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Abstract

Two of the most prominent algorithms for solving unconstrained smooth games
are the classical stochastic gradient descent-ascent (SGDA) and the recently intro-
duced stochastic consensus optimization (SCO) [Mescheder et al., 2017]. SGDA is
known to converge to a stationary point for specific classes of games, but current
convergence analyses require a bounded variance assumption. SCO is used success-
fully for solving large-scale adversarial problems, but its convergence guarantees
are limited to its deterministic variant. In this work, we introduce the expected
co-coercivity condition, explain its benefits, and provide the first last-iterate con-
vergence guarantees of SGDA and SCO under this condition for solving a class of
stochastic variational inequality problems that are potentially non-monotone. We
prove linear convergence of both methods to a neighborhood of the solution when
they use constant step-size, and we propose insightful stepsize-switching rules to
guarantee convergence to the exact solution. In addition, our convergence guaran-
tees hold under the arbitrary sampling paradigm, and as such, we give insights into
the complexity of minibatching.

1 Introduction

Motivated from the recent interest in solving adversarial formulations in machine learning such as
generative adversarial networks (GANs) [Goodfellow et al., 2014], we consider in this paper a more
abstract formulation of the problem and focus on solving the following unconstrained stochastic
variational inequality (VI) problem:2

Find x∗ ∈ Rd such that ξ(x∗) =
1

n

n∑
i=1

ξi(x
∗) = 0, (1)

where each ξi : Rd → Rd is Lipschitz continuous. Further, we assume that the problem (1) has a
unique3 solution x∗ and that the operator ξ is µ-quasi-strongly monotone: there is a µ ≥ 0 such that:

〈ξ(x), x− x∗〉 ≥ µ‖x− x∗‖2 ∀x ∈ Rd (2)
∗Corresponding author: nicolasloizou1@gmail.com. †Canada CIFAR AI Chair.
2While our presentation focuses on this finite-sum structure, most of our convergence results can easily

be adapted to the general stochastic setting (see App. D). Also, we do not use the full power of variational
inequalities that usually have constraints [Harker and Pang, 1990], but standard algorithms for (1) are coming
from this literature [Gidel et al., 2018].

3This assumption can be relaxed; but for simplicity of exposition we enforce it.
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If µ = 0, then we say that ξ satisfies the variational stability condition: 〈ξ(x), x− x∗〉 ≥ 0 [Hsieh
et al., 2020]. In the variational inequality literature, condition (2) is also known as strong stability con-
dition [Mertikopoulos and Zhou, 2019] or as strong Minty variational inequality (MVI) [Diakonikolas
et al., 2021, Song et al., 2020].

Problem (1) generalizes the solution of several types of stochastic smooth games [Facchinei and
Kanzow, 2007, Scutari et al., 2010, Mertikopoulos and Zhou, 2019]. The simplest example is the
unconstrained min-max optimization problem (also called a zero-sum game):

min
x1∈Rd1

max
x2∈Rd2

1

n

n∑
i=1

gi(x1, x2) , (3)

where each component function gi : Rd1×Rd2 → R is assumed to be smooth. Here, ξi represents the
appropriate concatenation of the block-gradients of gi: ξi(x) := (∇x1

gi(x1, x2);−∇x2
gi(x1, x2)),

where x := (x1;x2). Solving (1) then amounts to finding a stationary point x∗ = (x∗1;x∗2) for (3),
which under a convex-concavity assumption for gi for example, implies that it is a global solution for
the min-max problem. More generally, we might seek the pure Nash equilibrium of a k-players game,
where each player j is simultaneously trying to find the action x∗j which minimizes with respect to

xj ∈ Rdj their own cost function 1
n

∑n
i=1 f

(j)
i (xj , x−j), while the other players are playing x−j ,

which represents x = (x1, . . . , xk) with the component j removed. Here, ξi(x) is the concatenation
over all possible j’s of∇xjf (j)

i (xj , x−j).

Such finite sum formulations appear in several machine learning applications such as generative
adversarial networks (GANs) [Goodfellow et al., 2014], robust learning [Wen et al., 2014] or even
some formulations of reinforcement learning [Pfau and Vinyals, 2016]. A standard algorithm that
has been used to solve (1) is the stochastic version of the classical gradient method [Dem’yanov and
Pevnyi, 1972, Nemirovski et al., 2009] or its variance reduced version [Balamurugan and Bach, 2016],
that we call stochastic gradient descent-ascent (SGDA) in this paper.4 More recently, Mescheder
et al. [2017] analyzed some limitations of the gradient method in the context of GAN training and
proposed an alternative efficient algorithm which could be used to solve (1) that they called consensus
optimization (CO), which combines gradient updates with the minimization of ‖ξ(x)‖2. While the
practical version of their algorithm for large n is stochastic (SCO, that randomly samples i’s) and
displayed good performance [Mescheder et al., 2017], the only global convergence rate guarantees
existing in the literature so far is only for the deterministic variant [Azizian et al., 2020, Abernethy
et al., 2021].

The classical results from the stochastic VI literature are inappropriate for several reasons. First, a
uniform bound over x on the variance E

[
‖ξi(x)− ξ(x)‖2

]
is typically assumed to get convergence

guarantees (see e.g. Nemirovski et al. [2009], Gidel et al. [2018], Mertikopoulos and Zhou [2019],
Yang et al. [2020], Lin et al. [2020b]), but this is not compatible with the unconstrained aspect
of (1). For example, suppose gi is a quadratic function, then the variance typically goes to infinity as
x→∞. More appropriate relaxed assumptions have been considered to prove the convergence of
other algorithms for (1) such as the stochastic extragradient method [Hsieh et al., 2020, Mishchenko
et al., 2020] and its variance-reduced version [Chavdarova et al., 2019], or the stochastic Hamiltonian
gradient method [Loizou et al., 2020], but not yet to the best of our knowledge for SGDA nor SCO.
Second, the classical analysis for SGDA [Nemirovski et al., 2009] typically considers the convergence
of the average of the iterates rather than for the last-iterate. However, as pointed out among others
by Daskalakis et al. [2018] and Chavdarova et al. [2019], getting last-iterate convergence is important
to apply the methods on potentially non-monotone problems such as GANs, where averaging is not
appropriate. The only non-asymptotic last iterate convergence result for SGDA that we are aware
of is Lin et al. [2020b], which focuses on a different class of problems (not assuming quasi-strong
monotonicity) but it relies on strong assumptions on E

[
‖ξi(x)‖2

]
(see Section 4).

In this paper, we address both of these issues. We generalize the recent improved analysis of
SGD [Gower et al., 2019] to the case of unconstrained stochastic variational inequality (1), and
prove the last-iterate convergence for both SGDA and SCO without requiring any bounded variance
assumption. We focus on quasi-strongly monotone VI problems, a class of structured non-monotone
operators for which we are able to provide tight convergence guarantees and avoid the standard issues
(cycling and divergence of the methods) appearing in the more general non-monotone regime.

4We use this suggestive name motivated from the min-max formulation (3), though we also call SGDA the
simple update xk+1 = xk − αξik (x

k) to solve (1) in the more general non-zero sum game scenario.
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Main Contributions. The key contributions of this work are summarized as follows:

• We propose the expected co-coercivity (EC) assumption, which is the appropriate generalization
of the expected smoothness assumption from Gower et al. [2019] to Problem (1). We explain the
benefits of EC and show that is strictly weaker than the bounded variance assumption and “growth
conditions” previously used for the analysis of stochastic algorithms for (1).

• Using the EC assumption, we prove the first last-iterate convergence guarantees for stochastic
gradient descent-ascent (SGDA) on (1) without any unrealistic noise assumption. We show a linear
convergence rate to a neighborhood of x∗ when constant step-size is used, and a O(1/k) rate to the
exact solution when using a decreasing step-size rule. For the latter, we propose a theoretically
motivated switching rule from a constant to a decreasing step-size to get faster convergence.

• Using the EC assumption, we provide the first convergence analysis of a stochastic variant (SCO)
of the consensus optimization (CO) algorithm proposed by Mescheder et al. [2017] and previously
used to trained GANs. In particular, we prove last-iterate convergence for SCO, for both constant
and decreasing step-sizes. As a corollary of our results, we obtain an improved convergence
analysis for the deterministic CO. Furthermore, we explain how the update rule of the stochastic
Hamiltonian gradient descent [Loizou et al., 2020] is a special case of the SCO and show that in
this scenario, our analysis matches the theoretical guarantees presented in Loizou et al. [2020].

• Inspired by recent results from the optimization literature [Gower et al., 2019], we give the first
stochastic reformulation of the variational inequality problem (1) which enables us to provide
convergence guarantees of SGDA and SCO under the arbitrary sampling paradigm [Richtárik and
Takáč, 2016]. This allows us to give insights into the complexity of minibatching.

2 Arbitrary Sampling: Stochastic Reformulation of Problem (1)

In this work, we provide theorems through which we can analyze all minibatch variants of the two al-
gorithms under study, SGDA and SCO. To do this, we construct a so-called “stochastic reformulation”
of the variational inequality problem (1). Our approach is inspired by recently proposed stochastic
reformulations of standard optimization problems, like the empirical risk minimization in Gower
et al. [2019] and linear systems in Richtárik and Takác [2020], Loizou and Richtárik [2020a,b].

In each step of our algorithms, we assume we are given access to unbiased estimates g(x) ∈ Rd of
the operator such that E [g(x)] = ξ(x). For example, we can use a minibatch to form an estimate
of the operator such as g(x) = 1

b

∑
i∈S ξi(x), where S ⊂ {1, . . . , n} will be chosen uniformly

at random and |S| = b. To allow for any form of minibatching, we use the arbitrary sampling
notation g(x) = ξv(x) := 1

n

∑n
i=1 viξi(x), where v ∈ Rn+ is a random sampling vector drawn from

some distribution D such that ED[vi] = 1, for i = 1, . . . , n. Note that the unbiasedness follows
immediately from this definition of the sampling vector: ED[ξv(x)] = 1

n

∑n
i=1 ED[vi]ξi(x) = ξ(x).

Thus, with each user-defined distribution D, we are able to introduce a stochastic reformulation of
problem (1) as follows:

Find x∗ ∈ Rd such that ED

[
ξv(x

∗) :=
1

n

n∑
i=1

viξi(x
∗)

]
= 0. (4)

Since ξv(x) as an unbiased estimate of the operator ξ(x), we can now use stochastic (simultaneous)
gradient descent-ascent (SGDA) to solve (4) as follows:

xk+1 = xk − αkξvk(xk) , (5)
where vk ∼ D is sampled i.i.d at each iteration and αk > 0 is a stepsize. We highlight that in our
analysis, we allow to select any distribution D that satisfies ED[vi] = 1 ∀i, and for different selection
of D, (5) yields different interpretation as an SGDA method for solving the original problem (1).

In this work, we mostly focus on the b–minibatch sampling, however note that our analysis holds for
every form of minibatching and for several choices of sampling vectors v.

Definition 2.1 (Minibatch sampling). Let b ∈ [n]. We say that v ∈ Rn is a b–minibatch sampling
if for every subset S ∈ [n] with |S| = b, we have that P

[
v = n

b

∑
i∈S ei

]
= 1/

(
n
b

)
:= b!(n−b)!

n!

By using a double counting argument, one can show that if v is a b–minibatch sampling, it is also a
valid sampling vector (ED[vi] = 1) [Gower et al., 2019]. See Gower et al. [2019] for other choices of
sampling vectors v.
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3 Expected Co-coercivity and Connection to Other Assumptions

Before introducing the condition of expected co-coercivity, we first review some details on co-
coercivity, an intermediate notion between monotonicity and strong monotonicity [Zhu and Marcotte,
1996], and explain where it belongs as assumption in the literature of variational inequalities and
min-max optimization.

Co-coercive operators. The co-coercive condition is relatively standard in operator splitting
literature [Davis and Yin, 2017, Vũ, 2013] and for variational inequalities [Zhu and Marcotte, 1996].
It was used to analyze the celebrated forward-backward algorithm (a.k.a, proximal gradient) [Lions
and Mercier, 1979, Chen and Rockafellar, 1997, Palaniappan and Bach, 2016] that is known not to
converge for general monotone operators [Bauschke et al., 2011].

Definition 3.1 (Co-coercivity / Co-coercive around w∗). We say that an operator ξ is `–co-coercive
if there exist ` > 0 such that,a ‖ξ(x)− ξ(y)‖2 ≤ `〈ξ(x)− ξ(y), x− y〉 ∀x, y ∈ Rd.
If there existw∗ ∈ Rd and ` > 0 such that ‖ξ(x)−ξ(w∗)‖2 ≤ `〈ξ(x)−ξ(w∗), x−w∗〉 ∀x ∈ Rd .
then we say that the operator ξ is `–co-coercive around w∗. Note that in the last definition the point
w∗ is not necessarily a point where ξ(w∗) = 0.

Note that from Cauchy-Swartz’s inequality, one can get that a `-co-coercive operator is `-Lipschitz.
In single-objective minization, one can show the converse statement by using convex duality. Thus,
a gradient of a function is L–co-coercive if and only if the function is convex and L-smooth (i.e.
L-Lipschitz gradients) [Bauschke et al., 2011]. However, in general, a L-Lipchitz operator is not
L–co-coercive. What we can show instead is that a L-Lipschitz and µ-strongly monotone operator is
`–co-coercive with ` ∈ [L,L2/µ] [Facchinei and Pang, 2007]. Note that both ranges of the spectrum
may occur. For instance, Chavdarova et al. [2019] present a sufficent condition in zero-sum games to
have ` = O(L). Note that one can easily show that a sum of co-coercive operators is also co-coercive.
Let us now provide a proposition summarizing the implications between (strong) monotonicity and
co-coercivity.

Proposition 3.2. For a L-Lipschitz operator ξ, the following implications hold:

µ-strongly monotone =⇒ L2

µ -co-coercive =⇒ monotone
⇓ ⇓ ⇓

µ-quasi-strongly monotone =⇒ L2

µ -co-coercive around x∗ =⇒ variational
stability condition

Let us also note that while a `-co-coercive operator is always `-Lipschitz continuous, it is possible
for an operator to be `-co-coercive around x∗ and not be Lipschitz continuous. This highlights the
wider applicability of the `-co-coercivity around x∗ assumption that is all we need for several of our
convergence results, in contrast to the Lipschitz continuity of ξ which is typically assumed in the
variational inequality literature. In Appendix A.6, we provide such example of a µ-quasi strongly
monotone operator that is `-co-coercive around x∗, which is not monotone nor Lipschitz continuous.

3.1 Expected Co-coercivity (EC)

In our analysis of SGDA and SCO, we rely on a generic and remarkably weak assumption that we
call expected co-coercivity (EC). In this section, we formally define EC, provide sufficient conditions
for it to hold and relate it to the existing gradient assumptions.

Assumption 3.3 (Expected Cocoercivity). We say that ξ is `ξ–co-coercive in expectation with
respect to a distribution D if there exists `ξ > 0 such that

ED
[
‖ξv(x)− ξv(x∗)‖2

]
≤ `ξ〈ξ(x), x− x∗〉 ∀x ∈ Rd . (EC)

For simplicity, we will write ξ ∈ EC(`ξ) to say that EC holds and we will refer to `ξ as the
expected co-coercivity constant.

aNote that in our definition we consider the inverse of the co-coercive constant from Lions and Mercier
[1979] which is the constant ` such that 〈ξ(x)− ξ(y), x− y〉 ≥ `‖ξ(x)− ξ(y)‖2.
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The convergence results in this paper will depend on the following operator noise at x∗ that is finite
for any reasonable sampling distribution D for the sampling vector v:

σ2 := ED[‖ξv(x∗)‖2] <∞. (6)

As we discuss below, common assumptions used to prove convergence of stochastic algorithms for
solving the VI problem is uniform boundedness of the stochastic operator E‖ξi(x)‖2 ≤ c or uniform
boundedness of the variance E‖ξi(x)− ξ(x)‖2 ≤ c. However these assumptions either do not hold
or are true only for restrictive set of problems. In our work we do not assume such bounds. Instead
we use the following direct consequence of Assumption 3.3.

Lemma 3.4. If ξ ∈ EC(`ξ), then E‖ξv(x)‖2 ≤ 2`ξ〈ξ(x), x− x∗〉+ 2σ2.

Let us now provide some more familiar sufficient conditions which guarantee that the EC condition
holds and give closed form expression for the expected co-coercivity parameter.

Proposition 3.5. Let ξi be `i co-coercive (or `i co-coercive around x∗), then ξ ∈ EC(`ξ). Let
`max = max{`i}ni=1 and ` be the co-coercive constant of ξ, if we let v to be a b-minibatch sampling,
then `ξ = n

b
b−1
n−1`+ 1

b
n−b
n−1`max and σ2 = 1

b
n−b
n−1σ

2
1 , where σ2

1 := 1
n

∑n
i=1 ‖ξi(x∗)‖

2.

In the above Proposition 3.5, we show how co-coercivity of ξi implies expected co-coercivity.
However, the opposite implication does not necessarily hold. Indeed the expected co-coercivity can
hold even when we do not assume that ξi are co-coercive, as we show in the next proposition.

Proposition 3.6. Let ξ be quasi-strongly monotone and let ξi be Li-Lipschitz continuous for all
i ∈ [n]. Then ξ ∈ EC(`ξ).

Connection to Other Assumptions In the optimization literature, the standard convergence analysis
of stochastic gradient algorithms like SGD relied on bounded gradient (E‖∇fi(x)‖2 ≤ c) or bounded
variance assumptions (E‖∇fi(x)−∇f(x)‖2 ≤ c) [Recht et al., 2011, Hazan and Kale, 2014, Rakhlin
et al., 2012] or growth condition (E‖∇fi(x)‖2 ≤ c1‖∇f(x)‖2 + c2) [Bottou et al., 2018, Schmidt
et al., 2017]. However, a recent line of work shows that these assumptions might be restrictive or never
be satisfied5 and proposed alternative conditions [Nguyen et al., 2018, Vaswani et al., 2018, Gower
et al., 2019, 2021, Khaled et al., 2020, Khaled and Richtárik, 2020, Assran et al., 2019, Koloskova
et al., 2020, Patel and Zhang, 2021, Loizou et al., 2020, 2021]. One of the weakest assumptions used
for the convergence analysis of SGD in the smooth setting, is expected smoothness (ES) proposed in
Gower et al. [2019] (see last row of Table 1). Our expected co-coercivity condition (EC) can be seen
as the generalization of ES in the operator setting.

In the literature of stochastic methods for solving the variational inequality problem and min-max
optimization problem, similar assumptions have been made. In particular for the analysis of stochastic
algorithms, papers assume either bounded operators [Nemirovski et al., 2009, Abernethy et al., 2021]
or bounded variance [Juditsky et al., 2011, Yang et al., 2020, Lin et al., 2020a, Luo et al., 2020,
Tran Dinh et al., 2020] and growth condition [Lin et al., 2020b]. In all of the these conditions, the
values of parameters c, c1 and c2 (see Table 1) usually do not have a closed form expression – they
are simply assumed to exist. However, to the best of our knowledge, there is no analysis using a
concept similar to our expected co-coercivity. All existing analyses of SGDA for (quasi)-strongly
monotone and co-coercive operators require the much stronger extra assumptions of “bounded noise”
or “bounded variance” to guarantee convergence, while for SCO, there are no known convergence
guarantees in the literature. Note that through Lemma 3.4, (EC) implies bounds on the gradient
with closed-form problem-depended expressions for these constants. We also mention that other
appropriate relaxed assumptions have been considered to prove the convergence of algorithms for (1)
[Hsieh et al., 2020, Mishchenko et al., 2020, Chavdarova et al., 2019, Loizou et al., 2020], but not yet
for SGDA nor SCO. For a wider literature review in the area, see Appendix E.

In Table 1, we illustrate the correspondence between conditions used in the stochastic optimization
literature and the stochastic VI problem. For further connections between these conditions, see
Appendix A.5. There, for example, we show why assuming bounded gradients together with strong
monotonicity lead to an empty set of operators and explain why ES and EC (see last row of Table 1)
are equivalent for convex and smooth single-objective optimization problems.

5For example, the bounded gradient assumption and strong convexity contradict each other in the uncon-
strained setting (see [Nguyen et al., 2018] for more details).
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Table 1: Correspondence of Assumptions between Optimization and Variational Inequalities

Assumptions Stochastic Optimization
minx f(x) = 1

n

∑n
i=1 fi(x)

Stochastic Variational Inequality
Find x∗such that ξ(x∗) = 1

n

∑n
i=1 ξi(x

∗) = 0

Bounded Gradient E‖∇fi(x)‖2 ≤ c E‖ξi(x)‖2 ≤ c
Bounded Variance E‖∇fi(x)−∇f(x)‖2 ≤ c E‖ξi(x)− ξ(x)‖2 ≤ c
Growth Condition E‖∇fi(x)‖2 ≤ c1‖∇f(x)‖2 + c2 E‖ξi(x)‖2 ≤ c1‖ξ(x)‖2 + c2

Expected Smoothness (ES) /
Expected Cocoercivity (EC) E

[
‖∇fv(x)−∇fv(x∗)‖2

]
≤ 2L(f(x)− f(x∗)) E

[
‖ξv(x)− ξv(x∗)‖2

]
≤ `ξ〈ξ(x), x− x∗〉

4 Stochastic Gradient Descent-Ascent

Having presented the update rule of SGDA (5) for solving the stochastic reformulation (4) of the
original unconstrained stochastic variational inequality problem (1), let us now provide theorems for
its convergence guarantees. We highlight that our theorems hold for any selection of distributions
D over the random sampling vectors v and as such they are able to describe the convergence of
an infinite array of variants of SGDA each of which is associated with a specific probability law
governing the data selection rule used to form minibatches.

Theorem 4.1 (Constant Step-size). Assume that ξ is µ−quasi strongly monotone and that ξ ∈
EC(`ξ). Choose αk = α ≤ 1

2`ξ
for all k. Then, the iterates of SGDA, given by (5), satisfy:

E
[
‖xk − x∗‖2

]
≤ (1− αµ)

k ‖x0 − x∗‖2 +
2ασ2

µ
, (7)

Note that we do not assume that ξ or ξi are monotone operators in Theorem 4.1. SGDA converges by
only assuming that ξ is quasi-strongly monotone and that EC holds. Theorem 4.1 states that SGDA
converges linearly to a neighborhood of x∗ which is proportional to the step-size α and the noise at
the optimum σ2. We highlight, that since we control distribution D we also control the values of `ξ
and σ2, and in the case of b-minibatch sampling these values have a closed-form expressions as shown
in Proposition 3.5. To the best of our knowledge, Theorem 4.1 is the first last-iterate non-asymptotic
convergence guarantee for SGDA for solving quasi-strongly monotone problems without assuming
extra conditions on the noise. It is worth mentioning that Lin et al. [2020b] also prove last-iterate
convergence of SGDA for different class of problems (they do not assume quasi-strong monotonicity),
but the proposed analysis requires much stronger noise conditions. In particular, a bound on the
variance with vanishing constants is needed, which, as far as we know, can only be satisfied by
running SGDA with growing mini-batch size [Friedlander and Schmidt, 2012] (see also App. E for a
more detailed discussion). To highlight further the generality of Theorem 4.1, we note that for the
deterministic GDA, σ2 = 0. Thus, we can obtain the following corollary.

Corollary 4.2 (Deterministic GDA). Let all assumptions of Theorem 4.1 be satisfied. Let |S| = n
with probability one (each iteration of SGDA uses a full batch gradient). Then by selecting αk =

α ≤ 1
2` for all k, the iterates of deterministic GDA satisfy: ‖xk − x∗‖2 ≤ (1− αµ)

k ‖x0 − x∗‖2.

Even if Corollary 4.2 looks trivial, to the best of our knowledge, Theorem 4.1 is the first convergence
theorem of SGDA that includes the deterministic GDA originally provided by Chen and Rockafellar
[1997] as a special case.

Optimal b-Minibatch Size: Using standard computations, the convergence rate presented in Theo-
rem 4.1 can be equivalently expressed as iteration complexity result as follows: If we are given any ac-
curacy ε > 0, choosing stepsize α = min

{
1

2`ξ
, εµ

4σ2

}
and k ≥ max

{
2`ξ
µ ,

4σ2

εµ2

}
log
(

2‖x0−x∗‖2
ε

)
,

implies E‖xk − x∗‖2 ≤ ε. By combining the lower bound on k with the expressions of `ξ and σ2 of
Proposition 3.5, we have that the iteration complexity (by ignoring the logarithmic terms) becomes
k ≥ 2

µ max{`ξ, 2σ2

εµ } where `ξ = n
b
b−1
n−1`+ 1

b
n−b
n−1`max and σ2 = 1

b
n−b
n−1σ

2
1 . Thus, the total complex-

ity of the algorithm as a function of the minibatch size b is given by TC(b) ≤ 2
µ max{b`ξ, b 2σ2

εµ }.
By following the same steps with Gower et al. [2019], it can be shown that b`ξ is linearly increasing
term in b while b 2σ2

εµ is a linearly decreasing term in b. Hence, if we define b∗ to be the minibatch
size that minimize the total complexity TC(b) (optimal b-Minibatch Size) we have that if σ2

1 ≤ `max

then b∗ = 1 otherwise b∗ = n
`−`max+ 2

εµ ·σ2
1

n`−`max+ 2
εµ ·σ2

1
.
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In the next theorem, we provide an insightful stepsize-switching rule that describes when one should
switch from a constant to a decreasing step-size regime to guarantee convergence to x∗ and not to a
neighborhood, providing the first convergence analysis of SGDA under such a switching rule.

Theorem 4.3. Assume ξ is µ-quasi-strongly monotone and that ξ ∈ EC(`ξ). Let K := `ξ/µ

and let αk = 1
2`ξ

for k ≤ 4dKe and αk = 2k+1
(k+1)2µ for K > 4dKe. If k ≥ 4dKe, then iterates of

SGDA, given by (5) satisfy:

E‖xk − x∗‖2 ≤ σ2

µ2

8

k
+

16dKe2
e2k2

‖x0 − x∗‖2 = O

(
1

k

)
. (8)

5 Stochastic Consensus Optimization

The Consensus Optimization (CO) Algorithm is a computationally-light6 second order methods
which has been introduced in Mescheder et al. [2017] and it was shown to be an effective method for
training GANs in a variety of settings. Liang and Stokes [2019] show first that CO converges linearly
in the bilinear case. Abernethy et al. [2021] show that CO can be viewed as a perturbation of the
deterministic Hamiltonian gradient descent (HGD) and explain how CO converges at the same rate as
HGD, while Azizian et al. [2020] prove convergence of CO for µ-strongly monotone operators with
positive singular values of the Jacobian matrix J = ∇ξ.

However, even if CO is used explicitly in the stochastic setting and in practice only minibatch
variants are implemented, to the best of our knowledge all existing analysis focus only on the
deterministic setting. Thus, our work is the first that provide convergence guarantees for the Stochastic
Consensus Optimization (SCO) and due to our framework, our analysis includes the convergence
of the deterministic update as special case. Impressively, our analysis provides tighter rates than
previous analysis even in the deterministic setting.

For the results of this section, we assume that each ξi in problem (1) is differentiable. That is, we have
access to the Jacobian matrices Ji(x) = ∇ξi(x). Following Loizou et al. [2020], in our analysis we
will also assume that the Hamiltonian function is quasi-strongly convex and that it satisfies expected
smoothness (see last row of Table 1). These are not strong assumptions, and as an example, they are
satisfied for smooth bilinear min-max optimization problems Loizou et al. [2020]. In Appendix C, by
extending the results of Loizou et al. [2020], we explain how these assumptions can be satisfied for
the quadratic min-max problems.

5.1 Setting

The consensus optimization (CO) algorithm as presented in Mescheder et al. [2017] has the following
update rule:

xk+1 = xk − αξ(xk)− γ∇H(xk) (9)
whereH(x) = 1

2‖ξ(x)‖2 is the Hamiltonian function and α, γ > 0 are the step-sizes. From its defini-
tion, it is clear that the update rule is essentially a weighted combination of GDA and the Hamiltonian
gradient descent (HGD) of Balduzzi et al. [2018]. In practice, implementing CO in a mini-batch
setting (stochastic) leads to biased estimates of the gradient of the Hamiltonian function [Mescheder
et al., 2017]. This is one of the main reason that existing analysis was not able to capture the behavior
of the method in the stochastic setting. However, recently Loizou et al. [2020] proposed a way to
obtain unbiased estimators of the gradient of the Hamiltonian function by expressing the Hamiltonian
of a stochastic game as a finite-sum problem. In this work, we adopt the finite-sum structure and
the unbiased estimators proposed in Loizou et al. [2020] for the Hamiltonian part and we extend the
formulation to capture the arbitrary sampling paradigm. That is, the Hamiltonian function can be
expressed as,H(x) = 1

2‖ξ(x)‖2 = 1
n

∑n
i=1

1
n

∑n
j=1

1
2 〈ξi(x), ξj(x)〉. In addition, by following the

stochastic reformulation setting presented in Section 2, let us have two independent random sampling
vectors u ∼ D and v ∼ D and let us define: Hu,v(x) = 1

n

∑n
i=1

1
n

∑n
j=1

1
2 〈uiξi(x), viξj(x)〉. Since

vectors u and v are independent sampling vectors, it is clear that Eu,v[Hu,v(x)] = H(x), where
Eu,v denotes the expectation with respect to distribution D on both vectors u and v. Let us also

6At each step, CO requires only the computation of a Jacobian-vector product which can be efficiently
evaluated in tasks like training neural networks with comparable computation time of a gradient [Pearlmutter,
1994].
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use Ji(x) = ∇ξi(x) to express the Jacobian matrices for i, then the gradient of Hu,v(x) has the
following form:

∇Hu,v(x) =
1

2

[
J>u (x)ξv(x) + J>v (x)ξu(x)

]
(10)

where Ju(x) = 1
n

∑n
i=1 uiJi(x) and Jv(x) = 1

n

∑n
i=1 viJi(x). Similar to Loizou et al. [2020],

it can be shown that ∇Hu,v(x) is an unbiased estimator of ∇H(x) = J>(x)ξ(x). That is,
Eu,v[∇Hu,v(x)] = ∇H(x). Throughout this section, we will denote the gradient noise of the
stochastic Hamiltonian function with σ2

H := Eu,v[‖∇Hu,v(x∗)‖2], which is finite for any reasonable
sampling distribution D.

5.2 Stochastic Consensus Optimization and its Special Cases

Algorithm 1 Stochastic Consensus Opt. (SCO)

Input: Starting step-size α0, γ0 > 0. Choose initial
point x0 ∈ Rd. Distribution D of samples.
for k = 0, 1, 2, · · · ,K do

Sample independently vk ∼ D and uk ∼ D
Set step-sizes αk and γk according to a pre-
selected step-size rule
Set xk+1 = xk − αkξvk(xk)− γk∇Hvk,uk(xk)

end for
Output: The last iterate xk

Having explained the basic setting and back-
ground on consensus optimization algorithm
and the Hamiltonian function, let us now
present as Algorithm 1 the proposed stochas-
tic consensus optimization (SCO) algorithm.
Note that in each iteration k, two random
sampling vectors u and v are sampled inde-
pendently from a user-defined distribution
D. These vectors are used to evaluate ξvk
and∇Hvk,uk(xk), the unbiased estimators
of ξ(xk) and ∇H(xk) at point xk respec-
tively. Note also that the update rule of SCO
is a weighted combination of SGDA (5) and the stochastic Hamiltonian gradient descent (SHGD)
of Loizou et al. [2020]. Thus, it is clear, that if one selects αk = 0,∀k > 0 then the method is
equivalent to SHGD and if γk = 0,∀k > 0 then the method becomes equivalent to the SGDA. In
addition if we select sampling vectors u = v = (1, 1, . . . , 1) ∈ Rn with probability 1, then from the
definition of ξvk and∇Hvk,uk(xk) we obtain the deterministic CO (9) as special case of our update
rule.

5.3 Convergence Analysis

Let us now present our main theoretical results describing the performance of SCO. Similar to the
previous section, we provide two main theorems for two different step-size selection.

Theorem 5.1 (Constant Step-size). Assume ξ is µ-quasi-strongly monotone with µ ≥ 0 and
that ξ ∈ EC(`ξ). Assume that the Hamiltonian function H is µH-quasi strongly convex and
LH-expected smooth. Then, for γk = γ ≤ 1

4LH and αk = α ≤ 1
4`ξ

, the iterates of SCO satisfy:

E
[
‖xk − x∗‖2

]
≤ (1− γµH − αµ)k‖x0 − x∗‖2 +

4[α2σ2 + γ2σ2
H]

γµH + αµ
. (11)

If µ = 0, that is ξ only satisfies the variational stability condition 〈ξ(x), x− x∗〉 ≥ 0, then

E
[
‖xk − x∗‖2

]
≤ (1− γµH)k‖x0 − x∗‖2 +

4[α2σ2 + γ2σ2
H]

γµH
.

Theorem 5.1 is quite informative, as it highlights that both SGDA and SHG parts should coexist in
the update rule of the SCO to guarantee faster convergence for µ-quasi-strongly monotone operators
(i.e. both step-sizes α and γ should be positive up to specific values). However, if ξ simply satisfies
the variational stability condition 〈ξ(x), x − x∗〉 ≥ 0 (when µ = 0), then the convergence rate of
SCO, does not depend on the step-size α (the SGDA part) and the neighborhood of convergence
4[α2σ2+γ2σ2

H]
γµ is smaller when α = 0. Thus, in this case one needs to simply run the SHGD.

To appreciate the generality of Theorem 5.1, let us present some corollaries and compare the rates
with existing results in the literature. First, we get a rate for the deterministic CO algorithm.
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Corollary 5.2 (Deterministic CO). Let all assumptions of Theorem 5.1 be satisfied. Then, for γk =
γ ≤ 1

4LH
and αk = α ≤ 1

4` , the iterates of CO satisfy: ‖xk−x∗‖2 ≤ (1−γµH−αµ)k‖x0−x∗‖2.

The result of Corollary 5.2 should be compared to the convergence guarantees for CO as provided
in Abernethy et al. [2021], where the authors viewed CO as a perturbation of the deterministic
Hamiltonian gradient descent (HGD). In particular, Abernethy et al. [2021] gives the rate 1− µH

4LH

for CO under similar assumptions,7 which is clearly slower than our 1− µH
4LH
− µ

4` rate. The authors
had explicitly noted that treating the GDA part as an adversarial perturbation most likely should be
improved upon. With our analysis, we provide a different, more natural analysis of CO and answer
this open problem. In addition, note that by setting γk = 0 and αk = α < 1/2`ξ , then SCO becomes
equivalent to SGDA and Theorem 5.1 matches the convergence guarantees presented in Theorem 4.1.
On the other hand, by setting αk = 0, SCO yields equivalent updates to SHGD and our result matches
the theoretical guarantees of Loizou et al. [2020] as we show in the next corollary.

Corollary 5.3. Under the assumptions of Thm. 5.1, set αk = 0 and γk = γ ≤ 1/2LH. Then SCO
is equivalent to SHGD and its iterates satisfy: E

[
‖xk − x∗‖2

]
≤ (1− γµH)k‖x0 − x∗‖2 +

2γσ2
H

µH
.

All previous results for SCO show convergence to a neighborhood of x∗. In the next theorem, by
selecting decreasing step-sizes (switching strategy) for the values of α and γ, we are able to guarantee
a sublinear convergence to the exact solution for SCO. To the best of our knowledge this is the first
result analyzing SCO with decreasing step-sizes.

Theorem 5.4. Assume ξ is µ-quasi-strongly monotone and that ξ ∈ EC(`ξ). Assume that the
Hamiltonian function H is µH-quasi strongly convex and LH-expected smooth. Let αk = γk,
ψ = max{`ξ,LH} and k∗ := 8 ψ

µH+µ . Let also, γk = 1
4ψ for k ≤ dk∗e and γk = 2k+1

(k+1)2[µH+µ]

for k > dk∗e. If k ≥ dk∗e, then SCO iterates satisfy:

E‖xk − x∗‖2 ≤ σ2
H + σ2

[µ+ µH]2
16

k
+

(k∗)2

e2k2
‖x0 − x∗‖2 = O

(
1

k

)
(12)

If µ = 0, that is ξ only satisfies the variational stability condition 〈ξ(x), x− x∗〉 ≥ 0, then SCO is
still able to converge sublinearly with O

(
1
k

)
, to x∗.

6 Numerical Evaluation
The purpose of this experimental section is to corroborate our theoretical results, which form the
main contributions of this paper. To do so, we focus on strongly-monotone quadratic games of the
following form:

min
x1∈Rd

max
x2∈Rp

1

n

∑
i

1

2
x>1 Aix1 + x>1 Bix2 −

1

2
x>2 Cix2 + a>i x1 − c>i x2 (13)

We show that the Hamiltonian function of such a game is µH-quasi-strongly convex and LH-smooth
in App. C.1. For the game to also be strongly-monotone and co-coercive, we sample the matrices
such that µAI � Ai � LAI, µCI � Ci � LCI, and µ2

BI � B>i Bi � L2
BI, where I is the identity

matrix; the exact sampling is described in App. C.2. The bias terms ai, ci are sampled from a normal
distribution. We pick the step-size for the different methods according to our theoretical findings.
That is, for constant step-size, we select α = 1

2`ξ
for SGDA (Theorem 4.1), α = 1

4`ξ
, γ = 1

4LH
for SCO (Theorem 5.1), and γ = 1

2LH for SHGD (Corollary 5.3). For the stepsize-switching rule
that guarantees convergence to x∗, we use the step-sizes proposed in Theorem 4.3 for SGDA and
Theorem 5.4 for SCO. Let us first look at the qualitative behavior of SGDA, SCO and SHGD on a
simple 2d example where x1, x2 ∈ R. We show the trajectories of the different algorithms in Fig. 1a.
As expected we observe that the behavior of SCO is in between SGDA and SHGD. Recall that the
update rule of SCO is a weighted combination of SGDA and the SHGD. The code to reproduce our
results can be found at https://github.com/hugobb/StochasticGamesOpt.

Comparison of Algorithms (Constant step-size). We look at the convergence of the methods for
different games where we vary the condition number κG =

`ξ
µ . In comparing the methods, we

7For this convergence rate, Abernethy et al. [2021] assumed that the Hamiltonian function satisfies the Polyak-
Lojasiewicz condition but focus on strongly-convex and strongly-concave min-max optimization problems.
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Figure 1: Convergence of SGDA, SCO and SHGD on different quadratic games. (a) Trajectories of SCO, SHGD
and SGDA on a 2d quadratic game. The arrows represent the direction defined by ξ(x) at a particular point x.

(b-d) Distance to optimality ‖x
k−x∗‖2

‖x0−x∗‖2 as a function of the number of iterations. Each plot corresponds to a

game with a particular condition number κG =
`ξ
µ

. The solid lines represent the average performance over the 5
runs and the colored area represent the 95% confidence intervals.
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Figure 2: Comparison between constant and decreasing step size regimes of SGDA and SCO. The vertical red
lines correspond to the moment we switch from a constant to a decreasing step-size. The solid lines represent
the average performance over the 5 runs and the colored area represent the 95% confidence intervals.

use the relative distance to optimality ‖x
k−x∗‖2

‖x0−x∗‖2 . As predicted from our theoretical results, when
constant step-size is used, all the methods converge linearly to a neighborhood of the solution (see
Figure 1). We observe that the performance of SGDA depends on the condition number: the higher
the condition number, the slower the convergence. In contrast, the convergence of both SHGD and
SCO is less affected by a larger condition number. We also observe that SGDA is slower than SHGD,
but converges to a smaller neighborhood of the solution (see e.g. Fig. 1b). SCO achieves a good
trade-off; it converges fast like SHGD and to a small neighborhood like SGDA. An important note is
that the size of the neighborhood heavily depends on the selection of the learning rate; we explore
this dependence in App. C.3.

Constant vs Decreasing step-size. We also compare the performance of SGDA and SCO in the
constant and decreasing step-size regimes considered in Theorems 4.1 and 4.3 for SGDA and
Theorems 5.1 and 5.4 for SCO. We present our results in Figure 2. As predicted from our theoretical
analysis for both methods, the decreasing step-size (switching step-size rule) reaches higher precision
compare to the constant step-size. In Figure 2a the vertical red line denotes the value 4d`ξ/µe
predicted in Theorem 4.3 while in Figure 2b the red line denotes the value

⌈
8

max{`ξ,LH}
µH+µ

⌉
predicted

in Theorem 5.4. Note that for both algorithms the red line is a good approximation of the point where
SGDA and SCO need to change their update rules from constant to decreasing step-size.

7 Conclusion and Future Directions of Research
We provided the first last-iterate convergence analysis of SGDA and SCO without requiring any strong
bounded noise assumption, by introducing the much weaker expected co-coercivity assumption. We
proved last-iterate convergence for both methods for a class of unconstrained variational inequality
problems that are potentially non-monotone (quasi-strongly monotone problems), with both constant
and decreasing step-sizes. Future work includes extending our results beyond the µ-quasi strongly
monotone assumption for SGDA (assuming only co-coercivity), where we expect to obtain a slower
sublinear rate. We also believe the proposal of expected co-coercivity to be of independent interest;
it could be used to provide an efficient analysis of other algorithms to solve (1) under the arbitrary
sampling paradigm, and it would also be interesting to generalize the analysis to the constrained
formulation of variational inequalities.
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Supplementary Material
The supplementary material is organized as follows: In Section A, we give some basic definitions and
provide the proofs of the propositions, lemmas and theorems related to the expected co-coercivity
condition as presented in Section 3 of the main paper. In Section B we present the proofs of the
main theorems and corollaries for the convergence of SGDA and SCO. In Section C we present
the experimental details and provide additional experiments. Finally in Section D we explain how
our convergence results can be easily adapted to the general stochastic setting and in Section E we
provide further related work.
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A Proofs of Results on Co-coercivity and Expected Co-coercivity

Let us start by re-stating the main definitions of the classes of operators under study.

Definition A.1 (Lipschitz continuous). An operator ξ : Rd → Rd is L−Lipschitz continuous if
there is L > 0 such that:

‖ξ(x)− ξ(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd (14)

Definition A.2 (Co-coercivity). We say that an operator ξ is `–co-coercive if there exist ` > 0 such
that:

‖ξ(x)− ξ(y)‖2 ≤ `〈ξ(x)− ξ(y), x− y〉 ∀x, y ∈ Rd.

Definition A.3 (Co-coercive around w∗). We say that an operator ξ is `–co-coercive around w∗ if
there exist w∗ ∈ Rd and ` > 0 such that

‖ξ(x)− ξ(w∗)‖2 ≤ `〈ξ(x)− ξ(w∗), x− w∗〉 ∀x ∈ Rd.

Note that in this definition, the point w∗ is not necessarily a point where ξ(w∗) = 0.

Definition A.4 (Strongly monotone / monotone). We say that an operator ξ is µ–strongly monotone
if there exist µ > 0 such that

〈ξ(x)− ξ(y), x− y〉 ≥ µ‖x− y‖2 ∀x, y ∈ Rd.

If µ = 0, that is
〈ξ(x)− ξ(y), x− y〉 ≥ 0 ∀x, y ∈ Rd,

then we say that the operator is monotone.

Definition A.5 (Quasi-Strongly Monotone / Variational Stability Condition). We say that an
operator ξ is µ-quasi-strongly monotone if there exist µ > 0 such that

〈ξ(x), x− x∗〉 ≥ µ‖x− x∗‖2 ∀x ∈ Rd.

Here x∗ is the solution of the stochastic variational inequality problem (1). If µ = 0, that is

〈ξ(x), x− x∗〉 ≥ 0 (15)

then we say that ξ satisfies the variational stability condition.

A.1 Proof of Proposition 3.2

Before stating the proof of Proposition 3.2, we clarify that the assumption of L-Lipschitzness of ξ is
only used for the implications where L appear; it is not needed for the other implications. In particular,
while a `-co-coercive operator is always `-Lipschitz continuous by using Cauchy-Schwartz,8 it is
possible for an operator to be `-co-coercive around x∗ and not be Lipschitz continuous (see such
an example in Section A.6). This highlights the wider applicability of the `-co-coercivity around
x∗ assumption that is all we need for several of our convergence results, in contrast to the Lipschitz
continuity of ξ which is typically assumed in the variational inequality literature.

8‖ξ(x)−ξ(x′)‖2 ≤ `〈ξ(x)−ξ(x′), x−x′〉 ≤ `‖ξ(x)−ξ(x′)‖‖x−x′‖=⇒‖ξ(x)−ξ(x′)‖ ≤ `‖x−x′‖.
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Proof. Most of these implications can be found in Facchinei and Pang [2007].

µ-strongly monotone =⇒ L2

µ -co-coercive: The proof of this result is a direct application of strong
monotonicity and Lipschitzness properties:

‖ξ(x)− ξ(x′)‖2 ≤ L2‖x− x′‖2 ≤ L2

µ 〈ξ(x)− ξ(x′), x− x′〉 , ∀x, x′ ∈ Rd .

`-co-coercive =⇒ monotone: It comes from the fact that a norm is non-negative.

0 ≤ ‖ξ(x)− ξ(x′)‖2 ≤ `〈ξ(x)− ξ(x′), x− x′〉 , ∀x, x′ ∈ Rd .

monotone =⇒ variational stability condition: It comes from the fact that monotonicity applied to
x′ = x∗ is variational stability condition.

Quasi µ-strongly monotone =⇒ L2

µ -co-coercive relatively to x∗: (It is the only implication that is
not proven in Facchinei and Pang [2007]) The proof of this result is a direct application of quasi-strong
monotonicity and Lipschitzness properties:

‖ξ(x)− ξ(x∗)‖2 ≤ L2‖x− x∗‖2 ≤ L2

µ 〈ξ(x), x− x∗〉 , ∀x ∈ Rd .

L2

µ -co-coercive relatively to x∗ =⇒ variational stability condition: It comes from the fact that a
norm is non-negative.

0 ≤ ‖ξ(x)− ξ(x∗)‖2 ≤ `〈ξ(x), x− x∗〉 , ∀x ∈ Rd .

A.2 Proof of Lemma 3.4

Proof.

ED‖ξv(x)‖2 = ED‖ξv(x)− ξv(x∗) + ξv(x
∗)‖2

≤ 2ED‖ξv(x)− ξv(x∗)‖2 + 2ED‖ξv(x∗)‖2
EC
≤ 2`ξ〈ξ(x), x− x∗〉+ 2ED‖ξv(x∗)‖2
(6)
≤ 2`ξ〈ξ(x), x− x∗〉+ 2σ2. (16)

The first inequality follows from the estimate ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2.

A.3 Proof of Proposition 3.5

Before we formally present the proof of Proposition 3.5, let us first establish some random set
terminology.

Let C ⊆ [n] and let eC :=
∑
i∈C ei, where {e1, . . . , en} are the standard basis vectors in Rn. These

subsets will be selected using a random set valued map S, in the literature referred to by the name
sampling. A sampling is uniquely characterized by choosing subset probabilities pC ≥ 0 for all
subsets C of [n]:

P [S = C] = pC , ∀C ⊂ [n], (17)
where

∑
C⊆[n] pC = 1. In this work, following the terminology of Gower et al. [2019, 2021], our

results hold for proper samplings.

Definition A.6. A sampling S is called proper if pi
def
= P[i ∈ S] =

∑
C:i∈C pC is positive for all i.

As we mentioned in the main paper, in this work we focus on b-minibatch sampling (see Definition 2.1)
however we highlight again that our results hold for the larger class of sampling vectors v ∈ Rn that
satisfy ED[vi] = 1, for i = 1, . . . , n.

For example, the random vector v = v(S) given by v =
∑
i∈S

1
pi
ei is a sampling vector. This can be

easily proved, by noticing that vi = 1(i∈S)/pi, where 1(i∈S) is the indicator function of the event
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i ∈ S. Then, It follows that E [vi] = E
[
1(i∈S)

]
/pi = 1. Commonly used samplings that captured by

our theory are the independent sampling, partition sampling, single-element sampling and importance
sampling. For more details on these different samplings check Gower et al. [2019].

By definition 2.1 of b-minibatch sampling, it holds that P [i ∈ S] = pi = b
n , and P [i, j ∈ S] = b

n
b−1
n−1 .

All the sampling schemes presented in Gower et al. [2019] had the following additional property:
there exists a constant z > 0 such that

P [i, j ∈ S]

P [i ∈ S]P [j ∈ S]
= z, ∀i, j ∈ {1, . . . , n}, i 6= j. (18)

For b-minibatch sampling, z = n
b
b−1
n−1 [Gower et al., 2021].

Let us now present the proof of Proposition 3.5.

Proof. Since ξ is `i–co-coercive around x∗ then we have that ξ is `–co-coercive around x∗. That is
∀x ∈ Rd it holds,

‖ξi(x)− ξi(x∗)‖2 ≤ `i〈ξi(x)− ξi(x∗), x− x∗〉 (19)

‖ξ(x)− ξ(x∗)‖2 ≤ `〈ξ(x)− ξ(x∗), x− x∗〉 = `〈ξ(x), x− x∗〉. (20)

Noticing that

‖ξv(x)− ξv(x∗)‖2 =
1

n2

∥∥∥∥∥∑
i∈S

1

pi
(ξi(x)− ξi(x∗))

∥∥∥∥∥
2

=
∑
i,j∈S

〈
1

npi
(ξi(x)− ξi(x∗)),

1

npj
(ξj(x)− ξj(x∗))

〉
,

we have

E[‖ξv(x)− ξv(x∗)‖2] =
∑
C

pC
∑
i,j∈C

〈
1

npi
(ξi(x)− ξi(x∗)),

1

npj
(ξj(x)− ξj(x∗))

〉

=

n∑
i,j=1

∑
C:i,j∈C

pC

〈
1

npi
(ξi(x)− ξi(x∗)),

1

npj
(ξj(x)− ξj(x∗))

〉

=

n∑
i,j=1

P [i, j ∈ S]

pipj

〈
1

n
(ξi(x)− ξi(x∗)),

1

n
(ξj(x)− ξj(x∗))

〉
,

where we used a double counting argument in the 2nd equality. Now since P [i, j ∈ S] /(pipj) = z
for i 6= j (18) and P [i, i ∈ S] = pi we have from the above that

E[‖ξv(x)− ξv(x∗)‖2] =
∑
i6=j

z

〈
1

n
(ξi(x)− ξi(x∗)),

1

n
(ξj(x)− ξj(x∗))

〉

+

n∑
i=1

1

n2

1

pi
‖ξi(x)− ξi(x∗))‖2

=

n∑
i,j=1

z

〈
1

n
(ξi(x)− ξi(x∗)),

1

n
(ξj(x)− ξj(x∗))

〉

+

n∑
i=1

1

n2

1

pi
(1− piz) ‖ξi(x)− ξi(x∗))‖2 (21)

(19)
≤ z ‖ξ(x)− ξ(x∗)‖2

+

n∑
i=1

1

n2

`i
pi

(1− piz) 〈ξi(x)− ξi(x∗), x− x∗〉

(20)
≤

(
z`+ max

i=1,...,n

`i
npi

(1− piz)
)
〈ξ(x), x− x∗〉. (22)
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Comparing the above to the definition of expected co-coercivity (EC) we have that

`ξ = z`+ max
i=1,...,n

`i
npi

(1− piz) . (23)

Using that for b-minibatch sampling it holds P [i ∈ S] = pi = b
n and z = n

b
b−1
n−1 we obtain

`ξ =
n

b

b− 1

n− 1
`+

1

b

n− b
n− 1

`max,

where `max = max{`i}ni=1.

The specialized expressions of σ2 for the b-minibatch sampling, can be obtain by following the same
steps of Proposition 3.10 of Gower et al. [2019]. Below using our notation, we include this derivation
for completeness:

σ2 = ED[‖ξv(x∗)‖2] = E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x∗)vi
∥∥∥∥∥

2
 =

1

n2
E

∥∥∥∥∥
n∑
i=1

∇fi(x∗)vi
∥∥∥∥∥

2
 =

1

n2
E

∥∥∥∥∥∑
i∈S

1

pi
ξi(x

∗)

∥∥∥∥∥
2


=
1

n2
E

∥∥∥∥∥
n∑
i=1

1i∈S
1

pi
ξi(x

∗)

∥∥∥∥∥
2
 =

1

n2
E

 n∑
i=1

n∑
j=1

1i∈S1j∈S〈
1

pi
ξi(x

∗),
1

pj
ξj(x

∗)〉


=

1

n2

∑
i,j

P [i, j ∈ S]

pipj
〈ξi(x∗), ξj(x∗)〉.

Recall that for b-minibatch sampling, P [i ∈ S] = pi = b
n , and P [i, j ∈ S] = b

n
b−1
n−1 . Thus,

σ2 =
1

n2

∑
i,j∈[n]

P [i, j ∈ S]

pipj
〈ξi(x∗), ξj(x∗)〉

=
1

n2

∑
i 6=j

b(b− 1)

n(n− 1)
· n

2

b2
〈ξi(x∗), ξj(x∗)〉+

1

n2

∑
i∈[n]

n

b
‖ξi(x∗)‖2

=
1

nb

∑
i 6=j

b− 1

n− 1
〈ξi(x∗), ξj(x∗)〉+

∑
i∈[n]

‖ξi(x∗)‖2


=
1

nb

 ∑
i,j∈[n]

b− 1

n− 1
〈ξi(x∗), ξj(x∗)〉+

∑
i∈[n]

n− b
n− 1

‖ξi(x∗)‖2


=
1

nb
· n− b
n− 1

∑
i∈[n]

‖ξi(x∗)‖2

=
1

b
· n− b
n− 1

σ2
1 ,

where σ2
1 := 1

n

∑n
i=1 ‖ξi(x∗)‖

2.
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A.4 Proof of Proposition 3.6
Proposition A.7. Let ξ be µ-quasi-strongly monotone and let ξi be Li-Lipschitz continuous for all
i ∈ [n]. Then ξ ∈ EC(`ξ).

For a general proper sampling scheme (Def. A.6), we can provide the following (loose) bound on
`ξ:

`ξ ≤
1

n

n∑
i=1

ED
[
v2
i

]
L2
i

µ
. (24)

If, as is the case for standard sampling schemes from Gower et al. [2019], we assume that there
exists a z > 0 such that z = P[i,j∈S]

P[i∈S]P[j∈S] for all i, j ∈ {1, . . . , n}, i 6= j, then we can use the
tighter value:

`ξ =

(
zL2 +

n∑
i=1

1

n2

L2
i

pi
(1− piz)

)
1

µ
, (25)

where L is the Lipschitz continuous parameter of operator ξ and pi = P [i ∈ S].

Finally, for b-minibatch sampling, it holds pi = b
n and z = n

b
b−1
n−1 and thus ξ ∈ EC(`ξ) with

`ξ =

(
n

b

b− 1

n− 1
L2 +

(
1

n

n∑
i=1

L2
i

)
1

b

n− b
n− 1

)
1

µ
. (26)

Proof. Since ξi is Li–Lipschitz continuous for all i, then we have that ξ is L–Lipschitz continuous
(with L ≤ 1

n

∑
i Li by using Jensen’s inequality on ‖ · ‖2). That is, ∀x ∈ Rd it holds:

‖ξi(x)− ξi(y)‖ ≤ Li‖x− y‖, ∀x, y ∈ Rd (27)

‖ξ(x)− ξ(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd (28)

We first prove the general case:

ED[‖ξv(x)− ξv(x∗)‖2] = ED

[
‖ 1

n

n∑
i=1

viξi(x)− 1

n

n∑
i=1

viξi(x
∗)‖2

]
Jensen’s
≤ ED

[
1

n

n∑
i=1

‖vi[ξi(x)− ξi(x∗)]‖2
]

= ED

[
1

n

n∑
i=1

v2
i ‖ξi(x)− ξi(x∗)‖2

]
(27)
≤ ED

[
1

n

n∑
i=1

v2
iL

2
i ‖x− x∗‖2

]

=
1

n

n∑
i=1

ED
[
v2
i

]
L2
i ‖x− x∗‖2

(2)
≤ 1

n

n∑
i=1

ED
[
v2
i

]
L2
i

µ
〈ξ(x), x− x∗〉,

yielding (24).

The use of Jensen’s inequality above is the source of looseness in the bound. With the z constant
property, we can avoid it with the following derivations

By following the same steps to the proof of Proposition 3.5, we obtain (21). That is,

E[‖ξv(x)− ξv(x∗)‖2] =

n∑
i,j=1

z

〈
1

n
(ξi(x)− ξi(x∗)),

1

n
(ξj(x)− ξj(x∗))

〉

+

n∑
i=1

1

n2

1

pi
(1− piz) ‖ξi(x)− ξi(x∗))‖2 .
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Now by using (27) and (28), we obtain the following

E[‖ξv(x)− ξv(x∗)‖2] =

n∑
i,j=1

z

〈
1

n
(ξi(x)− ξi(x∗)),

1

n
(ξj(x)− ξj(x∗))

〉

+

n∑
i=1

1

n2

1

pi
(1− piz) ‖ξi(x)− ξi(x∗))‖2

(27)
≤ z ‖ξ(x)− ξ(x∗)‖2

+

n∑
i=1

1

n2

L2
i

pi
(1− piz) ‖x− x∗‖2

(28)
≤

(
zL2 +

n∑
i=1

1

n2

L2
i

pi
(1− piz)

)
‖x− x∗‖2. (29)

Since ξ is µ-quasi strongly monotone, then (29) becomes:

E[‖ξv(x)− ξv(x∗)‖2] ≤
(
zL2 +

n∑
i=1

1

n2

L2
i

pi
(1− piz)

)
1

µ
〈ξ(x), x− x∗〉 (30)

Thus the expected co-coercivity (EC) is satisfied with

`ξ =

(
zL2 +

n∑
i=1

1

n2

L2
i

pi
(1− piz)

)
1

µ
. (31)

Similar to the proof of Proposition 3.5, using that for b-minibatch sampling, P [i ∈ S] = pi = b
n and

z = n
b
b−1
n−1 , we obtain:

`ξ =

(
n

b

b− 1

n− 1
L2 +

(
1

n

n∑
i=1

L2
i

)
1

b

n− b
n− 1

)
1

µ
. (32)

This completes the proof.

A.5 Connections of EC to other Assumptions

In this section, we present some propositions not included in the main paper showing properties and
connections between classical assumptions and our proposed expected co-coercivity EC.

Proposition A.8. In the unconstrained setting, if ξ is µ-quasi strongly monotone, then it is not
possible to satisfy the bounded operator assumption that there exists a finite c such that E‖ξv(x)‖2 ≤
c for every x in Rd.

Proof. Let us assume that E‖ξv(x)‖2 ≤ c,∀x ∈ Rd. Note also that if an operator satisfies the µ-quasi
strongly monotone property (2), then by using the Cauchy–Schwarz inequality, it satisfies the error
bound condition

‖ξ(x)‖ ≥ µ‖x− x∗‖.
By combining the above two inequalities, it holds that:

µ2‖x− x∗‖2 ≤ ‖ξ(x)‖2 = ‖E[ξv(x)]‖2 ≤ E
[
‖[ξv(x)‖2

]
≤ c

which means that:
‖x− x∗‖2 ≤ c

µ2
.

However, for the unconstrained stochastic variational inequality problems (1), a point x can be very
far from the optimum point x∗ and as a result ‖x− x∗‖2 ≥ c

µ2 . This leads to a contradiction.
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Proposition A.9. In the single-objective optimization when the stochastic problem

min
x

[
f(x) = 1

n

n∑
i=1

fi(x)

]
has convex and smooth functions fi, then expected smoothness and expected co-coercivity are
equivalent (see last row of Table 1).

Proof. For simplicity of exposition, let us focus on single-element sampling.

According to Theorem 2.1.5 in Nesterov [2013], if fi is convex and Li smooth, then the following
two conditions are equivalent:

‖∇fi(x)−∇fi(y)‖2 ≤ 2Li (fi(x)− fi(y)− 〈∇fi(y), x− y〉) . (33)

‖∇fi(x)−∇fi(y)‖2 ≤ Li〈∇fi(x)−∇fi(y), x− y〉 (34)

If in the above two condition we select y = x∗ and take the expectations with respect to i, then we
obtain the following two equivalent conditions:

E
[
‖∇fi(x)−∇fi(x∗)‖2

]
≤ 2Lmax [f(x)− f(x∗)] . (35)

E
[
‖∇fi(x)−∇fi(x∗)‖2

]
≤ Lmax〈∇f(x), x− x∗〉 (36)

Note that in the above, (35) is the expected smoothness as proposed in Gower et al. [2019] while (36)
is our expected co-coercivity (EC) for the single element sampling. Note that for single-objective
optimization problems, the operator ξ is simply the gradient vector. As we mentioned in Section 3, in
single-objective optimization, a function is L–co-coercive if and only if it is convex and L-smooth
(i.e. L-Lipschitz gradients) [Bauschke et al., 2011]. Thus, the co-coercivity constant is equivalent to
the smoothness parameter.

Let us also add a simple remark highlighting the weakness of EC compare to other previously used
assumptions in the literature of stochastic algorithms for solving (1).

Remark A.10. As we show in Lemma (3.4), by assuming EC we obtain the following bound

E‖ξv(x)‖2 ≤ 2`ξ〈ξ(x), x− x∗〉+ 2σ2. (37)

Let us now compare this bound to the assumption of growth condition E‖ξi(x)‖2 ≤ c1‖ξ(x)‖2 +c2
(weakest among the other assumptions).

Note that if an operator ξ is `–co-coercive, then the growth condition implies:

E‖ξi(x)‖2 ≤ c1`〈ξ(x), x− x∗〉+ c2.

This has the same form to the bound (37), obtained by EC. However, the parameters c1 and c2 have
unknown values while using EC these parameters are closed-form problem-dependent expressions.

Thus, expected co-coercivity is weaker than the growth condition and at the same time more
powerful, as in many case it is not really an assumption, but a condition that is satisfied for free.
See for example, Propositions 3.5 and 3.6.

A.6 Example: Quasi-strongly Monotone Operator that is not Monotone nor Lipschitz

An operator that is µ-quasi strongly monotone may not even be monotone. We now give a simple
example of such an operator, with the additional property that it is L-co-coercive around x∗ but
is not Lipschitz continuous. This highlights the generality of our convergence results beyond the
standard monotone setting. Let L > µ > 0, we define ξ(x) = x(L−µ2 cos(‖x‖2) + L+µ

2 ). We have
that x∗ = 0 and

〈ξ(x), x− x∗〉 = ‖x− x∗‖22(
L− µ

2
cos(‖x‖2) +

L+ µ

2
) ≥ µ‖x− x∗‖22 , (38)
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and is thus µ-quasi strongly monotone. However, it is not monotone. To see this, let us consider
the one dimensional case x ∈ R. In this case, we get, ξ(x) = x(L−µ2 cos(|x|) + L+µ

2 ). To formally
violate the monotonicity inequality, we can for instance consider x = 2πk + π

2 and x′ = 2πk to get

〈ξ(x)− ξ(x′), x− x′〉 = (π2
L+µ

2 − 2πkL−µ2 )
π

2
=
π2

4
(L+ µ− 4k(L− µ)). (39)

This quantity is negative for k > L+µ
4(L−µ) .

This operator is also L-co-coercive with respect to x∗ since,

〈ξ(x), x− x∗〉 = ‖ξ(x)‖22(
L− µ

2
cos(‖x‖2) +

L+ µ

2
)−1 ≥ L−1‖ξ(x)‖22 . (40)

This operator is not Lipschitz continuous for all x ∈ R, as its derivative is unbounded over R.

A.7 Example: Co-coercivity for Quadratic Games

For quadratic games, it is relatively easy to characterize co-coercivity.

Proposition A.11. If ξ(x) = Ax where A ∈ Rd×d, we have that ξ is co-coercive if and only if
〈x,Ax〉 > 0 , ∀x ∈ Rd \ null(A). In that case, we have ` = sup‖x‖=1

‖Ax‖22
〈x,Ax〉 .

Proof. When ξ(x) = Ax, the co-coercivity condition (Definition 3.1)

‖A(x− x′)‖2 ≤ `〈A(x− x′), x− x′〉 , ∀x, x′ ∈ Rd . (41)

Now, we can note that the variable of interest is x− x′ ∈ Rd. Thus we get equivalently,

‖Ax‖2 ≤ `〈Ax, x〉 , ∀x ∈ Rd . (42)

This inequality is valid for any x ∈ Rd such that Ax = 0. Now, let us consider x ∈ Rd such that
Ax 6= 0.

If there exist x ∈ Rd such that Ax 6= 0 and 〈x,Ax〉 ≤ 0 then, we have that

0 < ‖Ax‖2 ≤ `〈Ax, x〉 ≤ 0 (43)

which is not valid. Thus ξ is not co-coercive.

On the other hand, if for all x ∈ Rd such that Ax 6= 0, we have 〈x,Ax〉 > 0 then, the co-coercivity
condition would demand

‖Ax‖2
〈Ax, x〉 ≤ ` , ∀x ∈ Rd , Ax 6= 0 . (44)

Finally, since the left-hand side of the previous equation is scale invariant (x 7→ λx does not change
the LHS), we have

sup
x∈Rd

‖Ax‖2
〈Ax, x〉 = sup

x∈Rd\{0}

‖Ax‖2
〈Ax, x〉 = sup

‖x‖=1

‖Ax‖2
〈Ax, x〉 (45)

So we have ` ≥ sup‖x‖=1
‖Ax‖2
〈Ax,x〉 . Because the RHS is continuous in x, and the unit ball is a compact,

this quantity is achieved. Thus there exists x ∈ Rd such that

‖Ax‖2 = sup
‖x‖=1

‖Ax‖2
〈Ax, x〉 〈Ax, x〉 (46)

Thus ` ≤ sup‖x‖=1
‖Ax‖2
〈Ax,x〉 , which concludes the proof.

For instance, a class of quadratic games that are not co-coercive are the ones where A is anti-
symmetric (A> = −A). One the other hand, there is a large class of games that are not strongly
monotone, like for instance any quadratic game induced by a matrix with a non-zero nullspace.
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B Proofs of Main Convergence Analysis Results

B.1 Proof of Theorem 4.1

In the main paper, we present the update rule of SGDA in (5). Let us also present here the pseudo-code
of SGDA:

Algorithm 2 Stochastic Gradient Descent Ascent (SGDA)

Input: Starting stepsize γ0 > 0. Choose initial points x0 ∈ Rd. Distribution D of samples.
for k = 0, 1, 2, · · · ,K do

Sample vk ∼ D
Set step-size γk following one of the selected choices (constant, decreasing)
Set xk+1 = xk − γkξvk(x)

end for
Output: The last iterate xk

Let us present a more general version of Theorem 4.1 that allows convergence with a larger step-size.
Due to space limitations, we focus only on the important regime in the main paper, as selecting a
larger step-size gives a worse convergence rate.

Theorem B.1 (Constant Step-size). Assume that ξ is µ−quasi strongly monotone and that ξ ∈
EC(`ξ). Choose αk = α < 1

`ξ
for all k. Then, the iterates of SGDA, given by (5), satisfy:

E
[
‖xk − x∗‖2

]
≤ [1− 2αµ(1− α`ξ)]k ‖x0 − x∗‖2 +

ασ2

µ(1− α`ξ)
(47)

and if αk = α ∈ (0, 1
2`ξ

] then the iterates of SGDA satisfy:

E
[
‖xk − x∗‖2

]
≤ (1− αµ)

k ‖x0 − x∗‖2 +
2ασ2

µ
(48)

Proof.

‖xk+1 − x∗‖2 =
∥∥xk − αξvk(xk)− x∗

∥∥2

= ‖xk − x∗‖2 − 2
〈
xk − x∗, αξvk(xk)

〉
+ ‖αξvk(xk)‖2

= ‖xk − x∗‖2 − 2α
〈
xk − x∗, ξvk(xk)

〉
+ α2‖ξvk(xk)‖2 (49)

By taking expectation condition on xk:

ED
[
‖xk+1 − x∗‖2

]
= ‖xk − x∗‖2 − 2α

〈
xk − x∗, ξ(xk)

〉
+ α2ED

[∥∥ξvk(xk)
∥∥2
]

Lemma 3.4
≤ ‖xk − x∗‖2 − 2α

〈
xk − x∗, ξ(xk)

〉
+ 2α2`ξ

〈
xk − x∗, ξ(xk)

〉
+ 2α2σ2

(2),α< 1
`ξ

≤ ‖xk − x∗‖2 − 2αµ(1− α`ξ)‖xk − x∗‖2 + 2α2σ2 (50)

Recursively applying the above and summing up the resulting geometric series gives:

E
[
‖xk − x∗‖2

]
≤ [1− 2αµ(1− α`ξ)]k‖x0 − x∗‖2 + 2

k−1∑
j=0

(1− 2αµ(1− α`ξ))jα2σ2

≤ [1− 2αµ(1− α`ξ)]k‖x0 − x∗‖2 +
ασ2

µ(1− α`ξ)
(51)

If we further take α ≤ 1
2`ξ

then (50) becomes:

ED
[
‖xk+1 − x∗‖2

]
≤ (1− αµ)‖xk − x∗‖2 + 2α2σ2 (52)
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and by recursively applying the above and summing up the resulting geometric series gives:

E
[
‖xk − x∗‖2

]
≤ (1− αµ)k‖x0 − x∗‖2 +

2ασ2

µ
(53)

Comment on the convergence deterministic Gradient Descent Ascent: In the main paper, to
highlight the generality of Theorem 4.1, we present Corollary 4.2 on the convergence of deterministic
gradient descent ascent. Let us provide some more details of how one can obtain such a result through
Proposition 3.5.

Let us select the sampling vector v = (1, 1, . . . , 1) ∈ Rn with probability 1 in each step. Note that this
is still a sampling vector as ED[vi] = 1. In this case, at iteration k, ξvk(xk) := 1

n

∑n
i=1 viξi(x

k)
vi=1
=

1
n

∑n
i=1 ξi(x

k) = ξ(xk) and the update rule becomes equivalent to the deterministic GDA:

xk+1 = xk − αkξ(xk).

In addition, by Proposition 3.5 we have that if |S| = n with probability one (each iteration of SGDA
uses a full batch gradient), then `ξ = ` and σ2 = 0. Thus, by combining (7) of Theorem 4.1 with
Proposition 3.5 we obtain the convergence given in Corollary 4.2 for the deterministic gradient
descent ascent. We highlight that for this case, the expected co-coercivity condition (EC) is equivalent
to assuming that operator ξ is `-co-coercive.

B.2 Proof of Theorem 4.3
Theorem B.2. Assume ξ is µ-quasi-strongly monotone and that ξ ∈ EC(`ξ). Let K := `ξ/µ and
let

αk =


1

2`ξ
for k ≤ 4dKe

2k + 1

(k + 1)2µ
for k > 4dKe.

(54)

If k ≥ 4dKe, then iterates of SGDA, given by (5) satisfy:

E‖xk − x∗‖2 ≤ σ2

µ2

8

k
+

16dKe2
e2k2

‖x0 − x∗‖2 = O

(
1

k

)
. (55)

Proof. Let αk := 2k+1
(k+1)2µ and let k∗ be an integer that satisfies αk∗ ≤ 1

2`ξ
.Note that αk is decreasing

in k and consequently αk ≤ 1
2`ξ

for all k ≥ k∗. This in turn guarantees that (52) holds for all k ≥ k∗
with αk in place of α, that is

ED
[
‖xk+1 − x∗‖2

]
≤ (1− αkµ)‖xk − x∗‖2 + 2α2

kσ
2 (56)

Hence, if we take expectations and replace αk := 2k+1
(k+1)2µ then

E‖xk+1 − x∗‖2 ≤ k2

(k + 1)2
E‖xk − x∗‖2 +

2σ2

µ2

(2k + 1)2

(k + 1)4
. (57)

Multiplying both sides by (k + 1)2 we obtain

(k + 1)2E‖xk+1 − x∗‖2 ≤ k2E‖xk − x∗‖2 +
2σ2

µ2

(
2k + 1

k + 1

)2

≤ k2E‖xk − x∗‖2 +
8σ2

µ2
,

where the second inequality holds because 2k+1
k+1 < 2. Rearranging and summing from t = k∗ . . . k

we obtain:
k∑

t=k∗

[
(t+ 1)2E‖xk+1 − x∗‖2 − t2E‖xk − x∗‖2

]
≤

k∑
t=k∗

8σ2

µ2
. (58)
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Using telescopic cancellation gives

(k + 1)2E‖xk+1 − x∗‖2 ≤ (k∗)2E‖xk∗ − x∗‖2 +
8σ2(k − k∗)

µ2
.

Dividing the above by (k + 1)2 gives

E‖xk+1 − x∗‖2 ≤ (k∗)2

(k + 1)2
E‖xk∗ − x∗‖2 +

8σ2(k − k∗)
µ2(k + 1)2

. (59)

For k ≤ k∗ we have that (53) holds with αk = 1
2`ξ

, which combined with (59), gives

E‖xk+1 − x∗‖2 ≤ (k∗)2

(k + 1)2

(
1− µ

2`ξ

)k∗
‖x0 − x∗‖2

+
σ2

µ2(k + 1)2

(
8(k − k∗) +

(k∗)2

K

)
. (60)

Choosing k∗ that minimizes the second line of the above gives k∗ = 4dKe, which when inserted
into (60) becomes

E‖xk+1 − x∗‖2 ≤ 16dKe2
(k + 1)2

(
1− 1

2K

)4dKe
‖x0 − x∗‖2

+
σ2

µ2

8(k − 2dKe)
(k + 1)2

≤ 16dKe2
e2(k + 1)2

‖x0 − x∗‖2 +
σ2

µ2

8

k + 1
, (61)

where we have used that
(
1− 1

2x

)4x ≤ e−2 for all x ≥ 1.

B.3 Proof of Theorem 5.1

Before providing the proof of Theorem 5.1, let us present the definitions of quasi-strong convexity
and expected smoothness condition, together with a lemma that provides a bound to the expected
norm of the stochastic gradients when a function satisfies the expected smoothness. Recall that
in the main paper, we assume that the Hamiltonian function H(x) is quasi-strongly convex and
L—expected smooth (satisfies the expected smoothness condition). Thus, these assumptions are vital
for the convergence guarantees of SCO presented in Section 5.

Technical Background on Optimization. Let us consider the optimization problem

x∗ = argminx∈Rd

[
f(x) = 1

n

n∑
i=1

fi(x)

]
, (62)

where each fi : Rd → R is smooth and f has a unique global minimizer x∗.

Definition B.3 (Quasi-strong convexity). We say that a function f : Rd → R is µ–strongly
quasi-convex [Karimi et al., 2016, Necoara et al., 2018] if there is µ > 0 such that:

f(x∗) ≥ f(x) + 〈∇f(x), x∗ − x〉+ µ
2 ‖x∗ − x‖

2 (63)

for all x ∈ Rd. Here x∗ is the global minimizer of f a.

Note that we have already presented the expected smoothness condition in Table 1. Below we present
its formal definition. For this definition we use the stochastic reformulation of the finite-sum problem
f(x) = 1

n

∑n
i=1 fi(x). That is, we define: fv(x) := 1

n

∑n
i=1 vifi(x) where v ∼ D is a random

sampling vector (see Section 2 for more details on sampling vectors).

aIn our setting we assume that x∗ is unique, but in the more general setting, x∗ is the projection of point x
onto the solution set X∗ minimizing f .
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Definition B.4 (Expected Smoothness). We say that f is L—expected smooth with respect to a
distribution D if there exists L = L(f,D) > 0 such that

ED
[
‖∇fv(x)−∇fv(x∗)‖2

]
≤ 2L(f(x)− f(x∗)), (64)

for all x ∈ Rd.

In the next lemma, by assuming that a function f(x) = 1
n

∑n
i=1 fi(x) satisfies the expected smooth-

ness we are able to bound the expected norm of its stochastic gradients. This is precisely the result we
use in our proofs on the convergence of SCO, to upper bound ED

[
‖∇Hvk,uk(xk)‖2

]
. This bound

allows us to avoid the much stronger bounded gradient or bounded variance assumptions.

Lemma B.5 (Lemma 2.4 in Gower et al. [2019]). If f is L—expected smooth, then

ED
[
‖∇fv(x)‖2

]
≤ 4L(f(x)− f(x∗)) + 2σ2. (65)

where σ2 := ED[‖∇fv(x∗)‖2].

Proof. The proof can be easily obtained by following the same steps of the proof of Lemma 3.4. See
also the proof of Lemma 2.4 in Gower et al. [2019].

Let us now present a more general version of Theorem 5.1 that allows convergence with a larger
step-size α. Due to space limitations, in the main paper, we focus only on the important regime of
step-size α as selecting a larger step-size gives a worse convergence rate.

Theorem B.6 (Constant Step-size). Assume ξ is µ-quasi-strongly monotone with µ ≥ 0 and that
ξ ∈ EC(`ξ). Let us also assume that the Hamiltonian functionH is µH-quasi strongly convex and
LH-expected smooth. Then, for γk = γ ≤ 1/4LH and αk = α < 1/2`ξ it holds that :

E
[
‖xk − x∗‖2

]
≤ (1− γµH − 2αµ+ 4α2`ξµ)k‖x0 − x∗‖2 +

4[α2σ2 + γ2σ2
H]

γµH + 2αµ− 4α2`ξµ
, (66)

and if αk = α ∈ (0, 1
4`ξ

] then the iterates of SCO satisfy:

E
[
‖xk − x∗‖2

]
≤ (1− γµH − αµ)k‖x0 − x∗‖2 +

4[α2σ2 + γ2σ2
H]

γµH + αµ
. (67)

If µ = 0, that is ξ only satisfies the variational stability condition 〈ξ(x), x− x∗〉 ≥ 0, then

E
[
‖xk − x∗‖2

]
≤ (1− γµH)k‖x0 − x∗‖2 +

4[α2σ2 + γ2σ2
H]

γµH
. (68)

Proof.

‖xk+1 − x∗‖2 =
∥∥xk − αξvk(xk)− γ∇Hvk,uk(xk)− x∗

∥∥2

= ‖xk − x∗‖2 − 2
〈
xk − x∗, αξvk(xk) + γ∇Hvk,uk(xk)

〉
+‖αξvk(xk) + γ∇Hvk,uk(xk)‖2

= ‖xk − x∗‖2 − 2α
〈
xk − x∗, ξvk(xk)

〉
− 2γ

〈
xk − x∗,∇Hvk,uk(xk)

〉
+‖αξvk(xk) + γ∇Hvk,uk(xk)‖2

Young’s
≤ ‖xk − x∗‖2 − 2α

〈
xk − x∗, ξvk(xk)

〉
− 2γ

〈
xk − x∗,∇Hvk,uk(xk)

〉
+2α2

∥∥ξvk(xk)
∥∥2

+ 2γ2‖∇Hvk,uk(xk)‖2 (69)
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By taking expectation condition on xk:

ED
[
‖xk+1 − x∗‖2

]
≤ ‖xk − x∗‖2 − 2α

〈
xk − x∗, ξ(xk)

〉
− 2γ

〈
xk − x∗,∇H(xk)

〉
+2α2ED

[∥∥ξvk(xk)
∥∥2
]

+ 2γ2ED
[
‖∇Hvk,uk(xk)‖2

]
(63)
≤ ‖xk − x∗‖2 − 2α

〈
xk − x∗, ξ(xk)

〉
− 2γ[H(xk)−H(x∗)]− γµH‖xk − x∗‖2

+2α2ED
[∥∥ξvk(xk)

∥∥2
]

+ 2γ2ED
[
‖∇Hvk,uk(xk)‖2

]
(65)
≤ ‖xk − x∗‖2 − 2α

〈
xk − x∗, ξ(xk)

〉
− 2γ[H(xk)−H(x∗)]− γµH‖xk − x∗‖2

+2α2ED
[∥∥ξvk(xk)

∥∥2
]

+ 8γ2LH(H(x)−H(x∗)) + 4γ2σ2
H

(16)
≤ ‖xk − x∗‖2 − 2α

〈
xk − x∗, ξ(xk)

〉
− 2γ[H(xk)−H(x∗)]− γµH‖xk − x∗‖2

+4α2`ξ〈ξ(x), x− x∗〉+ 4α2σ2 + 8γ2LH(H(x)−H(x∗)) + 4γ2σ2
H (70)

Recall that ξ is µ-quasi strongly monotone,
〈
xk − x∗, ξ(xk)

〉
≥ µ‖xk − x∗‖2. Thus, for αk < 1

2`ξ
,

it holds that:

(−2αk + 4α2
k`ξ)〈ξ(xk), x− x∗〉 ≤ (−2αk + 4α2

k`ξ)µ‖xk − x∗‖2,
and the inequality (70) takes the following form:

ED
[
‖xk+1 − x∗‖2

]
≤ (1− γµH)‖xk − x∗‖2 + (−2α+ 4α2`ξ)µ‖xk − x∗‖2

+(−2γ + 8γ2
kLH)[H(xk)−H(x∗)] + 4α2σ2 + 4γ2σ2

H
= (1− γµH − 2αµ+ 4α2`ξµ)‖xk − x∗‖2

+(−2γ + 8γ2LH)[H(xk)−H(x∗)] + 4α2σ2 + 4γ2σ2
H

γk<
1

4LH≤ (1− γµH − 2αµ+ 4α2`ξµ)‖xk − x∗‖2 + 4[α2σ2 + γ2σ2
H]

(71)

By taking expectations again and by recursively applying the above and summing up the resulting
geometric series gives:

E
[
‖xk − x∗‖2

]
≤ (1− γµH − 2αµ+ 4α2`ξµ)k‖x0 − x∗‖2 +

4[α2σ2 + γ2σ2
H]

γµH + 2αµ− 4α2`ξµ

If we further assume that α ≤ 1
4`ξ

then 1 − γµH − 2αµg + 4α2`ξµg ≤ 1 − γµH − αµ and the
iterates of SCO satisfy:

E
[
‖xk − x∗‖2

]
≤ (1− γµH − αµ)k‖x0 − x∗‖2 +

4[α2σ2 + γ2σ2
H]

γµH + αµ
. (72)

In addition, if µ = 0, that is ξ only satisfies the variational stability condition 〈ξ(x), x − x∗〉 ≥ 0,
then

E
[
‖xk − x∗‖2

]
≤ (1− γµH)k‖x0 − x∗‖2 +

4[α2σ2 + γ2σ2
H]

γµH
. (73)

This completes the proof.

On Deterministic Consensus Optimization. In Corollary 5.2 we show the convergence of Deter-
ministic CO as special case of our main Theorem. Here we provide few more details to understand
exactly this convergence.

Let us select the sampling vectors v = u = (1, 1, . . . , 1) ∈ Rn with probability 1 in each
step. Note that these are still sampling vectors as ED[vi] = ED[ui] = 1. In this case, at
iteration k, ξvk(xk) := 1

n

∑n
i=1 viξi(x

k)
vi=1
= 1

n

∑n
i=1 ξi(x

k) = ξ(xk) and ∇Hu,v(x) =
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1
2

[
J>u (x)ξv(x) + J>v (x)ξu(x)

] vi=1,ui=1
= 1

2

[
J>(x)ξ(x) + J>(x)ξ(x)

]
= J>(x)ξ(x) = ∇H(x).

Thus, the update rule becomes equivalent to the deterministic CO:

xk+1 = xk − αξ(xk)− γ∇H(xk).

In addition, by Proposition 3.5 we have that if |S| = n with probability one, then `ξ = ` and σ2 = 0.
Using also the properties of expected smoothness (see Proposition 3.8 in Gower et al. [2019]) we have
that LH = LH, where LH is the smoothness parameter of the Hamiltonian function, and σ2

H = 0.
By simply substituting these values to the main theorem we are able to obtain the convergence result
presented in Corollary 5.2.

Convergence of SGDA and SHGD as special cases of our Analysis. As we mentioned in the
main paper, SCO is a weighted combination of SGDA (Algorithm 2) and the stochastic Hamiltonian
gradient descent (SHGD) of Loizou et al. [2020]. Thus, it is clear, that if one selects αk = 0,∀k > 0
then the method is equivalent to SHGD and if γk = 0,∀k > 0 then the method becomes equivalent
to the SGDA. Here we highlight that in these cases the Young’s inequality used in (69) of the proof
of main theorem is not necessary. This is exactly why by specifying the update rule to SHGD we
are able to have convergence using the larger bound on the step-size γ ≤ 1/2LH (see Corollary 5.3).
Following similar argument the convergence of SGDA presented in Theorem 4.1 can also obtained
as special case of Theorem 5.1.

B.4 Proof of Theorem 5.4
Theorem B.7. Assume ξ is µ-quasi-strongly monotone and that ξ ∈ EC(`ξ). Assume that the
Hamiltonian function H is µH-quasi strongly convex and LH-expected smooth. Let αk = γk,
ψ = max{`ξ,LH} and k∗ := 8 ψ

µH+µ . Let also,

γk =


1

4ψ
for k ≤ dk∗e

2k + 1

(k + 1)2[µH + µ]
for k > dk∗e.

(74)

If k ≥ dk∗e, then SCO iterates satisfy:

E‖xk − x∗‖2 ≤ σ2
H + σ2

[µ+ µH]2
16

k
+

(k∗)2

e2k2
‖x0 − x∗‖2 = O

(
1

k

)
(75)

If µ = 0, that is ξ only satisfies the variational stability condition 〈ξ(x), x− x∗〉 ≥ 0, then SCO is
still able to converge sublinearly with O

(
1
k

)
, to x∗.

Proof. Let γk := 2k+1
(k+1)2[µH+µ] and let k∗ be an integer that satisfies

γk∗ ≤ min

{
1

4`ξ
,

1

4LH

}
=

1

4ψ
.

Note that γk is decreasing in k and consequently γk ≤ 1
4ψ for all k ≥ k∗. This in turn guarantees

that (71) holds for all k ≥ k∗ with γk in place of γ and αk = γk in place of α, that is

ED
[
‖xk+1 − x∗‖2

]
≤ (1− γkµH − 2γkµ+ 4γ2

k`ξµ)‖xk − x∗‖2 + 4[γ2
kσ

2 + γ2
kσ

2
H]

and since γk ≤ 1
4`ξ

we obtain:

ED
[
‖xk+1 − x∗‖2

]
≤ (1− γk[µH + µ])‖xk − x∗‖2 + 4γ2

k[σ2 + σ2
H]. (76)

For simplicity of presentation let us denote µ̄ = [µH + µ] and σ̄2 = [σ2 + σ2
H] then (76) can be

written as:

ED
[
‖xk+1 − x∗‖2

]
≤ (1− γkµ̄)‖xk − x∗‖2 + 4γ2

kσ̄
2. (77)

Now let us follow similar steps to the proof of Theorem 4.3.
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By taking expectations and replacing γk := 2k+1
(k+1)2[µH+µ] = 2k+1

(k+1)2µ̄ we obtain,

E‖xk+1 − x∗‖2 ≤ k2

(k + 1)2
E‖xk − x∗‖2 +

4σ̄2

µ̄2

(2k + 1)2

(k + 1)4
. (78)

Multiplying both sides by (k + 1)2 we obtain

(k + 1)2E‖xk+1 − x∗‖2 ≤ k2E‖xk − x∗‖2 +
4σ̄2

µ̄2

(
2k + 1

k + 1

)2

≤ k2E‖xk − x∗‖2 +
16σ̄2

µ̄2
,

where the second inequality holds because 2k+1
k+1 < 2. Rearranging and summing from t = k∗ . . . k

we obtain:
k∑

t=k∗

[
(t+ 1)2E‖xk+1 − x∗‖2 − t2E‖xk − x∗‖2

]
≤

k∑
t=k∗

16σ̄2

µ̄2
. (79)

Using telescopic cancellation gives

(k + 1)2E‖xk+1 − x∗‖2 ≤ (k∗)2E‖xk∗ − x∗‖2 +
8σ̄2(k − k∗)

µ̄2
.

Dividing the above by (k + 1)2 gives

E‖xk+1 − x∗‖2 ≤ (k∗)2

(k + 1)2
E‖xk∗ − x∗‖2 +

8σ̄2(k − k∗)
µ̄2(k + 1)2

. (80)

At this point note that for k ≤ k∗ we have that (77) holds and by using our step-size selection
γk = γ = 1

4ψ for k ≤ dk∗e we obtain

ED
[
‖xk+1 − x∗‖2

]
≤ (1− γµ̄)‖xk − x∗‖2 + 4γ2σ̄2, (81)

which by taking expectations again and by recursively applying the above and summing up the
resulting geometric series gives (for k ≤ k∗):

E
[
‖xk+1 − x∗‖2

]
≤ (1− γµ̄)k‖x0 − x∗‖2 +

4γσ̄2

µ̄
, (82)

Thus, for k ≤ k∗ we have that (82) holds with γk = 1
4ψ , which combined with (80), gives

E‖xk+1 − x∗‖2 ≤ (k∗)2

(k + 1)2

(
1− µ̄

4ψ

)k∗
‖x0 − x∗‖2

+
σ̄2

µ̄2(k + 1)2

(
16(k − k∗) +

(k∗)2µ̄

ψ

)
. (83)

Choosing k∗ that minimizes the second line of the above gives k∗ = 8ψµ̄ , which when inserted
into (83) becomes

E‖xk+1 − x∗‖2 ≤ (k∗)2

(k + 1)2

(
1− 2

k∗

)k∗
‖x0 − x∗‖2

+
σ̄2

µ̄2(k + 1)2
8 (2k − k∗)

≤ (k∗)2

(k + 1)2e2
‖x0 − x∗‖2 +

σ̄2

µ̄2(k + 1)2
8 (2k − k∗)

≤ (k∗)2

(k + 1)2e2
‖x0 − x∗‖2 +

σ̄2

µ̄2

16

k + 1
. (84)

where in the second inequality we have used that
(
1− 1

2x

)4x ≤ 1
e2 for all x ≥ 1 and in the last

inequality we used that 2k−k∗
k+1 ≤ 2k

k+1 ≤ 2.
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Thus by replacing µ̄ = [µH + µ] and σ̄2 = [σ2 + σ2
H] we obtain:

E‖xk − x∗‖2 ≤ σ2
H + σ2

[µ+ µH]2
16

k
+

(k∗)2

e2k2
‖x0 − x∗‖2 = O

(
1

k

)
.

As we mentioned in the statement of the Theorem, if µ = 0, that is ξ only satisfies the variational
stability condition 〈ξ(x), x−x∗〉 ≥ 0, then SCO is still able to converge sublinearly withO

(
1
k

)
, to x∗.

In this case, the proof will be exactly the same as above but k∗ := 8 ψ
µH

and γk = 2k+1
(k+1)2µH

for k >

dk∗e. And the convergence will be E‖xk − x∗‖2 ≤ σ2
H+σ2

µ2
H

16
k + (k∗)2

e2k2 ‖x0 − x∗‖2 = O
(

1
k

)
.
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C On Experiments

C.1 Properties of Hamiltonian Function for Quadratic Games

In the next proposition, we explain how the assumptions on the Hamiltonian function used in the
main theorems of Section 5 (convergence analysis of SCO) are satisfied for the quadratic min-max
problems.

Proposition C.1. For quadratic games of the form (13) with Ai and Ci symmetric with at least
one solution x∗, the Hamiltonian function H(x) is a LH-smooth and µH–quasi-strongly convex
quadratic function with constants LH = σ2

max(J) and µH = σ2
min(J) where σmax and σmin are

the maximum and minimum non-zero singular values of J, and J = ∇ξ is the Jacobian matrix of
the game.

Proof. Our approach follows closely the proof of Proposition 4.3 of Loizou et al. [2020] where
the properties of the Hamiltonian function for stochastic bilinear games were presented. Let A =
1
n

∑n
i=1 Ai, B = 1

n

∑n
i=1 Bi and C = 1

n

∑n
i=1 Ci and let a = 1

n

∑n
i=1 ai and c = 1

n

∑n
i=1 ci.

Firstly, note that the stochastic Hamiltonian function of (13) has the following form:

H(x) =
1

2
x>Qx+ q>x+ `

where Q =

(
A2 + BB> AB−BC

B>A−CB> C2 + B>B

)
= J>J, q =

(
Aa−Bc
B>a+ Cc

)
, and ` = 1

2 (‖a‖2 + ‖b‖2)

The Hamiltonian is thus a smooth quadratic function and the matrix Q is symmetric and positive
semi-definite. In addition, as we assumed that there was at least one solution x∗ for the game, i.e.
ξ(x∗) = 0, we have that x∗ is also a global minimum of the Hamiltonian functionH(x), and thus we
have that q = −Qx∗ = −J>Jx∗. Using this, we can rewrite the Hamiltonian as:

H(x) = φ(Jx),

where the function φ(y) := 1
2‖y‖2 − (Jx∗)>y + ` is 1-strongly convex with 1-Lipschitz continuous

gradient.

Thus, using Lemma D.1 in Loizou et al. [2020], we have that the the Hamiltonian function is a
LH-smooth, µH-quasi-strongly convex function with constants LH = λmax(J>J) = λmax(Q) =
σ2

max(J) and µH = σ2
min(J) = λ+

min(Q).

C.2 Experimental Details

We describe here in more details the exact settings we use for evaluating the different algorithms. As
mentioned in Section 6, we evaluate the different algorithms on the class of quadratic games:

min
x1∈Rd

max
x2∈Rp

1

n

∑
i

1

2
x>1 Aix1 + x>1 Bix2 −

1

2
x>2 Cix2 + a>i x1 − c>i x2

In all our experiments we choose d = p = 100 and n = 100. To sample the matrices Ai (resp. Ci)
we first generate a random orthogonal matrix Qi (resp. Q′i), we then sample a random diagonal
matrix Di (resp. D′i) where the elements on the diagonal are sampled uniformly in [µA, LA] (resp.
[µC , LC ]), such that at least one of the matrices has a minimum eigenvalue equal to µA (resp. µC)
and one matrix has a maximum eigenvalue equal to LA (resp. LB). Finally we construct the matrices
by computing Ai = QiDiQ

>
i (resp. Ci = Q′iD

′
iQ
′>
i ). This ensures that the matrices Ai and Ci

for all i ∈ [n], are symmetric and positive definite. We sample the matrices Bi in a similar fashion
with the diagonal matrix Di to lie between [µB , LB ]9. In all our experiments we choose µA = µC
and LA = LC . By varying the different constants µA, LA, µC , LC , µB , LB we can get a variety
of games with different properties µ, `ξ, µH,LH. The bias terms ai, ci are sampled from a normal
distribution. For further details, see also our source code10.

9We highlight that matrices Bi are not necessarily symmetric.
10https://github.com/hugobb/StochasticGamesOpt
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As we have already mentioned in Section 6, we pick the step-sizes for the different methods according
to our theoretical findings. That is, for constant step-size, we select α = 1

2`ξ
for SGDA (Theorem 4.1),

α = 1
4`ξ
, γ = 1

4LH for SCO (Theorem 5.1), and γ = 1
2LH for SHGD (Corollary 5.3). For the stepsize-

switching rule that guarantees convergence to x∗, we use the step-sizes proposed in Theorem 4.3 for
SGDA and Theorem 5.4 for SCO.

In the experiments, we run all methods (SGDA, SCO and SHGD) using uniform single-element
sampling. That is, |S| = 1, according to the Definition 2.1. Thus, P [i ∈ S] = pi = 1

n . By
Proposition 3.5, this means that `ξ = `max = max{`i}ni=1. In addition, by Proposition 3.8 in
Gower et al. [2019] and the structure of the stochastic Hamiltonian function,H(x) = 1

2‖ξ(x)‖2 =
1
n

∑n
i=1

1
n

∑n
j=1

1
2 〈ξi(x), ξj(x)〉, we have that LH = max{LHi,j}ni=1,j=1, where LHi,j is the

smoothness parameter ofHi,j = 1
2 〈ξi(x), ξj(x)〉.

The values of the co-coercive parameters `i for all i ∈ [n] are computed using 1
`i

= minλ∈Sp(Ji) <( 1
λ )

[Azizian et al., 2020]. Here Sp(Ji) denotes the spectrum of the Jacobian matrix Ji for all i ∈ [n] and
< denotes the real part of a complex number.

C.3 Additional Experiment: Influence of the Step-size on Convergence

In this section we provide further experiments exploring the performance of SGDA, SHGD and SCO
for different constant step-sizes (see Fig. 3). This experiment aims to understand better how the
convergence rate and the size of the neighborhood the algorithms converge to depend on the step
size. This also enables us to assess if the optimal step-size suggested by the theory is tight. When the
step-size is too large we observe that the methods diverges, we do not include them in the plots but
provide them below for completeness. We observe that SHGD diverges with a step-size of γ = 3γ∗

with γ∗ = 1
2LH , SGDA diverges with a step-size of α = 4α∗ with α∗ = 1

2`ξ
, SCO diverges with a

step-size of α = 4α∗ and γ = 4γ∗ with α∗ = 1
4`ξ

and γ∗ = 1
4LH . We also observe that SCO is less

sensitive to the choice of α than to the choice of γ

0 10 20 30 40 50

Number of Iterations

10−3

10−2

10−1

100

D
is

ta
nc

e
to

op
tim

al
ity

SGDA α = 1
2`ξ

SGDA 3α

SGDA 2α

SGDA α
3

SGDA α
2

(a) SGDA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Number of Iterations

10−3

10−2

10−1

100

D
is

ta
nc

e
to

op
tim

al
ity

SHGD γ = 1
2LH

SHGD 1.5γ

SHGD 2γ

SHGD γ
1.5

SHGD γ
2

(b) SHGD

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Number of Iterations

10−3

10−2

10−1

100

D
is

ta
nc

e
to

op
tim

al
ity

SCO α = 1
4`ξ
, γ = 1

4LH
SCO 2α, 2γ

SCO 3α, 3γ

SCO α
3 ,

γ
3

SCO α
2 ,

γ
2

(c) SCO varying both α & γ

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Number of Iterations

10−3

10−2

10−1

100

D
is

ta
nc

e
to

op
tim

al
ity

SCO α = 1
4`ξ
, γ = 1

4LH

SCO α, 2γ

SCO α, 3γ

SCO α, γ3

SCO α, γ2

(d) SCO varying only γ

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Number of Iterations

10−3

10−2

10−1

100

D
is

ta
nc

e
to

op
tim

al
ity

SCO α = 1
4`ξ
, γ = 1

4LH

SCO 2α, γ

SCO 5α, γ

SCO α
5 , γ

SCO α
2 , γ

(e) SCO varying only α

Figure 3: Performance of the methods, SGDA, SHGD and SCO with different constant step-sizes. Distance to
optimality: ‖x

k−x∗‖2
‖x0−x∗‖2 . The step-sizes used are expressed as the optimal theoretical step-size predicted by the

theory times a constant. The step-sizes for which the methods diverge are not included in the plots.
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D Beyond Finite-sum Structure

We explain in this section how all our convergence results also hold for the more general (non
finite-sum) stochastic approximation setting [Nemirovski et al., 2009], where we define ξ : Rd → Rd
as:

ξ(x) := EU ξ̃(x, U), (85)

where U is a random vector in Rp, and ξ̃ : Rd × Rp → Rd is used to define ξ and is assumed to
be well-behaved enough so that (85) exists for all x. Setting U to be a uniform random variable in
{1, . . . , n} gives back the finite sum setting with uniform weights which was covered in the paper
in (1).

We present here only results for the singleton sampling regime, as generalizing to mini-batching
and other sampling schemes in the continuous regime is non-trivial and beyond the scope of this
paper. This means that we restrict here our estimator for ξ(x) to simply be ξ̃(x, U), with U sampled
according to its distribution. Any appearance of ξv in the paper can then be replaced with ξ̃(x, U)
to be able to re-interpret the algorithms and proofs in this setting. In particular, we have that our
estimator is g(x) = ξv(x) := ξ̃(x, U), and so E[g(x)] = EU ξ̃(x, U) = ξ(x) trivially. Also, the
expected co-coercivity of ξ is defined as the existence of a `ξ > 0 such that

EU
[
‖ξ̃(x, U)− ξ̃(x∗, U)‖2

]
≤ `ξ〈ξ(x), x− x∗〉 ∀x ∈ Rd . (86)

An important quantity appearing in our convergence results is

σ2 := EU‖ξ̃(x, U)‖2 , (87)

and we assume that U and ξ̃ are such that σ2 < ∞.11 Similarly, σ2
H is defined by letting u and v

represent independent singleton sampling in (10), and is assumed to be finite.

Under the assumption of expected co-coercivity of ξ and that σ2 is finite, all the convergence theorems
of Section 4 and 5 hold as is for ξ more generally defined by (85). This is because all the convergence
proofs did not use the finite sum structure explicitly, only the linearity of the expectation operator.

Finally, we can easily generalize Proposition 3.5 for b = 1 with `ξ = `max (we assume each ξ̃(x, u)
is `u-co-coercive in x around x∗, and assume that `max := supu `u is finite).

We can also generalize Proposition 3.6 (for singleton sampling) with `ξ := EUL2
U/µ (we assume

each ξ̃(x, u) is Lu-Lipschitz continuous in x, for each u; and that EUL2
U is finite).

E More Related Work

The references necessary to motivate our work and connect it to the most relevant literature is included
in the appropriate sections of the main body of the paper. Here we present a broader view of the
literature, including some more references to papers of the area that are not directly related with our
work.

Smooth monotone games. The deterministic version of the problem has been studied extensively
both in past and recent work, initially focusing on strongly monotone problems [Tseng, 1995, Gidel
et al., 2018, Liang and Stokes, 2019, Azizian et al., 2020, Zhou et al., 2021]. Mokhtari et al. [2020]
recently gave rates for extragradient and optimistic gradient through a proximal point approach.

For monotone problems, in the absence of strong monotonicity but assuming a lower bound of the
singular values of the coupling between players, Azizian et al. [2020] produce tight results for the
extragradient and optimistic gradient methods.

For general monotone problems, Mertikopoulos and Zhou [2019] establish last-iterate convergence,
but requires a decreasing step-size schedule; it also does not guarantee convergence to fixed points of
non-strictly monotone problems like bilinears. Golowich et al. [2020b] show that last-iterate methods
are slower than averaging in this setting. Overcoming the above limitations, Golowich et al. [2020b,a]
establish tight upper bounds, O(1/

√
T ), for general monotone problems under a weak smoothness

assumption for extra-gradient and optimistic gradient respectively.
11In the finite sum setting, this is always true. But for general random variable U , this is not always the case.
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Stochastic smooth monotone games. Contrary to the deterministic family of problems, in the
stochastic setting (where available gradients are noisy), progress has occurred mostly in the past
five years. Without variance reduction, some work establishes last-iterate convergence results
with a slow (sublinear) rate [Rosasco et al., 2014, Mishchenko et al., 2020]. For pseudomonotone
problems, Kannan and Shanbhag [2019] give last-iterate convergence of stochastic extragradient
with decreasing step sizes, assuming a uniform bound on the variance. Using variance reduction
techniques, Palaniappan and Bach [2016] yield fast linear rates without requiring a bound on the
variance, however the step size and inner loop length need to be tuned using the modulus of local
strong monotonicity. This limitation was later lifted with a variance reduced extragradient method
proposed by Chavdarova et al. [2019], which is adaptive to local strong monotonicity.

For monotone problems, in the absence of strong monotonicity but assuming a lower bound of
the singular values of the coupling between players, Chavdarova et al. [2019] show that stochastic
extragradient with constant step-size does not always yield last-iterate convergence. Such a result for
extragradient was shown to be possible using a double step-size scheme in Hsieh et al. [2020], using
one step size for the extrapolation step and a different step size for the update step.

For general monotone problems, Mertikopoulos and Zhou [2019] use a dual averaging approach
to get last-iterate convergence for no-regret algorithms making a bounded variance assumption.
This bounded variance assumption is lifted in Lin et al. [2020b]; the authors give finite-time last-
iterate convergence of optimistic gradient under other strong conditions: i) for a relative random
noise model, the noise variance is assumed to be proportional to the squared norm of the vector of
gradients, according to the sequence of multiplicative coefficients, τk. That is, Ei‖ξi(xk)−ξ(xk)‖2 <
τk‖ξ(xk)‖2. This kind of condition with a constant τk = τ can occur in some machine learning
problems, in particular in supervised learning learning problems when the model is overparametrized
and capable to perfectly fitting all training points (so the gradient variance becomes zero at the
stationary point of the solution). On the other hand, this assumption is satisfied rarely for adversarial
formulations. Even more, Theorem 4.6 in Lin et al. [2020b] requires that the sequence, τk, goes to
zero with k in order to get convergence; ii) for an absolute random noise model, noise variance is
uniformly bounded by σk, a bounded variance assumption. Again, for the result of Theorem A.4
in Lin et al. [2020b] to hold, the sequence σk is assumed to go to zero with k. To the best of our
knowledge, both assumptions are very strong: in order to get either τk or σk to decay, one will have to
use a mini-batch size that grows up to n, which is impractical. It should be noted that the same work
contains almost sure (non finite-time) last-iterate results without the above restrictive assumptions.

Structured non-monotone problems. The recent works of Daskalakis et al. [2021] and Diakoniko-
las et al. [2021] show that, for general smooth objectives, the computation of even approximate
first-order locally optimal min-max solutions is intractable, motivating the identification of structural
assumptions on the objective function for which these intractability barriers can be bypassed.

In this work we focus on a setting (structured non-monotone operators) that one can provide tight
convergence guarantees and avoid the standard issues (cycling and divergence of the methods)
appearing in the more general non-monotone regime, like . That is, problems satisfying quasi-strong
monotonicity (2) or the variational stability condition.

The two classes of VI problems we consider, quasi-strongly monotone and problems satisfying the
variational stability condition, have already been used in several papers (under different names).
For example, Song et al. [2020] also focuses on quasi-strongly monotone VI but they called them
strong coherent VI and show that quasi strong monotonicity is weaker than the strongly pseudo-
monotone [Kannan and Shanbhag, 2019] and strongly monotone assumption. In addition, as presented
in Song et al. [2020], the non-monotone subsets of quasi-strong monotonicity (a.k.a., strongly
pseudomonotone), have many real applications in competitive exchange economy [Brighi and John,
2002], fractional programming [Elizarov and Kalimullina, 2009, Rousseau et al., 2005], and product
pricing [Choi et al., 1990]. Meanwhile, the restriction of quasi-strong monotonicity in minimization
problems such as one-point convexity [Li and Yuan, 2017] is also used in analyzing neural networks.

In addition in Zhou et al. [2017], the strongly coherent optimization problems have been studied,
which are special cases of the quasi-strongly monotone VI. We refer the interested reader to Zhou
et al. [2017] for a list of examples of strongly coherent optimization problems. As we mentioned in
the main paper, the assumption of quasi-strong monotonicity is equivalent to the concept of strong
stability described in Mertikopoulos and Zhou [2019].
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