
Appendices

A Sketch of Theoretical Analyses

Here, we present our sketch of theoretical analyses. We first construct a general scheme (Definition
4.1) for non-decreasing performance guarantee and follow it up by characterizing the lower bound
under model shifts (Theorem 4.3). Towards seeking a non-negative lower bound, we restrict model
shift and refine the bound (Theorem 4.6), then further reduce this issue to a constrained optimization
problem (Proposition 4.7). With an instance under the generative model setting (Corollary 4.8), we
demonstrate the merits of the dynamic model learning interval.

Performance difference bound
𝑉!!"#|	$!"# 	− 𝑉!!|$! ≥ 𝐶

Monotonic improvements

𝐶 ≥ 0

A general bound (Theorem 4.3)

Policy optimization oracle
(Assumption 4.2)

A refined bound (Theorem 4.6)

Ceiling performance (Theorem 4.5)

Model inconsistency

𝐿-Lipschitzness of Value Function
(Assumption 4.4)

Add model shift constraints
for feasibility

Constrainted Optimization
Problem (Proposition 4.7)

Formalization Target

A feasible optimization problem

Two Requirements
(R1) and (R2)

A instance for feasible solution
(Corollary 4.8)

Figure 6: Theoretical sketch of CMLO

B Omitted Proofs

Theorem B.1 (Performance difference bound for Model-based RL). Let ϵ
πj

Mi
denote the in-

consistency between the learned dynamics PMi and the true dynamics, i.e. ϵ
πj

Mi
=

Es,a∼dπj (s,a;µ)[DTV(P (·|s, a)∥PMi
(·|s, a))], where dπ(s, a;µ) is the probability of visiting s, a af-

ter starting at state s0 ∼ µ and following πj ∈ Π thereafter under the true dynamics. Let policy
πi be the ϵopt-optimal policy under model Mi. Assume the performance discrepancy of policy π be-
tween the estimated model M1and the true dynamics be approximated as V π1

M1
(µ)−V π1(µ) = κ·ϵπ1

M1
.

Recall κ = 2Rγ
(1−γ)2 , then the performance gap between π1 and π2 evaluated in the true MDP can be

bounded by:
V π2|M2 − V π1|M1 ≥ −κ · (ϵπ2

M2
− ϵπ1

M1
) + V ∗

M2
− V ∗

M1
− ϵopt

Proof. We overload notation V πi|Mi and write V πi for simplicity.
V π2 − V π1 = V π2 − V π2

M2︸ ︷︷ ︸
L1

+V π2

M2
− V π1

M1︸ ︷︷ ︸
L2

− (V π1 − V π1

M1
)︸ ︷︷ ︸

L3

We can bound L1 − L3 using Lemma C.2, and bound L2 using the property of ϵopt-optimal.

For L1 − L3, with the performance gap approximation of M1 and π1, we apply Lemma C.2, and
obtain: L1 − L3 ≥ −κ · (ϵπ2

M2
− ϵπ1

M1
).

We call a policy π ϵ-optimal under the dynamical model M , if V ∗
M (s) ≥ V π

M (s) ≥ V ∗
M (s)− ϵopt for

all s ∈ S . Under the assumptions of black-box optimization oracle, we obtain:
L2 ≥ V ∗

M2
− V ∗

M1
− ϵopt

15

Adding these two bounds together yields the desired result.

Remark that, when V π1

M1
− V π1 gets a value far away from κ · ϵπ1

M1
, it indicates the performance

discrepancy that evaluated between the model M1 and the environment is near to zero, which further
indicates that the inconsistency between PM1

and the true dynamics is quite small and thus the
optimization process has reached a stopping point.

Theorem B.2 (Ceiling return gap Under model shifts). For a dynamical model Mi ∈ M, V ∗
Mi

(µ)
denotes the maximal returns on dynamics PMi

. Then the gap of optimal returns under these two
models M1, M2 can be bounded as:

V ∗
M2

− V ∗
M1

≥ − γ

1− γ
L · sup

π∈Π
Es,a∼dπ

M2

[
|PM2(·|s, a)− PM1(·|s, a)|

]
Proof. Let Gπ

Mi,Mj
(s, a) be the discrepancy between Mi and Mj on a single state-action pair (s, a),

i.e. Gπ
Mi,Mj

(s, a) = Es̃′∼PMj
(·|s,a)[V

π
Mj

(s̃′)] − Es′∼PMi
(·|s,a)[V

π
Mj

(s′)]. We construct Zk be the
discounted return when using π to sample in model Mi for k steps and then in Mj for the rest with
a starting point s0 = s, that is,

Zk = E
∀t,at∼π(·|st)

∀t<k,st+1∼PMi
(·|st,at)

∀t≥k,st+1∼PMj
(·|st,at)

[∞∑
t=0

γtR(st, at)s0 = s

]

Base on this definition, we have that V π
Mi

(s) = Z∞ and V π
Mj

(s) = Z0. Then, we can decompose
V π
Mi

(s)− V π
Mj

(s) into a sum of Zk:

V π
Mi

(s)− V π
Mj

(s) =

∞∑
k=0

(Zk+1 − Zk)

We can find that, Zk+1 and Zk only differ in their dynamical model used in the k-th step rollout.
And we can rewrite them to be :

Zk = rk + Esk,ak∼π,PMi

[
Es̃k+1∼PMj

(·|sk,ak)

[
γk+1V π

Mj
(s̃k+1)

]]
Zk+1 = rk + Esk,ak∼π,PMi

[
Esk+1∼PMi

(·|sk,ak)

[
γk+1V π

Mj
(sk+1)

]]
Here, rk denotes the reward from the first j steps from the real environment. Combine the two
equations above together and we get:

Zk+1 − Zk = γk+1Esk,ak∼π,PMi

[
E

sk+1∼PMi
(·|sk,ak)

s̃k+1∼PMj
(·|sk,ak)

[
V π
Mj

(sk+1)− V π
Mj

(s̃k+1)
]]

Then, we can obtain the following conclusion by adding up all Zk+1 − Zk:

V π
Mi

− V π
Mj

=
γ

1− γ
E

s∼dπ
Mi

a∼π(·|s)

[
Es′∼PMi

(·|s,a)
[
V π
Mj

(s′)
]
− Es̃′∼PMj

(·|s,a)
[
V π
Mj

(s̃′)
]]

Here, dπMi
denotes the distribution of state-action pair induced by policy π under the dynamical

model Mi.

For a starting state s0 = s, and two dynamical models M2, M1, with the definition of Gπ
M1,M2

we
have:

V π
M2

(s)− V π
M1

(s) =
γ

1− γ
Es,a∼dπ

M1

[
Gπ

M1,M2
(s, a)

]
From the definition: Gπ

M1,M2
(s, a) = Es̃′∼PM2

(·|s,a)[V
π
M2

(s̃′)]− Es′∼PM1
(·|s,a)[V

π
M2

(s′)].

In the case of deterministic dynamics: for clarity, we write s′ = Mi(s, a) instead of s′ ∼
PMi(s

′|s, a), then we rewrite GM1,M2(s, a) as: Gπ
M1,M2

(s, a) = V π
M2

(M2(s, a))−V π
M2

(M1(s, a)),
with the Lispchitzness, we have that |Gπ

M1,M2
(s, a)| ≤ L · |M2(s, a)−M1(s, a)|.

16

In the case of stochastic dynamics: when L ≥ R
1−γ , we have

|Gπ
M1,M2

(s, a)| = |Es̃′∼PM2
(·|s,a)[V

π
M2

(s̃′)]− Es′∼PM1
(·|s,a)[V

π
M2

(s′)]|

= |
∑
s̃′∈S

(PM2
(s′|s, a)− PM1

(s′|s, a))V π
M2

(s′)|

≤ |max
s′

V π
M2

(s′)| · |PM2(·|s, a)− PM1(·|s, a)|

≤ L · |PM2(·|s, a)− PM1(·|s, a)|.

Note that we require L to be larger than R
1−γ in the infinite horizon settings. Previous work [11] has

found that L has a dependence on R ·H when equipped with a maximum horizon of H .

Thus, with the Lipschitzness of V π
M1

and V π
M2

, we have that |Gπ
M1,M2

(s, a)| ≤ L · |PM2
(·|s, a) −

PM1
(·|s, a)|.

|V π
M2

(s)− V π
M1

(s)| = γ

1− γ
· |Es,a∼dπ

M2
[Gπ

M1,M2
(s, a)]|

≤ γ

1− γ
· Es,a∼dπ

M2
[|Gπ

M1,M2
(s, a)|]

≤ γ

1− γ
L · Es,a∼dπ

M2
[|PM2

(·|s, a)− PM1
(·|s, a)|]

Observe that | supx f(x)−supx g(x)| ≤ supx |f(x)−g(x)|, where f And g are real valued functions.
This implies:

|V ∗
M2

(s)− V ∗
M1

(s)| = | sup
π∈Π

V π
M2

(s)− sup
π∈Π

V π
M1

(s)| ≤ sup
π∈Π

|V π
M2

(s)− V π
M1

(s)|

Thus, we have that for starting state s0 ∼ µ:

V ∗
M2

(µ)− V ∗
M1

(µ) ≥ − γ

1− γ
L · sup

π∈Π
Es,a∼dπ

M2

[
|PM2(·|s, a)− PM1(·|s, a)|

]

Theorem B.3 (Refined bound with constraints). Here, S denotes the state space simplex. Here,
policy πi ∈ Π is the ϵopt optimal policy under the dynamical model Mi ∈ M. For a dynamical
model Mi ∈ M, V ∗

Mi
(µ) denotes the maximal returns on dynamics PMi . We give the model shift

constraints under the TV-distance. Then the performance difference bound can be refined under the
model shift constraints as:

V π2|M2 − V π1|M1 ≥κ · (Es,a∼dπ1DTV[P (·|s, a)∥PM1(·|s, a)]

−Es,a∼dπ2DTV[P (·|s, a)∥PM2(·|s, a)])−
γ

1− γ
L · 2σM1,M2 − ϵopt

s.t. DTV(PM2
(·|s, a)∥PM1

(·|s, a)) ≤ σM1,M2
, ∀(s, a) ∈ S ×A

Proof. Let µ and v be two probability distributions on the configuration space X , according to
Lemma C.1, then we have DTV(µ∥v) = 1

2

∑
x∈X

|µ(x)− v(x)|.

Recall ϵπMi
denote the discrepancy between the learned dynamics PMi

and the true dynamics, i.e.
ϵπMi

= Es,a∼dπ [DTV(P (·|s, a)∥PMi(·|s, a))].
Under these definitions, we can yield the following intermediate outcome by applying the results
from B.2 and B.1

.

V π2|M2 − V π1|M1 ≥− κ · (ϵπ2

M2
− ϵπ1

M1
) + V ∗

M2
− V ∗

M1
− ϵopt

≥− κ ·
{
Es,a∼dπ2DTV[P (·|s, a)∥PM2

(·|s, a)]

− Es,a∼dπ1DTV[P (·|s, a)∥PM1
(·|s, a)]

}
− γ

1− γ
L · sup

π∈Π
Es,a∼dπ

M2

[
|PM2

(·|s, a)− PM1
(·|s, a)|

]
− ϵopt

17

Recall the following constraint on model shift that we subject to:

DTV(PM2
(·|s, a)∥PM1

(·|s, a)) ≤ σM1,M2
, ∀(s, a) ∈ S ×A

Then, the ceiling performance difference can be further bounded as:

V ∗
M2

− V ∗
M1

≥ − γ

1− γ
L · sup

π∈Π
Es,a∼dπ

M2

[
|PM2

(·|s, a)− PM1
(·|s, a)|

]
≥ − γ

1− γ
L · sup

π∈Π
Es,a∼dπ

M2

[
2
∑
s′∈S2

1

2
|PM2(s

′|s, a)− PM1(s
′|s, a)|

]
≥ − γ

1− γ
L · sup

π∈Π
Es,a∼dπ

M2

[
2DTV(PM2(·|s, a)∥PM1(·|s, a))

]
≥ − γ

1− γ
L · (2σM1,M2

)

And finally, we have the following refined bound:

V π2|M2 − V π1|M1 ≥κ · (Es,a∼dπ1DTV[P (·|s, a)∥PM1(·|s, a)]− Es,a∼dπ2DTV[P (·|s, a)∥PM2(·|s, a)])

− γ

1− γ
L · (2σM1,M2

)− ϵopt

This refined bound is subject to the model shift constraint we set.

Corollary B.4. Under the generative model setting, let model M1 has already trained on N samples
of each (s, a) pair and model M2 on N + k samples per (s, a) pair. Policy π1 is the ϵopt-optimal

policy on M1 and so is π2 on M2. Recall ϵ = δM1
(·|s, a)− (1−γ)L

R · (2σM1,M2
)− (1−γ)2

Rγ · ϵopt and
ξ ∈ (0, 1) is a constant. As the model is trained on true interaction samples, we can work out the
amount of samples we need to satisfy the monotonic improvement requirements:

k =
2

ϵ2
log

2vol(S) − 2

ξ
−N

Proof. For simplicity, we denote δMi
(s′|s, a) = |P (s′|s, a)− PMi

(s′|s, a)|.
Recall the lower bound for performance difference:

CM1,π1
(M2, π2) =

2Rγ

(1− γ)2

{
E

s,a∼dπ1

[1
2

∑
s′∈S2

(δM1
(s′|s, a)

]
− E

s,a∼dπ2

[1
2

∑
s′∈S2

(δM2
(s′|s, a)

]}
− γ

1− γ
L · (2σM1,M2

)− ϵopt

Towards this lower bound, we give the assumption that similar models derives similar sub-obptimal
policies. To be specific, when M1 and M2 are close to each other in terms of L1-norm distance at
any transition pair (s, a) : |PM2

(·|s, a) − PM1
(·|s, a)|1 ≤ δ, then the sub-optimal policies derived

from them are close as well, i.e., there exists α, subject to |π2(·|s)−π1(·|s)|1 ≤ α·δ for all transition
pairs. Here, we show the feasibility of given the α in the control theory perspective. Let a trajectory
s1:N , a1:N−1 be generated from the dynamical model M1 that satisfies:

st+1 = fM1(xt, at, 0)

We call it a nominal trajectory. Here, fM1
is a nonlinear function that represents the dynamics of

model M1. Then, we can formalize the inconsistency between M2 and M1 by disturbance, wi ∈ W .
By entering wi into fM1

in a general nonlinear way we can get the dynamic of model M2 as:

st+1 = fM1
(st, at, wt)

Further, the deviations from the nominal trajectory can be calculated as when giving a disturbance
sequence, w1:N−1. Let δy denote the deviations of variable y.

δst = fM1
(st + δxt, ut,+δut, wt)− st+1

18

Assume that the deviations are computed with a linear feedback controller, that is,

δat = −Ktδst

Actually, we can utilize any reasonable linear controller. Here, we take the time-varying linear
quadratic regulator as an instance for illustrating the rationality of our assumption on α. Based on
the dynamic Riccati equation, we have the solution as:

Kt = (R+BT
t Pt+1Bt)

−1(BT
t Pt+1At)

Pt−1 = Qt +AT
t PtAt −AT

t PtBt(R+BT
t PtBt)

−1(BT
t PtAt)

where At = ∂fM1
/∂s|st,at,0 and Bt = ∂fM1

/∂a|st,at,0. And, Qi ⪰ 0 and R ⪰ 0 are state and
input cost matrices. That is, we have a feasible solution for α. We then seek to explain the state-
action distribution is similar thus we can use dπ1 as an approximation of dπ2 . First of all, we have
the distance between two policies,

|π2(·|s)− π1(·|s)|1 ≤ α · δ ≜ β

Denote Ph
π as the state distribution resulting from π at time step h with µ as the initial state distribu-

tion. We consider bounding |Pπ2

h − Pπ1

h |1 with h > 1.

Pπ2

h (s′)− Pπ1
h (s′)

=
∑
s,a

(
Pπ2

h−1(s)π2(a|s)− Pπ1

h−1(s)π1(a|s)
)
P (s′|s, a)

=
∑
s,a

(
Pπ2

h−1(s)π2(a|s)− Pπ2

h−1(s)π1(a|s) + Pπ2

h−1(s)π1(a|s)− Pπ1

h−1(s)π1(a|s)
)
P (s′|s, a)

=
∑
s

Pπ2

h−1(s)
∑
a

(π2(a|s)− π1(a|s))P (s′|s, a) +
∑
s

(
Pπ2

h−1(s)− Pπ1

h−1(s)
)∑

a

π1(a|s)P (s′|s, a).

Apply absolute value on both sides, we then get:∑
s′

|Pπ2

h (s′)− Pπ1

h (s′)| ≤
∑
s

Pπ2

h−1(s)
∑
a

|π2(a|s)− π1(a|s)|
∑
s′

P (s′|s, a)

+
∑
s

|Pπ2

h−1(s)− Pπ1

h−1(s)|
∑
s′

∑
a

π1(a|s)P (s′|s, a)

≤β + ∥Pπ2

h−1 − Pπ1

h−1∥1 ≤ 2β + |Pπ2

h−2 − Pπ1

h−2|1 = hβ.

Under the definition of dπµ, we have:

|dπ2
µ − dπ1

µ |1 = |(1− γ)

∞∑
h=0

γh (Pπ2

h − Pπ1

h) | ≤ βγ/(1− γ).

Upon these analyses, we find that similar model derives similar policy, which invokes similar state-
action distribution. Thus we can approximate state-action visitation density dπ2 by previous vis-
itation density dπ1 . Also, we assume the same state space S . Then, we get a approximation of
CM1,π(M2, π̂) as following:

C̃M1,π1
(M2, π2)

=
2Rγ

(1− γ)2
E
s,a

[1
2

∑
s′∈S

(δM1(s
′|s, a)− δM2(s

′|s, a))
]
− γ

1− γ
L · (2σM1,M2)− ϵopt

=
γ

(1− γ)

{ R

1− γ
E
s,a

[∑
s′∈S

(δM1(s
′|s, a)− δM2(s

′|s, a))
]
− L · E

s,a

[∑
s′∈S

(
1

vol(S)
2σM1,M2)

]
− (1− γ)

γ
E
s,a

[1

vol(S)
∑
s′∈S

(ϵopt)
]}

Thus, when meeting the following requirements for each (s, a) pair, we can guarantee the monotonic
improvement for that V π2|M2 − V π1|M1 ≥ C̃M1,π1

(M2, π2) ≥ 0.

δM2
(·|s, a) ≤ δM1

(·|s, a)− (1− γ)L

R
· (2σM1,M2

)− (1− γ)2

Rγ
· ϵopt

19

By applying Lemma C.3, the L1 deviation of the empirical distribution PM2(·|s, a)and true P (·|s, a)
over vol(S) distinct events from n samples is bounded by:

Pr(|P (·|s, a)− PM2(·|s, a)|1 < ϵ) ≥ 1− (2vol(S) − 2) exp(− (N + k)ϵ2

2
)

Then for a fixed (s, a), with probability greater than 1− ξ, we have:

|P (·|s, a)− PM2(·|s, a)|1 ≤

√
2

N + k
· log 2vol(S) − 2

ξ

Let ϵ = δM1
(·|s, a)− (1−γ)L

R · (2σM1,M2
)− (1−γ)2

Rγ · ϵopt. Our requirements can be further shown
in this form:√

2

N + k
· log 2vol(S) − 2

ξ
= δM1(·|s, a)−

(1− γ)L

R
· (2σM1,M2)−

(1− γ)2

Rγ
· ϵopt

Finally, with probability greater than 1 − ξ, we can guarantee the monotonic improvement when
having:

k =
2

ϵ2
log

2vol(S) − 2

ξ
−N

C Toolbox

Lemma C.1 (Total variation distance). Let µ and v be two probability distributions on the configu-
ration space X . Then

DTV(µ∥v) =
1

2

∑
x∈X

|µ(x)− v(x)|

Proof. Let B = {x ∈ X : µ(x) ≥ v(x)}, and A ⊆ X be any event. Since µ(x)− v(x) < 0 for any
x ∈ A ∩Bc, we have

µ(A)− v(A) ≤ µ(A ∩B)− v(A ∩B) ≤ µ(B)− v(B)

For all events A, |µ(A) − v(A)|µ(B) − v(B), and the equality is achieved for A = B or A = Bc.
Thus, we get that

DTV(µ∥v) =
1

2
[µ(B)− v(B) + v(Bc)− µ(Bc)] =

1

2

∑
x∈X

|µ(x)− v(x)|

Lemma C.2 (Relationship between true returns and model returns). Let ϵπM denote the inconsistency
between the learned dynamics PM and the true dynamics, Es,a∼dπ [DTV(P (·|s, a)∥PM (·|s, a))],
where dπ

.
= dπ(s, a;µ) is the probability of visiting state-action pair (s, a) after starting at state

s0 ∼ µ and following π thereafter under the true dynamics. Then the true returns can be represented
as below:

V π(µ) ≥ V π
M (µ)− 2Rγ

(1− γ)2
ϵπM

Proof. Given policy π and dynamics P (·|s, a), we denote the density of state-action visitation after
h steps from starting state s0 ∼ µ as ρπh(µ;P) = Es0∼µ[ρ

π
h(sh, ah|s0;P)].

20

Then the discounted returns are bounded as:

V π(µ)− V π
M (µ) =

∞∑
h=0

Es,a∼ρπ
h(µ;P)[γ

hr(s, a)]−
∞∑
h=0

Es,a∼ρπ
h(µ;PM)[γ

hr(s, a)]

≥−
∞∑
h=0

γh|Es,a∼ρπ
h(µ;P)[r(s, a)]− Es,a∼ρπ

h(µ;PM)[γ
hr(s, a)]|

≥ −
∞∑
h=0

γh
∑

s,a∈S×A
R|ρπh(µ;P)− ρπh(µ;PM)|

=− 2R ·
∞∑
h=0

γh 1

2

∑
s,a∈S,A

|ρπh(µ;P)− ρπh(µ;PM)|

=− 2R ·
∞∑
h=0

γhDTV(ρ
π
h(µ;P)∥ρπh(µ;PM))

Using the property of Markov chain TV distance bound, then,

V π(µ)− V π
M (µ) ≥− 2R ·

∞∑
h=0

γhDTV(ρ
π
h(µ;P)∥ρπh(µ;PM))

≥
∞∑
h=1

−2R · γh
{
DTV(ρ

π
h−1(µ;P)∥ρπh−1(µ;PM))

+ Es,a∼dπ [DTV[(P (·|s, a)∥PM (·|s, a))]] +DTV(π∥π)
}

By plugging the results back, we then get,

V π(µ)− V π
M (µ) ≥ −2R

∞∑
h=0

γhh · ϵπM = − 2Rγ

(1− γ)2
· ϵπM

Lemma C.3 (Inequalities for the L1 deviation of the empirical distribution). Let P be a probability
distribution on the set A = {1, . . . , a}. For a sequence of samples x1, . . . , xm ∼ P , let P̂ be the
empirical probability distribution on A defined by P̂ (j) = 1

m

∑m
i=1 1(xi = j). The L1-deviation

of the true distribution P and the empirical distribution P̂ over A from m independent identically
samples is bounded by,

Pr(|P − P̂)|1 ≥ ϵ) ≤ (2|A| − 2)e−mϵ2/2.

Proof. For a probability distribution P on A, we define

πp = max
A⊆A

min(P (A), 1− P (A)).

And for p ∈ [0, 1/2), we define

φ(p) =
1

1− 2p
log

1− p

p
.

and, by continuity, set φ(1/2) = 2.

According to Weissman et al. [56], the L1-deviation of the true distribution P and the empirical
distribution P̂ is bound by,

Pr(|P − P̂)|1 ≥ ϵ) ≤ (2|A| − 2)e−mφ(πP)ϵ2/4.

Firstly, for any P , we have

πp = max
A⊆A

min(P (A), 1− P (A)) ≤ max
A⊆A

(
P (A) + 1− P (A)

2
) = 1/2.

21

and note that πP = 1/2 when P (A) = 1/2.

Then, we claim that the function φ(p) is strictly decreasing for p ∈ [0, 1/2]. Differentiating φ(p)
with respect to p yields

φ′(p) =
1

(1− 2p)2

[
− 1− 2p

1− p
− 1− 2p

p
+ 2 log

1− p

p

]
.

For p ∈ (0, 1/2), there always exists 1
(1−2p)2 > 0. Thus, to show that φ′(p) < 0 for p ∈ (0, 1/2), it

suffices to show that
g(p) = −1− 2p

1− p
− 1− 2p

p
+ 2 log

1− p

p
< 0.

The derivative of g(p) is

g′(p) = (
1

1− p
− 1

p
)2 > 0, p ∈ (0, 1/2).

Note that g(1/2) = 0, thus we have φ′(p) < 0 for p ∈ (0, 1/2). And continuity arguments complete
the claim for p = 1/2 and p = 0.

It is then no difficult to see that for any probability distribution P ,

φ(πP) ≥ φ(1/2) = 2.

Therefore
Pr(|P − P̂)|1 ≥ ϵ) ≤ (2|A| − 2)e−mϵ2/2.

D Comparison with Prior Works

To begin with, an important fact is that the effect of model shifts on trajectories is drastic. For
example, even when the system dynamics satisfy L- Lipschitz continuity, along with the policy and
the initial state are the same, the difference in trajectories sampled in M1,M2 grows at eLH with
the length H of the trajectory [32]. As the model shifts decay, the trajectory discrepancy will also
decrease sharply. It implies that model shift stays a substantial influence during the MBRL training
process.

There are two main trends of local view analysis:

API [22] class. Their recipe for monotonicity analysis is V πn+1(µ)−V πn(µ) ≥ C(πn, πn+1, ϵm).
If policies update πn → πn+1 could provide a non-negative C(πn, πn+1, ϵm) , then the performance
is guaranteed to increase. Here, ϵm = max

π∈Π,M∈M
Es,a∼dπ [DTV (P (·|s, a)∥PM (·|s, a))] . Most pre-

vious works [44, 22] were derived under model-free settings (ϵm = 0). they use conservative
policy iteration, for example, by forcing DTV (πn∥πn+1) ≤ α), then the state-action distribution
are close as well DTV (d

πn∥dπn+1) ≤ αγ
1−γ , so that they can optimize over their performance differ-

ence lemma, e.g., C(πn, πn+1, 0) ≈ 1
1−γEs,a∼dπn [Aπn(s, a)]. When ϵm > 0, this approximation

C(πn, πn+1, 0) ≈ 1
1−γEs,a∼dπn [Aπn(s, a)] fails. It is non-trivial to apply the results to model-based

settings.

DPI [49] tries to force πn+1 and πn to be close, which will result in a high similarity of the data they
sample. Thus, a risk arises from it, this approach would limit the growth of the policy exploration in
the real environment, thereby leading the inferred models to stay optimized in a restrictive local area.
For example, in the Humanoid environment, the agent struggles to achieve balance at the beginning
of training. By then, an updated restricted policy will cause the exploration space to be limited in
such an unbalanced distribution for a long time, and the learned model in such highly repetitive data
will converge quickly with a validation loss be zero. However, the success trajectory has not been
explored yet, implying that both the policy and the learned model will fall into a poor local optimum.

Besides, the definition of model accuracy (Eq.3) is a local view in DPI, i.e., P̂ is δ-opt under dπn .
If we replace model accuracy with a more general, global definition (for example, P̂ is δ-opt under

22

dπn+1 , or P̂ is δ-opt under all (s, a, s′) tuples), we find that the δ in (Eq. 3) will be large at the
initial steps, making it difficult to obtain a local optimal solution in Theorem 3.1.

Finally, theoretical analysis in DPI can only guide the policy iteration process, while the update of
the model is passive, which is different from our global view theory.

Discrepancy bound class [34, 20]. They mostly derive upon V πn(µ) ≥ V πn

M (µ)−C(ϵm, ϵπ). As
guaranteed in them, once a policy update πn → πn+1 has improved returns under the same model
M , i.e., V πn+1

M (µ) > V πn

M (µ) + C(ϵm, ϵπ) , it would improve the lower bound on the performance
evaluated in the real environment, i.e., inf{V π2|M (µ)} > inf{V π1|M(µ)}}.

Their theory is based on a fixed model M , or an upper bound on the distribution shift of all models
ϵm. It does not concern the change in model dynamics during updating, nor the performance varying
due to the model shift. Moreover, The solution would be very coarse if only the upper bound of the
model shift is given. Even worse, the given upper bound is likely to be too large, then it will
fail to find a feasible solution for V πn+1

M (µ) − V πn

M (µ) ≥ C(ϵm, ϵπ) in practice, thus making the
monotonicity guarantee fails.

E Experimental Details

E.1 Environment Setup

We evaluate all algorithms on a set of MuJoCo [54] continuous control benchmark tasks. We adopt
the standard full-length version of all these tasks. Among then, we truncate some redundant obser-
vations for Hopper, Ant and Humanoid as our model-based baselines (MBPO[20], AutoMBPO[28])
do. The details of the experimental environments are provided in Table 1.

Table 1: Overview on Environment settings. Here, θt denotes the joint angle at time t. and zt
denotes the height.

State Space
Dimension

Action Space
Dimension Horizon Terminal Function

Hopper-v2 11 3 1000 zt ≤ 0.7 or θt ≥ 0.2

Swimmer-v2 8 2 1000 None

Walker2d-v2 17 6 1000 zt ≥ 2.0 or zt ≤ 0.8 or
θt ≤ −1.0 or θt ≥ 1.0

HalfCheetah-
v2 17 6 1000 None

Ant-v2 27 8 1000 zt < 0.2 or zt > 1.0

Humanoid-v2 45 17 1000 zt < 1.0 or zt > 2.0

The environment settings for the ablation study on the generalizability of event-triggered mechanism
are presented in Table 2

Table 2: Overview on Environment settings in Ablation.

State Space
Dimension

Action Space
Dimension Horizon Terminal Function

Kitty Stand 61 12 50 ut,kitty ≤ 0

Panda Reach 20 7 50 None

23

E.2 Baselines and implementation

MFRL algorithms. We compare to two state-of-the-art model-free baselines, SAC [16] and
PPO [46]. The hyperparameters are kept the same as the authors. Regarding the low sample ef-
ficiency of MFRL methods, we ran 5M steps for them, which is an order of magnitude more than in
MBRL, to fairly evaluate the asymptotic performance of these MFRL algorithms. The implementa-
tion of SAC is based on the opensource repo (pranz24 [42], MIT License).

MBRL algorithms. As for model-based methods, we compare with several algorithms including
PETS [8], SLBO [34], MBPO [20] and AutoMBPO [28]. Our algorithm CMLO is implemented
based on the opensource toolbox for MBRL algorithms, MBRL-LIB [40] (MIT License). The im-
plementation of SLBO mainly follows Wang et al. [55]. To ensure a fair comparison, we run CMLO
and MBPO with the same network architectures and training configurations based on MBRL-LIB.

We report the asymptotic performance on six benchmark tasks in Table 3. Results show that our
method has comparable asymptotic performance in each benchmarks to both MBRL and MFRL
baselines. Each result is averaged over seven trials using different random seeds. For MBRL base-
lines, the performances on different tasks are capped at different timesteps when the learning curves
come to converge, we choose 125k for Hopper, 350k for Walker2d and Swimmer, 400k for HalfChee-
tah, 300k for Ant and 250k for Humanoid.

Table 3: Comparative results. The results show the average and standard deviation on the maximum
average returns among different trails.

Hopper Walker2d Swimmer

MFRL
(@5M steps)

SAC 4257.92 ± 100.23 7898.01 ± 563.45 195.60 ± 5.97
PPO 3114.76 ± 1039.06 5740.75 ± 500.89 129.66 ± 9.78

PETS 571.25 ± 71.14 1174.79 ± 471.39 92.61 ± 4.29

MBRL

SLBO 278.82 ± 65.83 3129.70 ± 154.16 71.02 ± 1.98
AutoMBPO 3534.46 ± 77.53 6276.99 ± 1878.56 184.89 ± 58.84

MBPO 2831.23 ± 1109.63 6285.64 ± 538.32 145.70 ± 18.14
Ours 3666.90 ± 22.71 7749.90 ± 523.27 185.14 ± 1.73

HalfCheetah Ant Humanoid

MFRL
(@5M steps)

SAC 16015.64 ± 351.21 7105.49 ± 169.61 8036.12 ± 480.60
PPO 6733.45 ± 1528.87 4427.39 ± 836.02 3068.95 ± 1600.89

MBRL

PETS 12023.84 ± 3340.02 3558.99 ± 140.76 1335.84 ± 292.27
SLBO 3993.43 ± 127.17 2492.19 ± 92.02 644.16 ± 237.00

AutoMBPO 12044.35 ± 1550.21 5792.35 ± 415.46 5780.14 ± 245.01
MBPO 13171.53 ± 937.65 5894.45 ± 702.39 5905.68 ± 420.64
Ours 14623.45 ± 612.10 6798.39 ± 196.84 6967.54 ± 317.07

E.3 Implementation details of CMLO

Modeling and learning the dynamical models. As inferred from the optimization objective, the
minimization of the objective function can be achieved when we try to minimize the difference
between M2 and the real environment. To reduce model bias, we chose to use NLL as a loss
function in our implementation, which has been shown an effective way to learn model dynamics.
More specifically, CMLO adopts a bootstrap ensemble of dynamical models { ˆfϕ1 ,

ˆfϕ2 , . . . ,
ˆfϕK

}
. Specifically, each forward dynamical model fϕi approximates the transition function of the real
environment, that is ŝt+1 ∼ fϕi(st, at). The probabilistic models are fitted on shared but differently
shuffled replay buffer De, and the target is to optimize the Negative Log Likelihood (NLL).

LH(ϕ) =

H∑
t

[µϕ(st, at)− st+1]
TΣ−1

ϕ (st, at)[µϕ(st, at)− st+1] + log detΣϕ(st, at)

24

And the prediction for these ensemble models is, ŝt+1 = 1
K

∑K
i=1 fϕi(st, at). More details on

network settings are presented in Table 4.

Model shifts estimation. Recall that we partition the incalculable model shifts into two compo-
nents for estimation, one for state-space coverage and the other for model divergence.

• state-space coverage. State coverage (policy coverage) is the range of state spaces that our
algorithm can explore in the real environment under the current policy πi (derived from the
learned model Mi). In the existing works, [1] defined the return set for two state sub-space as
R̄ret = limn→∞ Rn

ret(X, X̄), where Rn
ret(X, X̄) means an n-step returnability from X to X̄ .

Referring to this definition, the state coverage of πi can be defined as Sπi
pc : ∀s ∈ Sπi

pc , a ∼
πi(·|s), s′ ∼ P (·|s, a) ∈ Sπi

pc . Besides, in the description of La Salle’s Invariance Principle
[2], we verify the equivalence of Invariant Set and state coverage. Intuitively, the Humanoid
example in our response to your major concerns also shows that the variation of state coverage
in the different training stages.
We estimate the policy coverage (state-space coverage) by computing the volume vol(SD) of the
convex closure SD constructed on the replay buffer D. Since estimation on the full historical ex-
periences involves a huge computational burden, we instead sample N tuples (e.g. 1000 tuples)
from the replay buffer upon each estimation. As for the convex hull, we first perform Principal
Component Analysis on the states to reduce the dimension and then leverage the Graham-Scan
algorithm to construct a convex hull of these N points, which only takes O(N logN) for time
complexity.

• model divergence. We estimate the model divergence by computing the average prediction error
on newly encountered data. Upon it, we get the estimation for the model divergence from the K
ensemble models, L(∆D) = E(s,a,s′)∈∆D

[
1
K

∑K
i=1 ∥s′ − ˆfϕi(s, a)∥

]
.

Event-triggered mechanism. Recall our proposed optimization problem:

min
M2∈M
π2∈Π

E
s,a∼dπ2

[∑
s′∈S

|P (s′|s, a)− PM2
(s′|s, a)|

]
,

s.t. sup
s∈S,a∈A

DTV(PM1
(·|s, a)∥PM2

(·|s, a)) ≤ σM1,M2
.

We design an event-triggered mechanism to determine the interval instant τ on the condition that the
optimization problem is solved at step t + τ . The mechanism is developed based on the difference
between the current model M1 (trained at step t) and the upcoming model M2, which is estimated
on the newly encountered data. If their model shifts reaches a certain value, it stands to reason that a
new dynamic model is required to be trained. Thus, the event-triggered mechanism is based on the
condition:

vol(SDt∪∆D(τ))

vol(SDt)
· L(∆D(τ)) ≥ α.

Here, we adopt the fraction form for the triggered condition. Denominator vol(SD∪∆D(τ)) ·
L(∆D(τ)) is used to obtain an estimation for the model shift, as detailed in Line 239-248. The
numerator vol(SD), on the one hand, is to reduce numerical errors; on the other hand, this fraction
reflects the relative change of the policy coverage and model shift if we turn to train M2 under differ-
ent τ starting from M1. This fraction reflects the current ability to digest new data. It can facilitate
the setting of threshold, for we do not need to tune α once the policy coverage updates.

In CMLO, the condition estimation execute per F steps because excessively frequently estimation
doesnt make huge difference but bring up the computation load. In order to reuse the result of
intermediate computation, we apply a log value to the result of each estimation so that the log value
condition function can be approximated by the sum of each estimation value within the interval. We
additionally append a constant β = 1.0 for the penalty of accumulated interval steps.

[τ/F]∑
i=0

log
(vol(SDt∪∆D(Fi))

vol(SDt
)

· L(∆D(Fi)) + β
)
≥ α

25

A refined bound (Theorem 4.6)

Re
tu
rn

StepsConstraint

𝛼
𝐷!" 𝑃#! ⋅ 𝑠, 𝑎 𝑃#!"# ⋅ 𝑠, 𝑎))

𝑀$, 𝜋$ 𝑀$%& , 𝜋$%&

Δ𝒟'

Computation waste
& Local optimal

No feasible solution
for non-negative 𝐶

Suitable dynamic
alternation Return

Triggering time
Model shift estimation

min
#!"#	,)!"#

𝔼*,+ [𝐷!"(𝑃(⋅ |𝑠,𝑎)|𝑃#!"#(⋅ |𝑠,𝑎)]

𝑉)!"# |	#!"# 	− 𝑉)!|#! ≥ 𝐶
Performance difference lower bound

Monotonic performance improvement
𝐶 ≥ 0

Feasible solution for 𝐶 ≥ 0

Constrainted optimization problem
(Proposition 4.7)

𝑠. 𝑡. 	𝐷!" 𝑃#! ⋅ 𝑠, 𝑎 𝑃#!"# ⋅ 𝑠, 𝑎)) ≤ 𝛼

A general bound (Theorem 4.3)

Figure 7: Illustration of the proposed event-
triggered mechanism.

Remark 1: We observe from the event-triggered
condition that the interevent time can be enlarged
by increasing the threshold α, which implies
more exploration samples will be collected by
current policy and the optimization objective will
be solved less frequently. In other words, the trig-
gered threshold is environment-specific. Notably,
the tuning load required for our event-triggered
mechanism is not heavier than in those fixed set-
tings, due to that only a hyperparameter α is in-
troduced for model training frequency in CMLO,
while those algorithms with fixed settings need to
tune the fixed model training interval. We claim
that it is crucial to dynamically adapt the numbers
of explorations to update the model according to
the current training and exploration status.

Remark 2: Zeno behavior [17] is common in
the event-triggered mechanism, which leads to a
most frequently triggering. The zeno behavior is
naturallt alleviated by the introdution of β, which
acts as a penalty for interevnet time. We addition-
aly add the lower and upper bounds of the interevent time to further keep the interval in a safe zone
to aviod zeno behavior caused by some extreme situations. The minimal and maximal interevent
time are given by inf{τ} = T and sup{τ} = T .

Policy optimization and model rollouts. We can adopt a standard off-policy model-free RL
method SAC [16] as the policy optimization oracle of CMLO. Another key concern is the way
of training data generation. We adopt the truncated short model rollouts strategy inspired by some
current MBRL works [20, 39, 28], which helps to escape from compounding error and encourage
model usage. The main difference from the general rollouts mechanism is that we restrict our roll-
outs to be generated from fresh models, rather than using outdated models to generate rollout data as
MBPO [20] and AutoMBPO [28] do in their implementations. Based on the dataset Dm of the fresh
model rollouts, we perform SAC. In the policy evaluation step, SAC repeatedly apply a Bellman
backup operator T π to the soft Q-value, T πQπ(s, a)≜r(s, a) + γ E

s′
[V π(s′)], and in the policy im-

provement step, SAC updates the policy according to π = argmin
π∈Π

Est∈Dm
DKL(π(·|st)∥ exp(Qπ−

V π)).

Remark 3: The data distribution introduced by the outdated model has a drift from the data distri-
bution introduced by the fresh model. This data shift will somehow mislead policy training and, in
addition, the policy trained on the outdated model suffers from the limited sampling coverage during
interacting with the real environment, which might in return cause the following models to fall into
a local trap. In other words, the less the model differs from the real dynamics, the data it rolls out is
more valuable.

E.4 Hyperparameters

Hyperparameters for Main Experiments. Table 4 lists the hyperparameters used in training
CMLO. Here, x → y over epochs a → b denotes a threshold linear function, i.e., at epoch t,
f(t) = min(max(x+ t−a

b−a · (y − x), x), y).

Hyperparameters for Ablation Studies. Note that other hyperparameters we do not mention
below are the same as hyperparameter settings in Table 4.

(1) Policy optimization oracle: TRPO. For the TRPO part, the key parameters are listed below:

• Ant: horizon = 1000, γ = 0.99, gae = 0.97, step_size = 0.01, iterations = 40

• HalfCheetah: horizon = 1000, γ = 0.99, gae = 0.95, step_size = 0.01, iterations = 40

26

Table 4: Hyperparameter Settings for CMLO.

Hopper Walker Swimmer HalfCheetah Ant Humanoid

epochs 300 125 300 300 400 250

environment
steps per

epoch
1000

dynamical
models
network

Gaussian MLP with 4 hidden layers of size 200

ensemble size 5

model rollouts
per policy

update
400

rollout
schedule

1 → 15
over epochs
20 → 100

1
1 → 25

over epochs
20 → 100

1 → 25
over epochs
20 → 300

SAC policy
network Gaussian with hidden size 512 Gaussian with hidden size 1024

policy updates
per step 40 20 20 10 20 20

event-
triggered

threshold α
1.2 3.0 2.0 2.5

computing
frequency F

20 50

minimal
interevent

time T
150

maximal
interevent

time T
500

About Legend w/o-n, we use a data sampler with batchsize=20, thus we get 20× n real interactions
during the model training interval. We compute the total triggered times and scale them to [0,1],
which is shown in the bar plots.

(2) Policy optimization oracle: iLQR. Dynamical models network: Gaussian MLP with 3 hid-
den layers of size 200, batch size is 64, and the learning rate is 0.0001. For the iLQR part:
LQR_ITER = 10, R = 0.001, Q = 1, horizon = 5. About Legend w/o-n, we get n real interac-
tions during the model training interval. And α = 0.5 in w/-ours. We compute the total triggered
times and scale them to [0, 1], as shown in the bar plots.

E.5 Additional Ablation Study

Estimation on model shifts. The constraint function based on model shifts is incalculable due
to the unobserved model M2. We design a practical predictor for the model shifts by computing
the state-space coverage and the model prediction error. Also, the decoupling of the constraint and
the objective is enabled partly owing to the slightly overestimation over the true value. Recall our
constraint function:

DTV(PM1
(·|s, a)∥PM2

(·|s, a)) = 1

2

∑
s′∈S

[
|PM1

(s′|s, a)− PM2
(s′|s, a)|

]
≤

∑
s′∈S

1

2

[
|PM1

(s′|s, a)− PM (s′|s, a)|+ |PM2
(s′|s, a)− PM (s′|s, a)|

]

27

The updated dynamics PM2 usually comes closer to the true dynamics than the previous one PM1 ,
thus we turn to estimate

∑
s′∈S [|PM1(s

′|s, a) − PM (s′|s, a)|]. Once the model M2 is trained, we
can actually conduct a more realistic calculation for the constraint function. To show the connection
between our predicted value in the absence of M2 and the estimated value after obtaining M2, we
perform experiments on four environments and results are shown in Figure 8. The results demon-
strate that our prediction is higher than the true estimation and their trends stand consistent, which
indicates that our predictor is well designed. This gap helps to decouple the constrained optimization
problem, and this overestimation part can be bridged by adjusting the α.

110k 150k 190k
steps

0

1

2

3

4

5

m
od

el
 s

hi
fts

 e
st

im
at

io
n

Walker
pre
true

50k 150k 250k
steps

1.0

1.5

2.0

2.5

m
od

el
 s

hi
fts

 e
st

im
at

io
n

HalfCheetah
pre
true

50k 150k 250k
steps

1.0

0.5

2.0

3.5

m
od

el
 s

hi
fts

 e
st

im
at

io
n

Ant
pre
true

100k 150k 200k 250k
steps

2.0

2.5

3.0

m
od

el
 s

hi
fts

 e
st

im
at

io
n

Humanoid
pre
true

Figure 8: Estimation of model shifts in four environments. Green lines imply the estimation on
model shifts after updating, which could be considered as a real value of our constraint function.
And orange lines show our pre-estimation on model shifts before model updating.

Model accuracy. Figure 9 shows the one-step model error during the training under four bench-
mark tasks. We find that CMLO achieves a more accurate model than the state-of-the-art baseline
MBPO. This result agrees with our insight that, a smarter scheme to choose different numbers of
explorations at different steps instead of the unchanged setting in current methods, will promote a
better model.

30k 50k 70k
steps

0.05

0.10

0.15

0.20

m
od

el
 e

rr
or

Hopper
CMLO
MBPO

0 50k 100k 150k
steps

1

2

3

4

5

6

m
od

el
 e

rr
or

HalfCheetah
CMLO
MBPO

50k 100k 150k 200k
steps

0

1

2

3

4

m
od

el
 e

rr
or

Ant
CMLO
MBPO

50k 100k 150k 200k
steps

1

2

3
m

od
el

 e
rr

or

Humanoid
CMLO
MBPO

Figure 9: One-step model error in four benchmark tasks.

Policy Coverage Comparison. Policy coverage represents the exploration ability of the policy.
The policy coverage increasing with the stages means that the policy has new explorations at every
stage and may not fall into a local optimum. Here, we present the numerical comparison to MBPO
in Table 5.

Table 5: Policy Coverage Comparison to MBPO in different stages.

Stage1 Stage2 Stage3 Stage4 Stage5

HalfCheetah CMLO 138.57 182.28 243.47 302.82 344.36
MBPO 129.25 173.09 242.49 264.85 338.55

Stage1 Stage2 Stage3 Stage4 Stage5

Ant CMLO 354.15 744.92 849.47 876.12 909.80
MBPO 342.13 729.30 821.66 864.93 880.25

Here, each stage i contains (60 × (i − 1), 60 × i]k steps. In HalfCheetah, we find that our policy
achieves higher coverage especially in first 4 stages than MBPO. Consistently, we find that our

28

0 50k 100k
steps

0

2000

4000

av
er

ag
e

re
tu

rn

Hopper
w/-ours
w/o-150
w/o-250
w/o-500

0 100k 200k 300k
steps

0

5000

10000

15000

av
er

ag
e

re
tu

rn

HalfCheetah
w/-ours
w/o-150
w/o-250
w/o-500

0 100k 200k 300k
steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Ant
w/-ours
w/o-100
w/o-250
w/o-500

0 75k 150k 225k
steps

0

3000

6000

av
er

ag
e

re
tu

rn

Humanoid
w/-ours
w/o-150
w/o-250
w/o-500

(a) average return

25k 75k 125k
steps

 10

 40

 70

tri
gg

er
ed

 ti
m

es

100k 200k 300k
steps

 10

 40

 70

tri
gg

er
ed

 ti
m

es
100k 200k 300k

steps

 10

 40

 70

tri
gg

er
ed

 ti
m

es

50k 150k 200k
steps

 10

 40

 70

tri
gg

er
ed

 ti
m

es

(b) triggered times

Figure 10: Ablation on event-triggered mechanism. (a,c) shows the average return with or with-out
event-triggered mechanism in HalfCheetah and Ant benchmarks. (b,d) shows the average number
of triggered times per 10k step. All the experiments are average over 4 random seeds.

policy enjoys higher performance, with an average return lead of about 1855.29 over MBPO in the
first 300k steps. Likewise, the growth of policy coverage in Ant is also consistent with the rise in
average return. The increase in policy coverage helps the policy to refrain from falling into a local
optimum, thus improving performance.

Effectiveness of event-triggered mechanism. We compare applying model shift constraints to the
unconstrained cases and the results are shown on Figure 10. To verify the effectiveness of adding
suitable constraints, we invalidate the event-triggered mechanism and keep the other part unchanged
in our method. As observed, our model is accurate enough when fixing the model training interval at
250, but it still performs worse than applying the model shift constraints. We attribute our model’s
out-performance to our rational model shift design. It improves the performance while minimizing
the training cost of the model. Adding such a model shift can protect the model from overfitting on
under-explored data, and can also save the model from fitting large data shifts.

To determine whether the event-triggered mechanism has an effect on the training process, we con-
duct a t-test to compare the average returns of CMLO with or without the mechanism. We compare
the original CMLO to its variant with a fixed setting (w/o-250) and list the p-values in Table 6. Our
p-values are much smaller than 0.05, so we say with a high degree of confidence that the smartly
choosing dynamically varying number of explorations does make a difference in the overall perfor-
mance.

Table 6: t-test to the average returns of CMLO with or without event-triggered mechanism.

Hopper Walker Swimmer HalfCheetah Ant Humanoid

p-value 0.0141 4.74e-10 2.47e-5 7.48e-33 2.78e-26 1.983e-15

Besides, we provide visualization of event-triggered mechanism on HalfCheetah and Ant in Fig-
ure 11. The y-axis is our estimation of the triggered condition. This figure shows the constraint
estimation and whether it reaches the triggered threshold (when the peak is above the threshold
(dashed line), the primary trigger condition is satisfied) within different stages. Note that in the
paper we have shown 4k steps for each stage, and here we present for the whole 60k.

E.6 Computing Infrastructure

Table 7 lists our computing infrastructure and the corresponding computational time used for training
CMLO on the six benchmark tasks.

29

0k 30k 60k
steps

2.0

60k 90k 120k
steps

2.0

120k 150k 180k
steps

2.0

180k 210k 240k
steps

2.0

240k 270k 300k
steps

2.0

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 alpha

(a) HalfCheetah.

0k 30k 60k
steps

2.0

60k 90k 120k
steps

2.0

120k 150k 180k
steps

2.0

180k 210k 240k
steps

2.0

240k 270k 300k
steps

2.0

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 alpha

(b) Ant.

Figure 11: Visualization of event-triggered mechanism on HalfCheetah and Ant. Solid lines show
the model shift estimation and dotted lines are the triggered threshold. Note that here we apply log
value.

Table 7: Computing infrastructure and the computational time for each benchmark task.

Hopper Walker Swimmer HalfCheetah Ant Humanoid

CPU Intel Core i7-6900K (16 threads)

GPU NVIDIA TITAN X (Pascal) x 3

computation
time in hours 20.15 19.21 31.58 35.97 29.35 33.31

30

	Sketch of Theoretical Analyses
	Omitted Proofs
	Toolbox
	Comparison with Prior Works
	Experimental Details
	Environment Setup
	Baselines and implementation
	Implementation details of CMLO
	Hyperparameters
	Additional Ablation Study
	Computing Infrastructure

