
A Appendix583

A.1 APIs for VoxPoser584

Central to VoxPoser is an LLM generating Python code that is executed by a Python interpreter. Besides expos-585

ing NumPy package to the LLM, we provide the following environment APIs that LLMs can choose to invoke:586

detect(*obj names): Takes in a (list of) object name(s) and returns a list of dictionaries, where each587

dictionary corresponds to one instance of the matching object containing center position, occupancy grid,588

and mean normal vector.589

execute(movable, affordance map, avoidance map, rotation map, velocity map, grip-590

per map): Takes in “movable” (a dictionary returned by detect) and (optionally) a list of value maps and591

invokes the motion planner to execute the trajectory. Note that in MPC settings, “movable” and the input592

value maps are functionals that can be invoked to reflect the latest environment observation.593

index2cm(index, direction): Takes in an integer and a direction vector and returns the distance in594

centimeters in world coordinates displaced by the integer in voxel coordinates.595

pointat2quat(vector): Takes in a desired pointing direction for the end-effector and returns a satisfying596

target quaternion.597

set voxel by radius(voxel map, voxel xyz, radius cm, value): Assigns “value” to voxels within598

“radious cm” from “voxel xyz”.599

get empty affordance map(): Returns a default affordance map initialized with 0.600

get empty avoidance map(): Returns a default affordance map initialized with 0.601

get empty rotation map(): Returns a default affordance map initialized with current end-effector602

quaternion.603

get empty gripper map(): Returns a default affordance map initialized with current gripper action.604

get empty velocity map(): Returns a default affordance map initialized with 1.605

reset to default pose(): Reset to rest pose.606

A.2 Real-World Environment Setup607

We use a Franka Emika Panda robot with a tabletop setup. We use Operational Space Controller with608

impedance from Deoxys [114]. We mount two RGB-D cameras (Azure Kinect) at two opposite ends of609

the table: bottom right and top left from the top down view. At the start of each rollout, both cameras start610

recording and return the real-time RGB-D observations at 20 Hz.611

For each task, we evaluate each method on two settings: without and with disturbances. For tasks with612

disturbances, we apply three kinds of disturbances to the environment, which we pre-select a sequence613

of them at the start of the evaluation: 1) random forces applied to the robot, 2) random displacement of614

task-relevant and distractor objects, and 3) reverting task progress (e.g., pull drawer open while it’s being615

closed by the robot). We only apply the third disturbances to tasks where “entity of interest” is an object.616

We compare to a variant of Code as Policies [71] as a baseline that an LLM with action primitives. The617

primitives include: move to pos, rotate by quat, set vel, open gripper, close gripper. We do618

not provide primitives such as pick-and-place as they would be tailored for a particular suite of tasks that619

we do not constrain to in our study (similar to the control APIs for VoxPoser).620

A.2.1 Tasks621

Move & Avoid: “Move to the top of [obj1] while staying away from [obj2]”, where [obj1] and [obj2] are622

randomized everyday objects selected from the list: apple, banana, yellow bowl, headphones, mug, wood block.623

Set Up Table: “Please set up the table by placing utensils for my pasta”.624

16



Close Drawer: “Close the [deixis] drawer”, where [deixis] can be “top” or “bottom”.625

Open Bottle: “Turn open the vitamin bottle”.626

Sweep Trash: “Please sweep the paper trash into the blue dustpan”.627

A.3 Simulated Environment Setup628

We implement a tabletop manipulation environment with a Franka Emika Panda robot in SAPIEN [115]. The629

controller takes as input a desired end-effector 6-DoF pose, calculates a sequence of interpolated waypoints630

using inverse kinematics, and finally follows the waypoints using a PD controller. We use a set of 10 colored631

blocks and 10 colored lines in addition to an articulated cabinet with 3 drawers. They are initialized differently632

depending on the specific task. The lines are used as visual landmarks and are not interactable. For perception,633

a total of 4 RGB-D cameras are mounted at each end of the table pointing at the center of the workspace.634

A.3.1 Tasks635

We create a custom suite of 13 tasks shown in Table 4. Each task comes with a templated instruction where636

there may be one or multiple attributes randomized from the pre-defined list below. At reset time, a number of637

objects are selected (depending on the specific task) and are randomized across the workspace while making638

sure that task is not completed at reset and that task completion is feasible. A complete list of attributes639

can be found below, divided into “seen” and “unseen” categories:640

Seen Attributes:641

[pos]: [“back left corner of the table”, ‘front right corner of the table”, “right side of the table”, ”back side642

of the table”]643

[obj]: [“blue block”, “green block”, “yellow block”, “pink block”, “brown block”]644

[preposition]: [“left of”, “front side of”, “top of”]645

[deixis]: [‘topmost”, “second to the bottom”]646

[dist]: [3, 5, 7, 9, 11]647

[region]: [“right side of the table”, “back side of the table”]648

[velocity]: [“faster speed”, “a quarter of the speed”]649

[line]: [“blue line”, “green line”, “yellow line”, “pink line”, “brown line”]650

Unseen Attributes:651

[pos]: [“back right corner of the table”, “front left corner of the table”, “left side of the table”, “front side652

of the table”]653

[obj]: [“red block”, “orange block”, “purple block”, “cyan block”, “gray block”]654

[preposition]: [“right of”, “back side of”]655

[deixis]: [“bottommost”, “second to the top”]656

[dist]: [4, 6, 8, 10]657

[region]: [“left side of the table”, “front side of the table”]658

[velocity]: [“slower speed”, “3x speed”]659

[line]: [“red line”, “orange line”, “purple line”, “cyan line”, “gray line”]660

17



A.3.2 Full Results on Simulated Environments661

U-Net + MP LLM + Prim. VoxPoser

Tasks SA UA SA UA SA UA

move to the [preposition] the [obj] 95.0% 0.0% 85.0% 60.0% 90.0% 55.0%
move to the [pos] while staying on the [preposition] the [obj] 100.0% 10.0% 80.0% 30.0% 95.0% 50.0%
move to the [pos] while moving at [velocity] when within [dist]cm from the obj 80.0% 0.0% 10.0% 0.0% 100.0% 95.0%
close the [deixis] drawer by pushing 0.0% 0.0% 60.0% 60.0% 80.0% 80.0%
push the [obj] along the [line] 0.0% 0.0% 0.0% 0.0% 65.0% 30.0%
grasp the [obj] from the table at [velocity] 35.0% 0.0% 75.0% 70.0% 65.0% 40.0%
drop the [obj] to the [pos] 70.0% 10.0% 60.0% 100.0% 60.0% 100.0%
push the [obj] while letting it stay on [region] 0.0% 5.0% 10.0% 0.0% 50.0% 50.0%
move to the [region] 5.0% 0.0% 100.0% 95.0% 100.0% 100.0%
move to the [pos] while staying at least [dist]cm from the [obj] 0.0% 0.0% 15.0% 20.0% 85.0% 90.0%
move to the [pos] while moving at [velocity] in the [region] 0.0% 0.0% 90.0% 45.0% 85.0% 85.0%
push the [obj] to the [pos] while staying away from [obstacle] 0.0% 0.0% 0.0% 10.0% 45.0% 55.0%
push the [obj] to the [pos] 0.0% 0.0% 20.0% 25.0% 80.0% 75.0%

Table 4: Full experimental results in simulation. “SA” indicates seen attributes and “UA” indicates unseen attributes.

18



A.4 Prompts662

planner: Takes in a user instruction L and generates a sequence of sub-tasks ℓi which is fed into “composer”.663

simulation: voxposer-anon.github.io/sim planner prompt.txt.664

real-world: voxposer-anon.github.io/real planner prompt.txt.665

composer: Takes in sub-task instruction ℓi and invokes necessary value map LMPs to compose affordance666

maps and constraint maps.667

simulation: voxposer-anon.github.io/sim composer prompt.txt.668

real-world: voxposer-anon.github.io/real composer prompt.txt.669

parse query obj: Takes in a text query of object/part name and returns a list of dictionaries, where each670

dictionary corresponds to one instance of the matching object containing center position, occupancy grid,671

and mean normal vector.672

simulation: voxposer-anon.github.io/sim parse query obj prompt.txt.673

real-world: voxposer-anon.github.io/real parse query obj prompt.txt.674

get target map: Takes in natural language parametrization from composer and returns a NumPy array675

for task affordances.676

simulation: voxposer-anon.github.io/sim get target map prompt.txt.677

real-world: voxposer-anon.github.io/real get target map prompt.txt.678

get avoidance map: Takes in natural language parametrization from composer and returns a NumPy array679

for end-effector rotation.680

simulation: voxposer-anon.github.io/sim get avoidance map prompt.txt.681

real-world: voxposer-anon.github.io/real get avoidance map prompt.txt.682

get rotation map: Takes in natural language parametrization from composer and returns a NumPy array683

for end-effector rotation.684

simulation: voxposer-anon.github.io/sim get rotation map prompt.txt.685

real-world: voxposer-anon.github.io/real get rotation map prompt.txt.686

get gripper map: Takes in natural language parametrization from composer and returns a NumPy array687

for gripper action.688

simulation: voxposer-anon.github.io/sim get gripper map prompt.txt.689

real-world: voxposer-anon.github.io/real get gripper map prompt.txt.690

get velocity map: Takes in natural language parametrization from composer and returns a NumPy array691

for end-effector velocity.692

simulation: voxposer-anon.github.io/sim get velocity map prompt.txt.693

real-world: voxposer-anon.github.io/real get velocity map prompt.txt.694

19

https://voxposer-anon.github.io/sim_planner_prompt.txt
https://voxposer-anon.github.io/real_planner_prompt.txt
https://voxposer-anon.github.io/sim_composer_prompt.txt
https://voxposer-anon.github.io/real_composer_prompt.txt
https://voxposer-anon.github.io/sim_parse_query_obj_prompt.txt
https://voxposer-anon.github.io/real_parse_query_obj_prompt.txt
https://voxposer-anon.github.io/sim_get_target_map_prompt.txt
https://voxposer-anon.github.io/real_get_target_map_prompt.txt
https://voxposer-anon.github.io/sim_get_avoidance_map_prompt.txt
https://voxposer-anon.github.io/real_get_avoidance_map_prompt.txt
https://voxposer-anon.github.io/sim_get_rotation_map_prompt.txt
https://voxposer-anon.github.io/real_get_rotation_map_prompt.txt
https://voxposer-anon.github.io/sim_get_gripper_map_prompt.txt
https://voxposer-anon.github.io/real_get_gripper_map_prompt.txt
https://voxposer-anon.github.io/sim_get_velocity_map_prompt.txt
https://voxposer-anon.github.io/real_get_velocity_map_prompt.txt

	Appendix
	APIs for VoxPoser
	Real-World Environment Setup
	Tasks

	Simulated Environment Setup
	Tasks
	Full Results on Simulated Environments

	Prompts


