluations. Evaluations are performed 4 times per epoch. The sentences, which

“We got rid of those constraints to allow for changing the total number of states, since otherwise we can’t
make any changes under a predefined state space.

'SFor banded experiments, we initialize the band parameters by additionally adding 30 to each element.
Without this the band scores were too small compared to the exponentiated scores, and were ignored by the
model.

17

we model independently from one another, are shuffled after every epoch. Batches of sentences are
drawn from buckets containing sentences of similar lengths to minimize padding.

For the polyphonic music datasets, we use the same hyperparameters as the language modeling
experiments, except a state dropout rate of 0.5 for JSB and Nottingham, 0.1 for Muse and Piano.
We did not use feature space dropout in the LHMMs on the music datasets. For Nottingham and
JSB, sentences were batched in length buckets, the same as language modeling. Due to memory
constraints, Muse and Piano were processed using BPTT with a batch size of 8 for Muse and 2 for
Piano, and a BPTT length of 128. We use D = 256 for all embeddings and MLPs on all datasets,
except Piano, which due to its small size required D = 64 dimensional embeddings and MLPs.

For PCFGs, parameters are initialized with the Xavier uniform initialization [Glorot and Bengio,
2010]]. We follow the experiment setting in |Kim et al.| [2019] and use the Adam [Kingma and Bal
2017]) optimizer with 51 = 0.75, B2 = 0.999, a max grad norm of 3, and we tune the learning rate
from {0.001,0.002} using validation perplexity. We train for 15 epochs with a batch size of 4. The
learning rate is not annealed over training, but a curriculum learning approach is applied where only
sentences of at most length 30 are considered in the first epoch. In each of the following epochs, the
longest length of sentences considered is increased by 1.

For HSMMs, we use the same initialization and optimization hyperparameters as [Fried et al.| [2020]]:
The Gaussian means and covariances are initialized with empirical means and covariances (the
Gaussian parameters for all states are initialized the same way and they only diverge through training).
The transition matrix is initialized to be uniform distribution for baseline HSMMs, and the transition
embeddings are initialized using the Xavier initialization for LHSMMs. The log of Poisson parameters
are initialized to be 0. We train all models for 4 epochs using the Adam optimizer with initial learning
rate of 5e-3, and we reduce the learning rate 80% when log likelihood doesn’t improve over the
previous epoch. We clamp the learning rate to be at least 1e-4. We use a batch size of 5 following
Fried et al.[[2020], simulated by accumulating gradients under batch size 1 in order to scale up the
number of states as much as we can. Gradient norms are clipped to be at most 10 before updating.
Training take 1-2 days depending on the number of states and whether a low-rank constraint is used.

We use the following hardware for our experiments: for HMMSs we run experiments on 8 Titan RTX
GPUs with 24G of memory on an internal cluster. For PCFGs and HSMMs we run experiments on 1
Nvidia V100 GPU with 32G of memory on an internal cluster.

H HMM Rank Analysis

Table [] contains the empirical ranks of trained HMMs and LHMMs, estimated by counting the
number of singular values greater than 1e-5. Note that the feature dimension N is the maximum
attainable rank for the transition matrix of an LHMM. Although LHMMs often manage to achieve
the same validation perplexity as HMMs at relatively small N, the ranks of the transition matrices
are much lower than both their HMM counterparts as well as N. At larger state sizes, the ranks of
learned matrices are almost half of their max achievable rank. Interestingly, this holds true for HMMs
as well, with the empirical rank of the transition matrices significantly smaller than the number of
states. Whether this implies that the models can be improved is left to future investigations.

I Low-rank and Banded HMM Parameterization

In some scenarios, the low-rank constraint may be too strong. For example, a low-rank model is
unable to fit the identity matrix, which would have rank L. In order to overcome this limitation, we
extend the low-rank model while preserving the computational complexity of inference. We perform
experiments with an additional set of parameters § € R%*% which allow the model to learn high-rank
structure (the experimental results can be found in Tbl.|1)). We constrain € to have banded structure,
such that [0],, , ., = 0if |z, — z;_1| > N/2. See Fig.|3|for an illustration of banded structure.

Let band segment B, = {2’ : |z — 2| < N/2}. The transition probabilities are then given by
[e]zt—l’zt + (b(uzt—l)-r(b(vzt)
Z)

Zt—1

p(Zt | thl) = (14)

18

Model L N rank(A) rank(O) Val PPL

HMM 16384 - 9187 9107 144
LHMM 16384 8192 2572 7487 141
LHMM 16384 4096 2016 7139 144
LHMM 16384 2048 1559 6509 141
LMM 8192 - 5330 5349 152
LHMM 8192 4096 1604 5113 149
LHMM 8192 2048 1020 4980 153
LHMM 8192 1024 791 5033 161
HMM 4096 - 2992 3388 155
LHMM 4096 2048 1171 3300 154
LHMM 4096 1024 790 2940 156
LHMM 4096 512 507 3186 163

Table 4: Ranks and validation perplexities for HMMs and LHMMs. The number of states is given
by L and the dimensionality of the feature space by N. The HMM uses softmax for the emission,
and therefore does not have a value for V. The transition matrix is denoted by A, and the emission
matrix by O. The rank was estimated by counting the number of singular values greater than le-5.
Models were trained with 0.1 state and feature dropout.

Figure 3: An example of a banded matrix with width N, which has N/2 nonzero elements on both
sides of the diagonal for each row.

with normalizing constants

Zzt—l = Z[G]Zt—hzt + ¢(u2t—1)—r¢(vzt)

2t

= Z [9]2171721 + ¢(u2171)T Z d)(vzf,)'

zZt€EB

5)

Zt—1

The normalization constant for each starting state Z,, , can be computed in time O(N).

This allows us to perform inference quickly. We can use the above to rewrite the score matrix
U, oc § + UV T, which turns the inner loop of Eqn. [3|(specialized to HMM:s) into

ar = U811 < (0+ UV)Brp1 = 0841 + UV Brya), (16)

omitting constants (i.e. emission probabilities and normalizing constants). Since 6 is banded, the
banded matrix-vector product 6/3; takes time O(LN). This update, in combination with the low-rank
product, takes O(LN) time total. Each update in the hypergraph marginalization algorithm is now 3
matrix-vector products costing O(LN) each, preserving the runtime of inference.

J Music Results

The full results on the polyphonic music modeling task can be found in Tbl. [5] with additional
models for comparison. Aside from the RNN-NADE [Boulanger-Lewandowski et al.| 2012]], which

19

Model Nott Piano Muse JSB
RNN-NADE 231 7.05 5.6 5.19
Seq-U-Net 297 193 696 8.173
R-Transformer 2.24 7.44 7.00 8.26
LSTM 343 7.77 7.23 8.17
STORN 285 7.13 6.16 6.91
LV-RNN 272 761 6.89 3.99
SRNN 2.94 8.2 6.28 4.74
DMM 277 7.83 6.83 6.39
LNF 239 8.19 6.92 6.53
TSBN 3.67 7.89 6.81 7.48
HMM 243 851 7.34 5.74
LHMM 2.60 8.89 7.60 5.80

Table 5: Polyphonic music negative log-likelihood, measured in nats. The HMM models have
£ = 2! states and the LHMM has rank N = 29, a 4:1 state:rank ratio.

0.7
0.6

204
[}

(a)

o
go3
02
0.0
0 1 2 3 a

Entropy of Each Head

Softmax Parameterization

0.7
0.6
05

204

%]

G03

go.
0.2
0.1

0.0

L
0

1 2 3 4

Entropy of Each Head

(b) Low-rank Parameterization

Figure 4: Histogram of entropies of P(B C' | A). The average entropy is 2.26 for softmax and 2.34
for the low-rank parameterization. We use |A| = 30, |P| = 60, and N = 16 for the rank.

models the full joint distribution of notes as well as temporal dependencies; autoregressive neural

R-Transformer |

Ziegler and Rus

Wang et al.| 2019] (as reported by [Song et al.

h| [2019])); latent continuous LV-RNN [Gu et al.| 2015]] and SRNN
2016]; and latent discrete TSBN [Gan et al.}[2015]] and the baseline HMM; we additionally include the

[2019]) and LSTM (as reported by

autoregressive Seq-U-Net [Stoller et al. [2019], the continuous latent STORN [Bayer and Osendorfer,

[2015]), DMM [KTrishnan et al., 2016] and LNF [Ziegler and Rushl 2019].

K PCFG

Analysis

Kernel for

BC

NN NxP PxN PxP

PPL

SM SM
LR SM
LR LR
LR LR

SM
SM
LR
LR

SM
SM
SM
LR

243.19
242.72
259.05
278.60

Table 6: Model perplexities evaluated on the validation set of PTB. Here we use |A| = 30, |P| = 60,
and N = 16 rank. SM denotes the use of softmax, while LR a low-rank factorization.

20

Figure[4]shows the entropy distribution of the production rules H (P (B C|A)) for both using softmax
kernel and the approximation. The average entropies of the two distributions are close. Besides,
under this setting, P(B C' € N x N'|A) are close for both kernels as well (softmax 0.20, linear 0.21),
eliminating the possibility that the kernel model simply learns to avoid using B C € N x N (such
as by using a right-branching tree).

In Table [6] we consider the effects of the mixed parameterization, i.e. of replacing the softmax
parameterization with a low-rank parameterization. In particular, we consider different combinations
of preterminal / nonterminal tails BC e N xN,BC e N xP,BCePxN,andBC € PxP
(our main model only factorizes nonterminal / nonterminal tails). Table [6]shows that we get the best
perplexity when we only use K on B C' € N x N, and use softmax kernel Kgy for the rest of the
space. This fits with previous observations that when the label space | £| is large, a model with a very
small rank constraint hurts performance[]

L. Speed and Accuracy Frontier Analysis

We provide plots of the speed and accuracy over a range of model sizes for HMMs and PCFGs,
in Figure [5] (left and right respectively). Speed is measured in seconds per batch, and accuracy by
perplexity. Lower is better for both.

For HMMs, we range over the number of labels L € {210,211 212 213, 214}. For softmax HMMs,
more accurate models are slower, as shown in Figure [5|(left). However, we find that for any given
accuracy for a softmax model, there exists a similarly accurate LHMM that outspeeds it. While we
saw earlier in Figure (1| that at smaller sizes the low-rank constrain hurt accuracy, a model with a
larger state size but lower rank achieves similar accuracy at better speed compared to a small HMM.

For PCFGs, we range over L € {90, 180, 300}. We find a similar trend compared to HMMs: accuracy
results in slower models, as shown in Figure [5] (right). However, the LPCFG does not dominate the
frontier as it did with HMMs. We hypothesize that this is because of the small number of labels in the
model. In the case of HMMs, smaller softmax HMMs were more accurate than the faster low-rank
versions, but larger LHMMs with low rank were able to achieve similar perplexity at faster speeds.
This may be realized by exploring LPCFGs with more state sizes, or simply by scaling further.

190 Parameterization 250 | Parameterization
e softmax + softmax
180 low-rank 240 low-rank
Num states . Num states
& 170 1024 § 230 90
=9
o L
< 160 . © 300
> 8192 210
150 ‘ e 16384
200
L[]
140 190 °
274 272 272 27! 20
Sec / Batch Sec / Batch

Figure 5: The speed, in seconds per batch, versus accuracy, in perplexity, for HMMs (left), PCFGs
(right), and low-rank versions over a range of model sizes. As lower is better for both measures of
speed and accuracy, the frontier is the bottom left.

M Potential Negative Impact

While work on interpretable and controllable models is a step towards machine that can more easily
be understood by and interact with humans, introducing external-facing components leaves models
possibly more vulnerable to adversarial attacks. In particular, the interpretations (in conjunction with

'In this particular ablation study, the size of A" x A is only one-ninth of the total state space size {A U
P} x {NUP}

21

the predictions) afforded by interpretable models may be attacked [Zhang et al.l | 2018]]. Additionally,
models with simple dependencies may be easier for adversaries to understand and then craft attacks
for [Zhang et al.| 2021} [Liu et al.| [2018]].

22

	Expressivity of Low-Rank Models
	Low-Rank Hypergraph Marginalization for HMMs and PCFGs
	Extension of the Low-Rank Constraint to Other Semirings
	Data Details
	Generative Process of HSMM
	Full Parameterization of HMMs, PCFGs, and HSMMs
	Initialization and Optimization Hyperparameters
	HMM Rank Analysis
	Low-rank and Banded HMM Parameterization
	Music Results
	PCFG Analysis
	 Speed and Accuracy Frontier Analysis
	Potential Negative Impact

