
Published as a conference paper at ICLR 2025

VISION AND LANGUAGE SYNERGY FOR REHEARSAL
FREE CONTINUAL LEARNING

M. Anwar Ma’sum1∗, Mahardhika Pratama1, Savitha Ramasamy2, Lin Liu1,
Habibullah Habibullah1, and Ryszard Kowalczyk1

1University of South Australia, Mawson Lakes, SA, 5095, Australia
2Institute for Infocomm Research, A*STAR & IPAL, CNRS@CREATE
masmy039@mymail.unisa.edu.au, dhika.pratama@unisa.edu.au, ramasamysa@i2r.a-star.edu.sg,
lin.liu@unisa.edu.au, habibullah.habibullah@unisa.edu.au, ryszard.kowalczyk@unisa.edu.au

ABSTRACT

The prompt-based approach has demonstrated its success for continual learning
problems. However, it still suffers from catastrophic forgetting due to inter-task
vector similarity and unfitted new components of previously learned tasks. On the
other hand, the language-guided approach falls short of its full potential due to
minimum utilized knowledge and participation in the prompt tuning process. To
correct this problem, we propose a novel prompt-based structure and algorithm
that incorporate 4 key concepts (1) language as input for prompt generation (2)
task-wise generators (3) limiting matching descriptors search space via soft task-
id prediction (4) generated prompt as auxiliary data. Our experimental analysis
shows the superiority of our method to existing SOTAs in CIFAR100, ImageNet-
R, and CUB datasets with significant margins i.e. up to 30% final average ac-
curacy, 24% cumulative average accuracy, 8% final forgetting measure, and 7%
cumulative forgetting measure. Our historical analysis confirms our method suc-
cessfully maintains the stability-plasticity trade-off in every task. Our robustness
analysis shows the proposed method consistently achieves high performances in
various prompt lengths, layer depths, and number of generators per task com-
pared to the SOTAs. We provide a comprehensive theoretical analysis, and com-
plete numerical results in appendix sections. The method code is available in
https://github.com/anwarmaxsum/LEAPGEN for further study.

1 INTRODUCTION

Continual learning (CL) attracts tremendous interest in the world of artificial intelligence (AI) for
dynamic environments. CL methods address the catastrophic forgetting when handling a sequence
of tasks De Lange et al., 2021; Wang et al., 2024b. CL methods are proven promising in various
applications e.g. computer vision, NLP, graph, and Automation (Liu et al., 2023; Biesialska et al.,
2020; Tian et al., 2024; Shaheen et al., 2022). However, most of the CL methods require a small por-
tion of previous task exemplars for a rehearsal process to maintain the knowledge from previously
learned tasks (Rebuffi et al., 2017; Wu et al., 2019; Boschini et al., 2022). This approach isn’t prac-
tical since old data can be unavailable anymore due to privacy constraints or data openness policy.
Besides, the rehearsal approach incurs additional memory and computational expenses. To this end,
a prompt-based approach comes as a breakthrough solution. Leveraging a frozen pre-trained back-
bone, the prompt-based approach demands only small added learnable parameters (prompt) to adapt
to a new task. This approach leads to efficient yet accurate solutions for catastrophic forgetting.

Despite its promising performance and efficiency, the prompt-based approach suffers from the fol-
lowing dilemmas: First, the task-specific prompt approach e.g. DualPrompt(Wang et al., 2022b),
SPrompt(Wang et al., 2022a), HiDE-Prompt(Wang et al., 2024a) and CPrompt (Gao et al., 2024) rely
on task identifier where a misidentified task-id leads to misclassification e.g. in the case where the
trained keys of two or more tasks have a similar vector. Second, the growing component approach
e.g. CODA-P(Smith et al., 2023b), EvoPrompt(Kurniawan et al., 2024), and ConvPrompt(Roy et al.,
2024) on the other hand increase prompt components to adapt with a new task, instead of the task
identifier. However, the (new) extra components are optimal for the current task, but not for previous
tasks. In addition, the old task components/generators that are trained side-by-side with the current

∗Corresponding author

1

https://github.com/anwarmaxsum/LEAPGEN

Published as a conference paper at ICLR 2025

task components/generators lead to forgetting. Third, the shared learnable parameter approach such
as G-Prompt in DualPrompt or semantic embedding in ConvPrompt has the risk of forgetting since
it is adjusted in all tasks. This condition is similar to the pool-based approach i.e. L2P(Wang et al.,
2022c) where any prompt in the pool may be trained in every task, as it is chosen by the input-to-
prompt similarity mechanism. On the other hand, a language-guided approach e.g. LGCL (Khan
et al., 2023) and GMM (Cao et al., 2024) do not fully reach the optimum potential of language
assistance in prompt tuning since they only use the name of class as additional information.

In retrospect to the aforementioned drawbacks, we propose a novel approach for prompt-based con-
tinual learning. We design a new prompt generation and its learning mechanism to handle catas-
trophic forgetting. The key principles of our approach are (1) we utilize language as input for prompt
generation instead of a tasks-shared learnable vector. The input is selected from the catalog of lan-
guage descriptors based on their similarity to the input. (2) We utilize task-wise generators instead
of growing generators to generate a prompt component, thus the current task generators are frozen in
the upcoming tasks training. (3) We propose a new soft task-id prediction to limit the search space
of matching descriptors. Our mechanism is different from the task-id prediction in the previous
methods. (4) We utilize the generated language-based prompt as the auxiliary data to be appended
to the input embedding. To our knowledge, these four principles are new in the prompt-based CL
method and have not yet been explored in the previous State-of-the-art(s) (SOTAs).

Our contributions are: (1) We propose a novel rehearsal-free prompt-based method for CL problem
named Language as Prompt Generator (LEAPGen) consisting of four main components as afore-
mentioned. (2). We design a new task-id predictor and joint loss function for our method. (3). Our
rigorous experiment and analysis prove the superiority of our method compared to the existing SO-
TAs in general and historical performance in terms of accuracy and forgetting index. Our extended
analysis proves the robustness of the proposed method in various settings i.e., the number of layers,
prompt length, and number of generators. (4). We provide rigorous analysis and discussion of our
method theoretically and numerically, and complete numerical results, please see appendices.

2 RELATED WORK
(a) Continual Learning: DualPrompt (Wang et al., 2022b) and CODA-P (Smith et al., 2023b), offer
a breakthrough solution for Class Incremental Learning (CIL) by training tiny task-aware parame-
ters called prompts where the feature extractor e.g. ViT that contains far bigger parameters remains
frozen. The prompt-based approach is proven to be more effective than the rehearsal approach e.g.
ICARL (Rebuffi et al., 2017), GD (Prabhu et al., 2020), XDER(Boschini et al., 2022) that saves
exemplars from the previous tasks and replays them along with current task samples, the bias cor-
rection approach e.g. BiC (Wu et al., 2019) and LUCIR (Hou et al., 2019) that trains an additional
task-wise bias layer to balance the model’s stability-plasticity dilemma, and the regularization ap-
proach e.g. EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al., 2018), and DMC (Zhang et al.,
2020) that tunes the learner parameters to accommodate the previous and current tasks. However,
the prompt-based approach still has above-mentioned dilemmas leading to forgetting.
(b) Language Guided Learning: Inspired from CLIP (Radford et al., 2021), the language-guided
approach becomes a new alternative method to assist rehearsal and regularization approaches (Ni
et al., 2024), contrastive learning (Zhu et al., 2023), few-shot continual learning (Park et al., 2024),
generative approachh (Cao et al., 2024), and prompt-based methods (Khan et al., 2023; Roy et al.,
2024). However, it is still far from its optimum potential since it only utilizes small knowledge from
the learned class such as the name of the class or inter-class text similarity to generate several new
prompts. The discriminative and representative knowledge of language modality is not yet utilized
in the learning process. Please see Appendix F for the detailed literature review.

3 PRELIMINARY
(a) Problem Formulation : In this study, we focus on Class incremental learning (CIL) since it
is the most challenging sub-problem in CL. Class incremental learning (CIL) problem is defined
as the problem of learning a sequence of fully supervised tasks {T t}Tt=1, where after finishing
learning a task T t, a model must recognize all learned tasks i.e. T 1,T 2,...T t−1,T t. Symbol T
represents the number of consecutive tasks. Each task carries pairs of training samples i.e. T t =
{(xti, yti)}

|T t|
i=1 where xi ∈ X t and yi ∈ Yt denotes input image and corresponding label, while |.|

denotes cardinality. Ct denotes the unique class labels in Yt i.e. Ct = unique(Yt), and |Ct| denotes
the number of classes in T t. Each task t is disjoint from another task t′ i.e ∀t, t′ ̸= t, (T t∩T t′ = ∅).

2

Published as a conference paper at ICLR 2025

...
L2P

...

...

task-specific
prompts

task-sharing
promptstask-identifier

(keys)

DualPrompt

...

task-specific prompts

HiDe-Prompt

task-identifier
(unstructured representations)

...

...

task-specific
prompts

ramdomly
selected

task-identifier
(keys)

CPrompt

Pool-Based
Approach

Task-Specific Approach

Growing Component Approach

prompt
components

attention
weight

CODA-P

...

prompt
components

ConvPrompt

...

SEgenerators

keys

EvoPrompt

+ +
trainable generated

a photo of crab
a photo of house

a photo of car or
baby or man or..

a photo of crab or
house or tree or...

Text
Encoder

Text
Encoder

Image

task-level prototypes

calss-level prototypes
from previous tasks

LGCL

ViT

Language Guided Approach

What is this photo

LinearImage
Encoder

Image

This is a cat
Tokenizer &
Embedding

question

ground truth

#

##

prediction

Cross Entropy Loss

LLM
Decoder

GMM

select top-k

...

...

fixedLegend :

Figure 1: Visualization of Pool-Based Prompting (red area), Task-Specific Prompting (blue area), Growing
Component Prompting (green area), and Language Guided Approach for Continual Learning (gray area).

(b) Types of Prompt-based Approaches: Figure 1 visualizes the topology of prompt-based ap-
proaches. The pool-based approach e.g. L2P(Wang et al., 2022c) selects top-k prompts from the
prompt pool [P 1, P 2, ...PM] where M is the pool size. Any prompt Pm in the pool is trainable
at any task t ∈ [1..T]. The task-specific prompt approach e.g. DualPrompt(Wang et al., 2022b)
trains only the corresponding prompt P t during the training process on task t while the prompt asso-
ciated with the previous tasks i.e [P 1, P 2, ...P (t−1)] are frozen. Each task t is accommodated with a
learnable key Kt to identify the task-id and select the prompt P t during the inference process. The
prompt identification is based on the highest cosine similarity to the input. HiDe-Prompt(Wang et al.,
2024a) utilize unstructured representation (centroids) produced by unsupervised learning instead of
learnable keys. CPrompt(Gao et al., 2024) randomly selects a frozen prompt from [P 1, P 2, ..., P t−1]
to support the tuning of P t. The growing component approach dynamically increases the number
of prompt components e.g. pi, pi+1, ..pM to adapt to a new task. The final prompt is generated by a
weighted sum of the components with similarity coefficients e.g. P = ΣMi=1p

iαi. In CODA-P(Smith
et al., 2023b), pi is a pre-defined learnable parameter, while αi = γ(q(x), ki) is attention similarity
between input query q(x) and learnable key ki associated to pi. In ConvPrompt(Roy et al., 2024),
pi is generated by respective generator network Gi from shared embedding (SE). Similarly, αi is
the cosine similarity between input x and ki. EvoPrompt(Kurniawan et al., 2024) grows prompt
memory W that forms the fusion of referred (previously learned) memory wtg and current working
memory wtf . W is implemented as a linear model with 2 parts i.e. W k and W v , and the prompt P
is generated by the formula P = ReLU(q(x).W k)W v .

(c) Language Guided Approaches: The gray colored area of figure 1 shows how the role
of language modality for the prompt-based method (LGCL) and generative method (GMM).
LGCL(Khan et al., 2023) generates task level prototypes i.e. L1, L2, ..Lt and class level proto-
types e.g. Lt1, L

t
2, ..L

t
i, then utilizes the prototypes for loss computation i.e. Lt(Kt, Lt, Ln) and

Lc(X,LTc , Lnci) , where Lt and Lc are task-wise and class-wise losses respectively, X and Ltc are
the ViT output and language prototype for current learned class respectively, Kt is the learnable key
associated with prompt P t, and Ln and Lnc are task-level and class-level prototypes taken from the
previously learned tasks. GMM(Cao et al., 2024) transforms question-and-answer (ground truth)
sentences into embedding and then passes the embedding into the LLM decoder. The decoder gen-
erates predicted embedding associated with the ground truth embedding. The cross-entropy loss of
predicted and ground truth tunes a trainable linear model.

(d) Dilemma and Drawbacks: The pool-based approach has a high risk of forgetting since all the
prompts [P 1, P 2, ...PM] are possible to be trained in all tasks t ∈ [1..T]. A prompt P i is optimal for
the tth task but is tuned again in the t+ 1th task. Therefore, it is no longer optimal for tth task and
leads to forgetting. In a task-specific approach, two different tasks e.g. t ̸= t′ could produce similar
key vectors i.e. 0.73 ≤ cos(Kt,Kt′) ≤ 0.96 (Please see Appendix D.1) that leads to inaccurate
task identification that leads to misclassification and forgetting. Note that Kt is trained based on all
samples of all classes in T t. T t and T t′ are indeed disjoint so thatX t∩X t′ = ∅, but they could have
similar representation i.e. fθ(X t) ≈ fθ(X t

′
) such as in CUB dataset where all the images are the

photos of bird. Similarly, HiDe-Prompt suffers from the same drawback where two representations
from different tasks have similar values fi ∈ T t ≈ fj ∈ T t

′
. In the growing component approach,

newly added components i.e. pi, pi+1, ..pM disrupts the previous components i.e. p1, p2, ..pi+1

3

Published as a conference paper at ICLR 2025

that already optimal for previous tasks. In addition, utilizing a continuously learned parameter e.g.
shared embedding (SE)(Roy et al., 2024) or task-sharing prompt PG(Wang et al., 2022b) increases
the chance of forgetting. The existing language guidance is not fully explored. LGCL produces
class prototype Lnc by encoding string ”the photo of class name”. However, the prototypes could
be misleading due to high similarity between different classes, e.g. the prototype of class ”Great
White Shark” has 0.9 cosine similarity to the prototypes of class ”Tree Frog” and ”Iguana”, please
see Appendix D.2. With such different classes, we can’t directly utilize language representations as
references or guidance for model training.

Method Avg. Accuracy Avg. Forgetting
T1 T10 Drop T2 T10 Inc.

L2P 76.89 62.50 14.39 5.52 5.01 -0.51
DualPrompt 78.97 68.59 10.39 3.83 4.61 0.79
CODA-P 89.24 73.77 15.47 5.04 7.94 2.90
LGCL 78.59 68.65 9.93 2.91 4.75 1.85
HiDe-Prompt 85.22 75.75 9.47 3.29 2.29 -1.00
PGP 78.97 68.62 10.35 3.83 4.53 0.70
EvoPrompt 89.27 76.00 13.27 5.17 4.22 -0.95
CPrompt 90.91 76.32 14.59 4.55 6.10 1.54
ConvPrompt 89.53 77.08 12.45 2.57 4.17 1.61

Table 1: Preliminary results on
Imagenet-R with 10 tasks setting.

(e) Preliminary Analysis: Table 1 presents the average accu-
racy and average forgetting of all learned classes in the first, sec-
ond, and last tasks on ImageNet-R dataset with 10-tasks setting.
The table shows that the existing prompt-based methods suffer
from 9-15% average accuracy drop between the first and the final
tasks. In the second task, the methods already suffer from up to
5% average forgetting and the amount tends to increase to up to
8% in the last tasks. Instead of reducing the average forgetting,
almost all methods experience higher forgetting in latest tasks.
HiDe-prompt manages to reduce the average forgetting with the
highest amount i.e 1%, but in the last task, It achieves 1− 2% lower accuracy than the best achiever
i.e. ConvPrompt. Despite its highest performance in the final tasks, ConvPrompt suffers from a
fairly high accuracy drop i.e. 12%, and an increase of 1.5% forgetting. This preliminary numerical
result confirms our aforementioned analysis.

4 PROPOSED METHOD
4.1 OVERVIEW

In this study, we propose a novel LanguagE As Prompt Generator (LEAPGen) accommodating our
main principles that are emphasized in the introduction section. The structure and flow of LEAPGen
are visualized in figure 2. LEAPGen generators produce prompts from top-k selected embedding
as input. LEAPGen also produces auxiliary (aux) data from the top-k embedding. The prompts are
prepended into ViT MSAs while the aux is appended into input patches, thus producing feature and
final prediction by ViT layers and MLP head respectively. The top-k embedding is selected based on
the cosine similarities between an input and the class-wise keys. LEAPGen limits the search space
into task 1 to predicted task t, by performing soft task-id prediction. In each task of the training
phase, LEAPGen updates task-associated learnable parameters i.e. generator, task-wise key, and
class-wise keys. In the inference phase, LEAPGen selects the generators based on the predicted task
t. LEAPGen utilizes cross-entropy loss and cosine similarity loss to optimize its parameters. Task-
wise generators, language embedding for prompt generation, and soft task-id prediction are unique
to recent SOTAs of evolving generator methods e.g. (Roy et al., 2024) and (Kurniawan et al., 2024),
task-wise fixed prompt methods such as (Wang et al., 2024a) and (Gao et al., 2024), and pool-based
method (Wang et al., 2022c) in terms of prompt generation/selection, task-prediction mechanism,
and modality for prompt generation. The detailed architecture, flow, and learning mechanism are
presented in sub-section 4.2 and 4.3.

4.2 ARCHITECTURE AND PROMPT GENERATION

(a) Input and Learnable Parameters: while the existing works use the language to compute loss
as in LGCL(Khan et al., 2023) or calculate the number of generators per task as in ConvPrompt
(Roy et al., 2024), we take the benefit of language modality as the input for prompt generation. Our
method accommodates both language text i.e. generated descriptors by GPT as in ConvPrompt and
class names (as utilized in LGCL) as descriptors. Descriptors list carries text describing the visual
attributes of the classes, e.g. the descriptors for class ”apple” are [”round shape”, ”smooth, glossy
skin”, ”red, green, or yellow color”, ”stem and leaves”, ”five-pointed star shape when cut in half”,
”white flesh inside”]. The descriptors are more distinctive and representative than the words ”the
photo of apple” utilized in the existing works. The list of descriptors is then unified into a single
long string and encoded into a numerical vector i.e. Etc ∈ RD called a descriptor embedding. We
store the descriptor embedding from the learned classes as the catalog for prompt generation. Each
task t contain k generators {Gti}ki=1, a task-wise learnable key Kt ∈ RD, and a set of class-wise
learnable parameters {Ltc}

|Ct|
c=1 , L

t
c ∈ RD, where k is a predefined number, and |Ct| is the number of

classes on task t, each Ltc is associated to Etc. These learnable parameters are tuned only on task-t.

4

Published as a conference paper at ICLR 2025

Embedded Patches

Norm

+

Norm

MLP

Attention

+

Prompt

ViT Encoder

MSA

Classifier (MLP)

...

Task-1
...

...

...

Task-t
...

... ...

associated

Sentence Transformer

Text
Desc

Text
Desc

Text
Desc

...Text
Desc

Text
Desc

Text
Desc

Text
Desc

...Text
Desc

class-1 class-2 class-3 class-10 class-11 class-12 class-13 class-20

predicted task=t
(on testing)

Cosine Similarity

descriptor
embeddings

text
descriptor

... ...top-k descriptor
embeddings

top-k
similarities

Auxiliary

Input

Input Image

Generators

Keys

Learnable Fixed Generated

Attention

Generator
Network

...

...

search space for top-k

Figure 2: The LEAPGen architecture. Each task contains a set of generators, a task-wise learnable, and class-
wise learnable parameters associated with the descriptor embedding. Given an input image, our method predicts
the task-id and finds top-k descriptors matched to the input via cosine similarity afterward. The descriptors are
dispatched to the generators producing the prompt components. LEAPGen produces the final prompt and an
auxiliary embedding by the weighted sum of the prompt components and the descriptors respectively. The
prompt is prepended into the ViT MSA layer, while the auxiliary is appended into the input patches.

(b) Prompt Generation: Before generating the prompt for an input image x, our method predicts
the task-id via a soft task prediction (ref. point c). In the training process, the task-id is easily
given in a supervised way instead of being predicted. Let the task-id be t, then our method selects k
descriptor embedding associated with top-k matched L by performing cosine similarity. Note that
the search space is from the first task (task-1) until task-t i.e. {E1

c}
|C1|
c=1 , {E2

c}
|C2|
c=1 ,.., {Etc}

|Ct|
c=1 . Let

the k selected embedding be {Ei}ki=1 and associated similarity values {Si}ki=1, then the embedding
is inputted into the respective generators i.e. {Gti}ki=1 producing prompt components {PCi}ki=1.
Note that each generator is a trainable network, so it satisfies PCi = Gti(Ei). The final prompt is
generated by a weighted sum of the prompt components and similarity i.e. P = Σki=1SiPCi. In a
simplified expression, the prompt generation is formulated by equation 1.

P = Σki=1SiG
t
i(Ei) (1)

(c) Generator Networks and Detailed Generation: we design a single-head self-attention (SSA)
network Gti parameterized by WQ

i , WK
i and WV

i without bias as visualized in figure 2. Following
(Roy et al., 2024) and prefix tuning (Li & Liang, 2021), we implement Gti as a key-value pair
generators i.e. (GtKi , GtVi) and distribute them into corresponding layers and heads. Therefore, a
hth head of MSA in lth layer corresponds to a pair of generators (GtKi,l,h, G

tV
i,l,h) parameterized by

(WKQ
i,l,h, WKV Ki,l,h,WKV

i,l,h) and (WV Qi,l,h, WKV Ki,l,h,WV Vi,l,h), where WKQ
i,l,h is (D/H) ×

(D/H) matrix and so do the other parameters. The language embedding Ei is then divided into
H parts i.e. Ei = [Ei,l,1, Ei,l,2, ..Ei,l,H], where a part Ei,l,h, h ∈ [1..H] plays as the input for
(GtKi,l,h, G

tV
i,l,h). Thus, the detailed formula of prompt generation for respective head h on lth layer

is expressed as in equation 2.

PKl,h = Σki=1SiG
tK
i,l,h(Ei,l,h), PVl,h = Σki=1SiG

tV
i,l,h(Ei,l,h) (2)

(d) Soft Task-ID Prediction: we design a soft task-id prediction to limit the search space to find
top-k Ei. We use the term ”soft” as the search of top-k Ei is conducted not only within predicted
task t but also the previously learned tasks i.e. [1, 2, ..t−1]. The reason is that most similar language
embedding comes from the respective class from within respective tasks, the second-ranked and the
rest may come from classes from different (previous) tasks. Therefore, they will contribute to a better
distinctive prompt than the embedding from the other classes within the same task. For instance,
class ”pear” has higher similar descriptors to class ”apple” than to class ”palm tree”. But class
”apple” is located in a different (previous) task, while class ”palm tree” is within the same task as
class ”pear”, thus selecting ”apple” descriptors from the precious task is better than choosing ”palm
tree” descriptors from the same task. Different from the task-id prediction in previous works (Wang
et al., 2022b; 2024a) we utilize both task-wise learnable parameter Kt and class-wise learnable
parameter Ltc. We predict the task-id t for an input x by finding the maximum product of cosine

5

Published as a conference paper at ICLR 2025

similarity between x and Kt and similarity between x and Ltc as formulated in equation 3.

t = argmax
t∈[1..T],c∈Ct

{(x.Kt)(x.Ltc)/((max(||x||2.||Kt||2, ϵ))(max(||x||2.||Kt||2, ϵ)) (3)

(d) Learning with Auxiliary Data: Our method generates auxiliary embedding based on k selected
language embedding used for prompt generation. The auxiliary embedding xaux ∈ RD helps our
method to recognize the input image x as it is generated based on the similarity between the input
and the catalog of language embedding. The previous study(Shen et al., 2023) presents insightful
knowledge of leveraging the auxiliary modality for deep learning training. The auxiliary embedding
xaux is generated by the weighted sum of language embedding i.e. xaux = Σki=1siEi. The auxiliary
embedding is concatenated into the input patches list, therefore the patches list that enters the ViT
layers now becomes [xe1 , xe2 , ..., xeNp

, xaux], where Np is the number of patches.

4.3 FORMULATION OF LEARNING MECHANISM

(a). Theoretical Foundation: The goal of CIL is to learn a sequence of tasks i.e. T 1, T 2, ..., T T ,
where each task T t, t ∈ [1..T] carries a pair of image and label set (X t,Yt). Suppose that Ct is
the set of available classes in Yt, and c ∈ Ct represents a class label c available in task t. Suppose
that ”:” denotes the concatenation and T 1:t = ∪ti=1T i denotes the concatenation of task 1 to task t.
Similarly, X 1:t and Y1:t denotes the concatenation of input and label space respectively, from task 1
to task t. Given a sequence of experienced events T = {T 1, T 2, ..., T T }, and a deep learning model
fθ(.). The objective of CIL is to recognize any input x ∈ X1:T by maximizing P (x ∈ X tc |T , θ).
Following (Wang et al., 2024a), P (x ∈ X tc |T , θ) can be decomposed into task prediction and class
prediction within task as in equation 4.

P (x ∈ X tc |T , θ) = P (x ∈ X tc |x ∈ X t, T , θ)P (x ∈ X t|T , θ) (4)

Analogically, we can decompose the P (x ∈ X tc |T , θ) in a softer task-id prediction i.e. by decom-
posing the term P (x ∈ X tc |T , θ) w.r.t. P (x ∈ X 1:t|T , θ). Then, the decomposition can be derived
into equation 5.

P (x ∈ X tc |T , θ) = P (x ∈ X tc |x ∈ X t, T , θ)P (x ∈ X t|T , θ)
= P (x ∈ X tc |x ∈ X 1:t, T , θ)P (x ∈ X 1:t|T , θ)

(5)

The first line of equation 5 expresses a hard decomposition where a classification is conducted into
a strict two-step classification i.e. predict the task ID first, then predict the class label within the
task. On the other hand, the second line of the equation 5 expresses a soft way of decomposed
classification i.e. predict the possible task (1:t) of the sample then predict the class within the task
range. In the first approach, a false task prediction directly leads to misclassification, while in the
second approach, It still hold a possibility for correct classification as long as the predicted task
ID is higher than the ground truth task. Since event x ∈ X t is subset of event x ∈ X 1:t, Then
P (x ∈ X t|T , θ) ≤ P (x ∈ X 1:t|T , θ), that implies P (x ∈ X tx|x ∈ X t) ≥ P (x ∈ X tx|x ∈ X 1:t).
The second approach has an easier way to predict the possible task but a harder step afterward,
while the first approach has a more difficult task prediction but an easier way afterward. However,
the equation above gives us insight that improving P (x ∈ X tc |T , θ) can be conducted by improving
P (x ∈ X tc |x ∈ X t, T , θ),P (x ∈ X t|T , θ), P (x ∈ X tc |x ∈ X 1:t, T , θ), P (x ∈ X 1:t|T , θ), pair to
the first line, pair of the second line of equation 5, or all of them.

(b). Learning Objective: Based on the insights above, we develop a strategy to improve
P (x ∈ X tc |T , θ) during the learning process. Note that ψ is the frozen ViT parameter, θ =
{Gti,Kt, Ltc}t=Tt=1,c∈Ct are our customized trainable parameters including generators, task-wise keys,
and language class-wise keys, and ϕ is the parameter of MLP head (classifier) and the class label
of an input x is predicted by computing hϕ(fψ,θ(x)). First, utilizing cross-entropy function, we
improve P (x ∈ X tc |x ∈ X t, T , θ) by intra-task loss Lintra as formulated in equation 6.

Lintra(x, (ψ, θ, ϕ)) = −
∑
c∈Ct

log
exp(hϕ(fψ,θ(x))[c])∑

c′∈Ct exp(hϕ(fψ,θ(x))[c′])
(6)

where ”[]” denotes the index filter for the respective class. Note that hϕ(fψ,θ(x)) produces a list of
softmax values for all classes. Second, similar to the intra task loss, utilizing cross entropy function,
we improve P (x ∈ X tc |x ∈ X 1:t, T , θ) by inter-task loss Linter as defined in equation 7.

Linter(x, (ψ, θ, ϕ)) = −
t=T∑
t=1

∑
c∈Ct

log
exp(hϕ(fψ,θ(x))[c])∑t=T

t=1

∑
c′∈Ct exp(hϕ(fψ,θ(x))[c′])

(7)

6

Published as a conference paper at ICLR 2025

Then, we improve task prediction P (x ∈ X t|T , θ) that leads to improve P (x ∈ X 1:t|T , θ) by
computing negative cosine similarity between the input x and task-wise and class wise learnable
parameters Kt and Ltc respectively as formulated in equations 8 and 9. Note that our designed
task-id predictor utilize both Kt and Ltc as explained in sub-section 4.1.c.

Lt(x,Kt) = −(x.Kt)/(max(||x||2.||Kt||2, ϵ)) (8)

Lc(x, Ltc) = −(x.Ltc)(max(||x||2.||Ltc||2, ϵ)) (9)

Finally, we define a joint loss function as a total loss accommodating the four loss components above
to train the learnable parameters, generators, and classifier head formulated in the equation 10. We
add loss coefficients i.e. λ1, λ2, λ3 to enhance the flexibility of our proposed method e.g. the higher
number of learned classes needs higher capability on inter-task discrimination. We don’t utilize any
regularization, since all learned parameters on task-t will be frozen after finishing the task.

Ltotal = Lintra(x, (ψ, θ, ϕ)) + λ1Linter(x, (ψ, θ, ϕ)) + λ2Lt(x,Kt) + λ3Lc(x, Ltc) (10)

(c). Training and Inference procedures for LEAPGen are presented in Appendix B.

4.4 THEORETICAL ANALYSIS

We state Theorem 1, 2, and 3 that prove the importance of the generator network, loss minimization,
and better task prediction respectively as presented in Appendix A. Please see Appendix A for our
detailed theorems and theoretical analysis.

5 EXPERIMENT AND ANALYSIS

5.1 EXPERIMENT SETTING

Datasets: We evaluate our method in three CIL benchmarks i.e. CIFAR100(Hendrycks et al., 2021),
ImageNet-R(Belouadah & Popescu, 2019), and CUB(Wah et al., 2011). The CIFAR100 has 100
classes of small-scale images while ImageNet-R contains large-scale images that cover 200 classes.
ImageNet-R contains art, cartoon, paint, and deviant images. The CUB dataset includes fine-grained
images of 200 classes of birds. We follow 5, 10, and 20 task splits as in the SOTAs (Roy et al., 2024;
Gao et al., 2024; Kurniawan et al., 2024).

Baselines and Performance Metrics: We compare our proposed method with the existing SO-
TAs of prompt-based approach i.e. CIFAR100 L2P(Wang et al., 2022c), DualPrompt(Wang et al.,
2022b), CODA-P(Smith et al., 2023b), LGCL(Khan et al., 2023), PGP(Qiao et al., 2023), HiDE-
Prompt(Wang et al., 2024a), EvoPrompt(Kurniawan et al., 2024), CPrompt(Gao et al., 2024), and
ConvPrompt(Roy et al., 2024). We also compare LEAPGen to low-Rank Adaptation (LoRA) ap-
proach i.e. CLoRA(Smith et al., 2023a), LAE(Gao et al., 2023), InfLoRA(Liang & Li, 2024), slow
learner approach i.e. SLCA(Zhang et al., 2023), and generative approach i.e. GMM(Cao et al.,
2024). Adapted from Hide-Prompt(Wang et al., 2024a), we measure final average accuracy (FAA)
and final forgetting measure (FFM) that represent the final performance after learning all tasks,
and cumulative average accuracy (CAA) and cumulative forgetting measure (CFM) that represent
cumulative historical performance on each task. See Appendix E.

Implementation Details: We implemented LEAPGen and its lite version i.e. LEAPGen-lite in
Pytorch utilizing the pre-trained ViT-B/16 backbone following the common practice. LEAPGen-
lite utilizes lightweight Conv1d generators (note: different from ConvPrompt) without descriptors,
it uses class names instead. We utilize Adam optimizer, set 128 batch-size, and cosine learning
scheduler similar to ConvPrompt and CODA-P. The initial learning rate is set to 0.01, 0.05, and 0.005
for CIFAR100, ImageNet-R, and, CUB respectively, with 20 maximum epochs. All the methods are
run under the same environment i.e. a single NVIDIA A100 GPU with 40 GB RAM. The hyper-
parameter settings follow their official settings. See Appendix E.

5.2 RESULT AND ANALYSIS

a) Overall Performance: Table 2 shows the summarized numerical results of consolidated algo-
rithms in split CIFAR100 and ImageNet-R dataset, while table 3 shows the summarized result in split
CUB dataset. The detailed numerical results are presented in Appendix G. In the split CIFAR100
dataset, our proposed method (LEAPGen) achieves the highest accuracy with a 5-16% margin of
FAA and a 5-11% margin of CAA. The table shows that a higher number of tasks results in a higher
gap in performance. For the forgetting measure, our method consistently achieves the lowest FFM

7

Published as a conference paper at ICLR 2025

Method Split CIFAR100 Split ImageNet-R
FAA CAA FFM CFM FAA CAA FFM CFM

5 Task @20 classes/task 5 Task @40 classes/task
L2P 84.77 ± 0.48 88.67 ± 0.30 6.18 ± 0.57 5.99 ± 0.29 64.62 ± 0.32 68.01 ± 0.42 3.94 ± 0.16 3.55 ± 0.20
DualPrompt 86.41 ± 0.21 89.95 ± 0.10 5.37 ± 0.21 4.77 ± 0.46 69.71 ± 0.11 72.78 ± 0.14 3.32 ± 0.16 2.78 ± 0.25
CODA-P 88.22 ± 1.06 92.25 ± 1.28 7.05 ± 2.18 6.06 ± 2.66 74.89 ± 0.36 79.71 ± 1.27 8.89 ± 0.65 7.65 ± 0.98
LGCL 86.90 ± 0.40 90.45 ± 0.18 5.01 ± 0.35 4.36 ± 0.13 69.93 ± 0.21 72.91 ± 0.19 3.04 ± 0.36 2.50 ± 0.38
HiDe-Prompt 91.99 ± 0.03 93.95 ± 0.09 2.52 ± 0.18 2.33 ± 0.15 75.40 ± 0.27 78.88 ± 0.04 3.15 ± 0.46 2.64 ± 0.16
PGP 87.69 ± 0.06 91.26 ± 0.13 5.32 ± 0.18 4.60 ± 0.15 69.71 ± 0.15 72.77 ± 0.07 3.36 ± 0.23 2.85 ± 0.25
EvoPrompt 89.07 ± 0.38 92.32 ± 0.26 5.25 ± 0.65 5.39 ± 0.24 77.27 ± 0.40 81.67 ± 0.18 1.79 ± 0.31 1.41 ± 0.32
CPrompt 89.22 ± 0.05 93.09 ± 0.06 5.02 ± 0.17 4.31 ± 0.35 78.65 ± 0.00* 82.44 ± 0.00 6.00 ± 0.00 5.49 ± 0.00
ConvPrompt 90.26 ± 0.44 93.49 ± 0.19 3.64 ± 0.28 3.25 ± 0.16 79.36 ± 0.08 82.93 ± 0.24 3.42 ± 0.05 2.36 ± 0.16
LEAPGen-lite 97.07 ± 0.08 97.28 ± 0.10 0.05 ± 0.01 0.02 ± 0.01 82.44 ± 0.63 84.37 ± 0.90 0.43 ± 0.08 0.17 ± 0.06
LEAPGen 96.84 ± 0.12 96.85 ± 0.26 0.08 ± 0.07 0.06 ± 0.04 82.79 ± 0.32 85.06 ± 0.29 0.51 ± 0.04 0.18 ± 0.07

10 Task @10 classes/task 10 Task @20 classes/task
L2P 83.84 ± 0.32 88.67 ± 0.16 6.55 ± 0.34 5.16 ± 0.14 62.50 ± 0.51 67.05 ± 0.47 5.01 ± 0.40 4.41 ± 0.43
DualPrompt 85.36 ± 0.20 89.77 ± 0.20 5.41 ± 0.33 4.33 ± 0.15 68.59 ± 0.24 72.18 ± 0.20 4.61 ± 0.07 3.70 ± 0.18
CODA-P 86.44 ± 0.16 91.27 ± 0.56 6.38 ± 1.46 5.09 ± 1.19 73.77 ± 0.50 79.38 ± 1.48 7.94 ± 0.08 6.72 ± 0.79
LGCL 85.68 ± 0.43 90.16 ± 0.29 5.46 ± 0.22 4.25 ± 0.32 68.65 ± 0.25 72.57 ± 0.19 4.75 ± 0.33 3.38 ± 0.58
HiDe-Prompt 92.89 ± 0.11 95.01 ± 0.08 1.98 ± 0.05 1.56 ± 0.15 75.75 ± 0.40 79.27 ± 0.17 2.29 ± 0.27 2.33 ± 0.17
PGP 86.36 ± 0.19 90.83 ± 0.17 5.49 ± 0.35 4.28 ± 0.27 68.62 ± 0.14 72.19 ± 0.20 4.53 ± 0.40 3.63 ± 0.35
EvoPrompt 88.17 ± 0.51 92.18 ± 0.49 5.39 ± 0.45 3.97 ± 0.73 76.00 ± 0.26 80.97 ± 0.30 4.22 ± 0.42 3.59 ± 0.52
CPrompt 86.92 ± 1.04 91.73 ± 0.66 5.43 ± 0.74 4.01 ± 0.81 76.32 ± 0.53 81.50 ± 0.30 6.10 ± 0.75 5.60 ± 1.35
ConvPrompt 88.77 ± 0.24 92.71 ± 0.04 4.12 ± 0.44 2.67 ± 0.11 77.08 ± 0.26 81.47 ± 0.10 4.17 ± 0.04 3.11 ± 0.17
LEAPGen-lite 98.58 ± 0.03 98.69 ± 0.10 0.11 ± 0.03 0.06 ± 0.03 82.38 ± 1.04 85.14 ± 0.52 3.01 ± 1.19 2.13 ± 0.60
LEAPGen 98.38 ± 0.15 98.15 ± 0.39 0.10 ± 0.03 0.05 ± 0.00 84.09 ± 0.93 85.54 ± 0.65 1.46 ± 1.25 2.11 ± 1.21

20 Task @5 classes/task 20 Task @10 classes/task
L2P 81.89 ± 0.38 87.16 ± 0.33 8.81 ± 0.10 6.79 ± 0.33 57.40 ± 0.31 63.33 ± 0.21 10.76 ± 0.45 7.88 ± 0.17
DualPrompt 82.32 ± 0.22 87.47 ± 0.24 6.88 ± 0.35 5.63 ± 0.23 65.19 ± 0.17 70.31 ± 0.29 7.30 ± 0.18 5.16 ± 0.34
CODA-P 81.29 ± 0.16 87.72 ± 0.44 6.82 ± 1.60 4.98 ± 0.95 70.55 ± 0.71 77.08 ± 1.02 8.23 ± 0.86 6.95 ± 0.70
LGCL 83.18 ± 0.40 88.63 ± 0.18 7.22 ± 0.47 4.91 ± 0.56 64.96 ± 0.67 70.18 ± 0.37 7.35 ± 0.65 5.05 ± 0.32
HiDe-Prompt◦ - 97.62 ± 0.14 - 0.74 ± 0.03 - 81.60 ± 0.48 - 2.23 ± 0.38
PGP 83.41 ± 0.35 89.23 ± 0.13 7.95 ± 0.23 5.66 ± 0.22 65.24 ± 0.25 70.36 ± 0.26 7.17 ± 0.21 5.09 ± 0.25
EvoPrompt 84.63 ± 0.21 89.47 ± 0.21 9.19 ± 0.41 7.39 ± 0.65 74.93 ± 0.64 79.92 ± 0.13 6.72 ± 0.90 5.67 ± 0.26
CPrompt 83.60 ± 0.00* 90.10 ± 0.00 6.47 ± 0.00 4.78 ± 0.00 74.23 ± 0.17 79.82 ± 0.51 5.98 ± 0.24 5.54 ± 0.48
ConvPrompt 87.21 ± 0.20 91.60 ± 0.36 5.47 ± 0.33 3.92 ± 0.33 73.93 ± 0.36 78.92 ± 0.37 4.87 ± 0.57 3.57 ± 0.25
LEAPGen-lite 95.28 ± 3.37 98.38 ± 1.13 1.08 ± 1.54 0.70 ± 0.99 83.67 ± 0.39 85.65 ± 0.33 1.06 ± 0.24 0.47 ± 0.14
LEAPGen 96.51 ± 2.16 98.73 ± 0.26 0.66 ± 0.75 0.52 ± 0.39 87.03 ± 0.12 87.81 ± 0.48 2.17 ± 0.17 2.54 ± 0.77

Table 2: Summarized numerical result on split CIFAR100 and ImageNet-R in 5, 10, and 20 tasks settings, *
and ◦ denote the results obtained from 1 seeded run and the first 10 tasks respectively due to system crash.

and CFM in all settings of CIFAR100. In addition, the magnitude of its FFM and CFM is lower than
0.7%, while the best-of-competitor method i.e. HiDE-Prompt suffers more than 1.5 %, and more
than 2% for the rest of the SOTAs . Note that HiDe-Prompt failed to finish the experiment in the 20
tasks setting, and the result is obtained from its first 10 tasks. However, our method still achieves
higher performance in the setting by approximately 1% margin. In Imagenet-R dataset, the proposed
method outperforms the existing methods with a higher margin i.e. 3-30% for FAA and 2-24% for
CAA. Our method also attains the lowest forgetting in both FFM and CFM with≥ 1% margin to the
competitors. Similar to in CIFAR100 dataset, the difference of accuracy and forgetting are higher
in the higher number of tasks. In CUB dataset, our method keeps its superiority to the previous
methods. For the final performance i.e. FAA and FFM, our method outperforms the SOTAs with
1-21% and 0.6-10% respectively, while in terms of cumulative performance i.e. CAA and CFM,
LEAPGen gains 3-16% and 1.4-8.5% respectively.

Method Split CUB 10 Tasks @20 classes/task
FAA CAA FFM CFM

L2P 66.95 ± 0.13 74.03 ± 0.32 5.18 ± 0.11 7.39 ± 0.23
DualPrompt 73.95 ± 0.73 80.29 ± 0.15 7.87 ± 0.76 8.60 ± 0.37
CODA-P 72.99 ± 0.30 82.64 ± 0.64 11.71 ± 1.49 9.91 ± 1.04
LGCL 79.93 ± 0.30 83.07 ± 0.23 5.45 ± 0.33 5.58 ± 0.39
HiDe-Prompt 87.21 ± 0.18 87.66 ± 0.01 1.90 ± 0.45 2.66 ± 0.13
PGP 78.35 ± 0.68 82.21 ± 0.56 5.76 ± 0.10 6.10 ± 0.26
EvoPrompt 76.23 ± 0.51 81.00 ± 0.40 3.96 ± 0.43 3.57 ± 0.83
CPrompt 77.14 ± 1.16 85.67 ± 0.56 11.65 ± 0.47 8.69 ± 0.31
ConvPrompt 80.12 ± 1.37 84.70 ± 0.64 6.04 ± 0.97 4.61 ± 0.45
LEAPGen-lite 86.00 ± 0.32 88.03 ± 0.47 2.46 ± 1.61 2.29 ± 1.15
LEAPGen 88.45 ± 0.58 90.90 ± 0.81 1.32 ± 0.52 1.29 ± 0.82

Table 3: Summarized result on split CUB (10-tasks).

b) Comparison to Different Approaches: Ta-
ble 4 compares the performance of our method
to SOTAs of different approaches i.e. LoRA,
slow learner (SLCA), and generative (GMM)
approaches. Compared to LoRA approach, our
method achieves a better performance with a
significant margin i.e. 5-22% and 3-17% for
FAA and CAA respectively. These margins are
even higher than the margins to the prompt-
based approach. SLCA achieves a promising
performance as its performance is on par to
ConvPrompt and Hide-Prompt in ImageNet-R
10 tasks and CIFAR100 10 tasks settings respectively. However, our method is still in the higher
performance than SLCA with 4-7% margin. Our method also achieves higher performance than the
GMM method with 3-10% margin.

8

Published as a conference paper at ICLR 2025

Method S-ImageNet-R 5 Tasks S-ImageNet-R 10 Tasks S-ImageNet-R 20 Tasks S-CIFAR100 10 Tasks
FAA CAA FAA CAA FAA CAA FAA CAA

C-LoRA 75.85 ± 0.31 78.85 ± 0.34 71.89 ± 0.45 75.33 ± 0.28 65.71 ± 0.60 70.63 ± 0.85 82.97 ± 0.47 87.06 ± 0.25
LAE 73.84 ± 0.14 77.29 ± 0.45 71.70 ± 0.39 76.71 ± 0.10 66.98 ± 0.35 73.72 ± 0.05 88.81 ± 0.34 91.59 ± 0.13
InfLoRA 77.52 ± 0.37 82.01 ± 0.12 75.65 ± 0.14 80.82 ± 0.24 71.01 ± 0.45 77.28 ± 0.45 89.84 ± 0.03 91.70 ± 0.32
SLCA - - 77.00 ± 0.33 81.17 ± 0.64 - - 91.53 ± 0.28 94.09 ± 0.87
GMM - - 80.72 - - - 87.59 -
LEAPGen-lite 82.44 ± 0.63 84.37 ± 0.90 82.38 ± 1.04 85.14 ± 0.52 83.67 ± 0.39 85.65 ± 0.33 98.58 ± 0.03 98.69 ± 0.10
LEAPGen 82.79 ± 0.32 85.06 ± 0.29 84.09 ± 0.93 85.54 ± 0.65 87.03 ± 0.12 87.81 ± 0.48 98.38 ± 0.15 98.15 ± 0.39

Table 4: Comparison of the proposed method to the LoRA approach, SLCA, and GMM. All the results of the
competitor methods is taken from respective refrerences.

2 4 6 8 10
Task

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

(%
)

CIFAR100 10-Tasks
Average Accuracy

2 4 6 8 10
Task

65

70

75

80

85

90

ImageNet-R 10-Tasks
Average Accuracy

2 4 6 8 10
Task

65

70

75

80

85

90

95

CUB200 10-Tasks
Average Accuracy

2 4 6 8 10
Task

0

1

2

3

4

5

6

Fo
rg

et
tin

g(
%

)

CIFAR100 10-Tasks
Average Forgetting

2 4 6 8 10
Task

2

4

6

8

ImageNet-R 10-Tasks
Average Forgetting

2 4 6 8 10
Task

0.0

2.5

5.0

7.5

10.0

12.5

15.0

CUB200 10-Tasks
Average Forgetting

L2P DualPrompt CODA-P LGCL HiDe-Prompt PGP EvoPrompt CPrompt ConvPrompt LEAPGen-lite LEAPGen

Figure 3: Historical performance plot of the consolidated methods in 3 CIL benchmark datasets.

c) Historical Performance: Figure 3 shows the historical average accuracy i.e. final average accu-
racy of all learned classes after finishing learning on each task t. LEAPGen’s gentle slop shows that
our proposed method experience the least performance degradation compared to the existing meth-
ods. In the CIFAR100 dataset, our method even manages to increase its performance in the later
tasks. The existing methods suffer from a significant performance drop i.e up to 13%, 15%, 22%
in CIFAR100, ImageNet-R, and CUB datasets respectively. For the average forgetting measure,
our method once again demonstrates an excellent trend. Except on the first 5 tasks of ImageNet-R
datasets, our method suffers from the lowest average forgetting in all tasks and all datasets. In CI-
FAR100 datasets, our method experiences nearly zero forgetting from the first until the last tasks. In
Imagenet-R and CUB datasets, our method manages to decrease its average forgetting in the 5 latest
tasks, and consistently achieve the lowest magnitude i.e. 1.4− 2.2% and 1.2− 1.8 in CUB dataset.
On the contrary, the competitor methods suffer from the increasing average forgetting during incre-
mental learning, as shown by the rising curves. The methods suffer from a high average forgetting
i.e. for up to 7%, 8%, and 15% in CIFAR100, ImageNet-R and CUB datasets respectively. Their
increase of average forgetting is significant i.e. 4%, 3%, and 8% respectively. Overall, the historical
analysis confirms how our method handles catastrophic forgetting better than the existing methods.

d) LEAPGen-lite’s Performance: As shown in Table 2-4 and Figure 3 Despite utilizing far smaller
(2.67% params) generators and without class descriptors generated by LLM, LEAPGen-lite still
outperforms the existing methods significantly i.e. 4.7-25% FAA and 3-11% CAA in CIFAR100,
and 3-30% FAA and 2-26% CAA in ImageNet-R dataset. LEAPGen-lite also achieves a low for-
getting rate in these 2 datasets for all task-settings. In the CUB dataset, LEAPGen-lite archives a
comparable performance to HiDe-Prompt and outperforms other SOTA with a significant margin i.e.
6-20% FAA and 3.3-14% CAA. This evidence proves our ideas i.e. language embedding as input
for prompt generation, task-wise generators, soft task-id predictor, and learning with auxiliary data
are not bounded by the generated descriptors and the size of generators.

Component Loss FAA CAA FFM CFM
FT Lintra 61.5 65.3 5.9 5.6
FT+E Lintra 72.9 78.5 5.8 5.3
FT+E+Kt Lintra, Lt 74.9 79.5 2.8 3.2
FT+Gt(E)+Kt Lintra, Lt 76.6 80.5 1.8 2.4
FT+Gt(E)+Kt+Lt

c Lintra, Lt, Lc 77.2 81.0 0.5 1.3
FT+Gt(E)+Kt+Lt

c+Aux Lintra, Lt, Lc 78.4 82.0 0.5 1.2
FT+Gt(E)+Kt+Lt

c+Aux Lintra, Linter , Lt, Lc 83.7 86.0 2.5 1.9
FT+Gt(E)+Kt+Lt

c+Aux+
Soft Task-ID Predictor Lintra, Linter , Lt, Lc 84.7 86.1 0.9 1.4

Table 5: Ablation study on the impact of LEAPGen compo-
nents to its performance, run on 10 tasks Imagenet-R.

e) Ablation Study: Table 5 shows the
impacts of the proposed method’s com-
ponents on its performance. (1)
Descriptor Embedding E as one of
LEAPGen’s main components, elevates
fine tuning (FT) baseline significantly
i.e. > 11% FAA and > 13% CAA. It
shows the promising impact of our idea
. (2) Task Key Kt and Loss Lt trans-
form the method into task-wise prompt-
ing based on input to Kt and Lt similarity. They produce a better model with 1-2% FAA and CAA
improvement and reduce FFM and CFM by > 2%. It shows the effectiveness of task-wise decom-
position as applied in the task-wise prompt approach. (3) Task-wise generator Gt() enhances the
model recognition capability by 2% and 1% for FAA and CAA respectively. It also decreases its
forgetting rate by 1%. It means the trainable generator produces a more discriminative prompt than

9

Published as a conference paper at ICLR 2025

the descriptor embedding only. (4) Ltc Class-wise Key Ltc and Loss Lc for top-k embedding se-
lection i.e. Ei for i ∈ [1...k] improves the model performance with 1% margin. It also reduces
the model forgetting rate with up to 1% margin. Thus, measuring the input similarity to Ltc offers
a better embedding selection than toEtc directly.(5) Auxiliary embedding improves the LEAPGen’s
performance with a more than 1% margin. It shows the secondary contribution of descriptors em-
bedding as an auxiliary modality along with its primary role in prompt generation. (6) Inter-tasks
loss Linter improves LEAPGen accuracy significantly i.e. 5.4% and 4.0% for FAA and CAA re-
spectively even though it increases FFM and CFM by 0.5 − 2%. It contributes to balancing the
knowledge of previously learned classes (stability) and currently learned classes (plasticity), and
emphasizes the risk of forgetting previously learned classes. (7) Soft task-id predictor substitution
to conventional task-id (Wang et al., 2022b) improves the accuracy with up to 1% and reduces FFM
and CFM by 1.5% and 0.5% respectively. It implies that our designed task-id predictor outperforms
the existing task-id predictor both in accuracy and forgetting.

10 20 30 40
Prompt Length

65.0
67.5
70.0
72.5
75.0
77.5
80.0
82.5
85.0

Ac
cu

ra
cy

(%
)

L2P DualPrompt CODA-P ConvPrompt LEAPGen

6 8 10 12
Layer Depth

72

74

76

78

80

82

84

2 3 4 5 6 7
Max Prompt Generators (per task)

77

78

79

80

81

82

83

84

85

Figure 4: FAA of the consolidated methods under dif-
ferent prompt lengths (left), layer depth (middle), and
maximum generators per task (right)

f) Sensitivity Analysis : Figure 4 shows the
sensitivity analysis of our proposed method in
various settings i.e. different prompt lengths
(left), layer depths (center), and number of
generators per task(right). LEAPGen main-
tains its stable FAA in any prompt length val-
ues i.e. within the range of 84.2−84.7%, while
the existing methods i.e. ConvPrompt, CODA-
P, DualPrompt, and L2P achieve significantly
lower FAA i.e. ≤ 78%. LEAPGen with the
shortest prompt (4) has a higher FAA than the existing methods with the longest prompt (40), de-
spite the 10 times smaller size. LEAPGen holds its stable performance at various depths of prompted
VIT layers. LEAPGen consistently manages to achieve 83.5 − 84.7% FAA, while other methods
achieve far lower FAA i.e. ≤ 78%. The best layer depth for LEAPGen and ConvPrompt is 7,
while the best depth for the others is 5. The number of generators turns out to be the most sensitive
parameter to LEAPGen, as it is saturated after 4 generators per tasks. Considering the number of
generators in LEAPGen is the same number as the selected descriptor embedding, it is quite logical
that LEAPGen becomes counterproductive after some threshold k.

Method Desc-
criptors #Params(M) Running Time (h) Storage

(MB)T.Desc Inf Tr+Inf Total
HiDe-Prompt - 0.15 - 0.019 5.40 5.40 334
ConvPrompt ✓ 1.28 1.07 0.033 1.04 2.11 346
LEAPGen-lite - 0.16 - 0.028 0.53 0.53 332
LEAPGen ✓ 6.35 1.07 0.025 0.72 1.79 567

Table 6: Cost comparison of the methods, T.Desc, Tr,
and Inf denote time for generating descriptors, training,
and inference respectively, detailed in Appendix D.3.

g) Parameters, Running Time, and Storage:
Table 6 compares the number of executed pa-
rameters, running time (ImageNet-R), and stor-
age of our methods and existing SOTAs. De-
spite having a higher number of parameters and
storage, LEAPGen consumes less running time
than existing SOTAs both training+inference
and total running time. LEAPGen-lite con-
sumes the least costs in total running time and
storage and requires relatively low parameters and inference time. LEAPGen and ConvPrompt re-
quire additional time to generate descriptors that increase their total simulation time. Despite having
the least parameters, Hide-Prompt requires the longest training and total times since it needs extra
operations to generate uninstructed class representations. Please see Appendix D for our detailed
extended analysis on task-key similarity, language embedding similarity, performance-and-cost
trade-off, class name as descriptor, and performance on various descriptors and types of generators.

6 CONCLUDING REMARKS
We identify the prompt-based approach dilemma and propose a novel prompt-based structure and
algorithm that incorporates 4 key concepts (1) language as input for prompt generation (2) task-wise
generators (3) limiting matching descriptors search space via soft task-id prediction (4) generated
prompt as auxiliary data. Our experimental analysis shows the superiority of our method to existing
SOTAs in CIFAR100, ImageNet-R, and CUB dataset with a significant margin i.e. up to 30%
final average accuracy, 24% cumulative average accuracy, 8% final forgetting measure, and 7%
cumulative forgetting measure. Our historical analysis confirms our method successfully maintains
stability-plasticity in every task. Our robustness analysis shows our method consistently achieves
higher performance in various prompt lengths, layer depths, and number of generators per task
compared to the SOTAs.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

M. Anwar Ma’sum acknowledges the support of Tokopedia-UI Centre of Excellence for GPU access
to run the experiments. Savitha Ramasamy acknowledges the programme DesCartes supported
by the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for
Research Excellence and Technological Enterprise (CREATE) programme.

REFERENCES

Rahaf Aljundi, F. Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and T. Tuytelaars. Memory
aware synapses: Learning what (not) to forget. In ECCV, 2018.

Eden Belouadah and Adrian Popescu. Il2m: Class incremental learning with dual memory. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 583–592, 2019.

Magdalena Biesialska, Katarzyna Biesialska, and Marta R Costa-Jussa. Continual lifelong learning
in natural language processing: A survey. arXiv preprint arXiv:2012.09823, 2020.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 45(5):5497–5512, 2022.

Xusheng Cao, Haori Lu, Linlan Huang, Xialei Liu, and Ming-Ming Cheng. Generative multi-modal
models are good class incremental learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 28706–28717, 2024.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7):3366–3385, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A
unified continual learning framework with general parameter-efficient tuning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 11483–11493, 2023.

Zhanxin Gao, Jun Cen, and Xiaobin Chang. Consistent prompting for rehearsal-free continual learn-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 28463–28473, 2024.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. ICCV,
2021.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 831–839, 2019.

Muhammad Gul Zain Ali Khan, Muhammad Ferjad Naeem, Luc Van Gool, Didier Stricker, Federico
Tombari, and Muhammad Zeshan Afzal. Introducing language guidance in prompt-based contin-
ual learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
11463–11473, 2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

11

Published as a conference paper at ICLR 2025

Muhammad Rifki Kurniawan, Xiang Song, Zhiheng Ma, Yuhang He, Yihong Gong, Yang Qi, and
Xing Wei. Evolving parameterized prompt memory for continual learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pp. 13301–13309, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learn-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 23638–23647, 2024.

Hao Liu, Yong Zhou, Bing Liu, Jiaqi Zhao, Rui Yao, and Zhiwen Shao. Incremental learning with
neural networks for computer vision: a survey. Artificial intelligence review, 56(5):4557–4589,
2023.

Bolin Ni, Hongbo Zhao, Chenghao Zhang, Ke Hu, Gaofeng Meng, Zhaoxiang Zhang, and Shiming
Xiang. Enhancing visual continual learning with language-guided supervision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24068–24077, 2024.

Keon-Hee Park, Kyungwoo Song, and Gyeong-Moon Park. Pre-trained vision and language trans-
formers are few-shot incremental learners. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 23881–23890, 2024.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
our progress in continual learning. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pp. 524–540. Springer, 2020.

Jingyang Qiao, Xin Tan, Chengwei Chen, Yanyun Qu, Yong Peng, Yuan Xie, et al. Prompt gra-
dient projection for continual learning. In The Twelfth International Conference on Learning
Representations, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Anurag Roy, Riddhiman Moulick, Vinay K Verma, Saptarshi Ghosh, and Abir Das. Convolutional
prompting meets language models for continual learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 23616–23626, 2024.

Khadija Shaheen, Muhammad Abdullah Hanif, Osman Hasan, and Muhammad Shafique. Continual
learning for real-world autonomous systems: Algorithms, challenges and frameworks. Journal of
Intelligent & Robotic Systems, 105(1):9, 2022.

Yu Shen, Xijun Wang, Peng Gao, and Ming Lin. Auxiliary modality learning with generalized
curriculum distillation. In International Conference on Machine Learning, pp. 31057–31076.
PMLR, 2023.

James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and Hongxia
Jin. Continual diffusion: Continual customization of text-to-image diffusion with c-lora. arXiv
preprint arXiv:2304.06027, 2023a.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim,
Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual de-
composed attention-based prompting for rehearsal-free continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11909–11919, 2023b.

12

Published as a conference paper at ICLR 2025

Zonggui Tian, Du Zhang, and Hong-Ning Dai. Continual learning on graphs: A survey. arXiv
preprint arXiv:2402.06330, 2024.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical de-
composition of prompt-based continual learning: Rethinking obscured sub-optimality. Advances
in Neural Information Processing Systems, 36, 2024a.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024b.

Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
An occam’s razor for domain incremental learning. Advances in Neural Information Processing
Systems, 35:5682–5695, 2022a.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European Conference on Computer Vision, pp. 631–648.
Springer, 2022b.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149,
2022c.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 374–382, 2019.

Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca: Slow learner
with classifier alignment for continual learning on a pre-trained model. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 19148–19158, 2023.

Junting Zhang, Jie Zhang, Shalini Ghosh, Dawei Li, Serafettin Tasci, Larry Heck, Heming Zhang,
and C-C Jay Kuo. Class-incremental learning via deep model consolidation. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1131–1140, 2020.

Hongguang Zhu, Yunchao Wei, Xiaodan Liang, Chunjie Zhang, and Yao Zhao. Ctp: Towards vision-
language continual pretraining via compatible momentum contrast and topology preservation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22257–22267,
2023.

13

Published as a conference paper at ICLR 2025

A THEORETICAL ANALYSIS

We state the following theorem to prove the effectiveness of our proposed method in a theoretical
analysis.

Theorem 1: Let fψ and hψ are the ViT encoder and classifier head respectively, ψ is frozen, θ =
{Gti,Kt, Ltc}t=Tt=1,c∈Ct is the set of trainable parameters and generators, θ′ = {Kt, Ltc}t=Tt=1,c∈Ct is
the set of trainable parameters only, andL is loss function. Assume thatG, f , h, andL are continues
functions in R, ifGti can produce identity output, then there is ϵ ≥ 0 that satisfies L(hϕ(fψ,θ′(x)))−
L(hϕ(fψ,θ(x))) = ϵ..

Theorem 2: Assuming a pre-trained ViT as the backbone, if the loss error L ≤ δ then exist Lintra ≤
δ and Linter ≤ δ.

Theorem 3: Let F and F ′ denote the task-pedictor functions parameterized by ({Kt}, {Ltc}) and
{Kt} respectively, and cos(,) denote cosine similarity function. If Kt and Ltx are trained well
enough so that cos(x,Kt) ≈ cos(x, Ltc) ≥ S, and cos(x,Kt′) ≈ cos(x, Ltc′) ≈ cos(x, Lt

′

c) ≤
2/3S for any x ∈ X tc then it guarantees P (x ∈ X t|T , θF) ≥ P (x ∈ X t|T , θF ′).

Theorem 1 theoretically shows there is always a chance to achieve a smaller loss with generators
than with descriptor embedding only. Theorem 2 shows that minimizing the loss error implies
minimizing both inter-task and intra-task losses. Theorem 3 shows that if the learnable parameters
are well-trained then it guarantees our task predictor as presented in equation 3 is more accurate
than the existing task-id predictor (based on {Kt} only). Please see in Appendix A for the detailed
analysis.

A.1 PROOF OF THEOREM 1

Recall that fψ is pre-trained ViT encoder with a frozen parameter ψ, hϕ is classifier head parameter-
ized by ϕ (learnable) , θ = {Gti,Kt, Ltc}t=Tt=1,c∈Ct is the set of learnable parameters and generators,
θ′ = {Kt, Ltc}t=Tt=1,c∈Ct is the set of learnable parameters only. Note that Gti produces a prompt
component PCi = Gti(Ei). θ

′ = {Kt, Ltc}t=Tt=1,c∈Ct is the same as using identity function I as
generator. L is the loss function that in this case is cross-entropy. First we adopt the definition of
continuity of f(x) at a i.e. for all η1 > 0 there is some δ1 such that:

|x− a| < δ1 ⇒ |f(x)− f(a)| < η1 (A11)

Now, following the assumption that f(.) is a continuous function in R, now we substitute f(.) with
fψ,θ(.), subtitute x with Gti(Ei) and a with I(Ei). Not that Gti is a trainable generator that can
produce identity function I as well as nearby vectors i.e. Gti(Ei). Also note that fψ,θ,(G=I)(.) =
fψ,θ′(.) Therefore, the equation A11 can be derived into:

|Gti(Ei)− I(Ei)| < δ1 ⇒ |fψ,θ(x)− fψ,θ′(x)| < η1 . (A12)

Then, incorporating the continuity of h(.) in R and the definition of conituinous function then we
have

|fψ,θ(x)− fψ,θ′(x)| < η1 ⇒ |hϕ(fψ,θ(x))− hθ(fψ,θ′(x))| < η2 . (A13)

Analogically, applying the continuity of L(.) in R, then we have

|hϕ(fψ,θ(x))− hθ(fψ,θ′(x))| < η2 ⇒ |L(hϕ(fψ,θ(x)))− L(hθ(fψ,θ′(x)))| < η3 (A14)
Combining the equations A12, A13, A14, then we have

|Gti(Ei)− I(Ei)| < δ1 ⇒ |L(hϕ(fψ,θ(x)))− L(hθ(fψ,θ′(x)))| < η3 . (A15)

In the equation above we can pick two constant 0 < η′3 < η3 and 0 < δ′1 < δ1 tat satisfies

|Gti(Ei)− I(Ei)| = δ′1 ⇒ |L(hϕ(fψ,θ(x)))− L(hθ(fψ,θ′(x)))| = η′3 . (A16)

14

Published as a conference paper at ICLR 2025

The term |L(hϕ(fψ,θ(x))) − L(hθ(fψ,θ′(x)))| = η3 can be satisfied by two conditions: (1)
L(hϕ(fψ,θ′(x))) − L(hθ(fψ,θ(x))) = η3 if L(hϕ(fψ,θ′(x))) > L(hθ(fψ,θ(x))). In this condition,
then we can state the following statement:

L(hϕ(fψ,θ′(x)))− L(hθ(fψ,θ(x))) > 0 (A17)

The other condition (2) L(hϕ(fψ,θ(x))) − L(hθ(fψ,θ′(x))) = η3 if L(hϕ(fψ,θ(x))) >
L(hθ(fψ,θ′(x))). However, we didn’t use this condition as the optimized Gti, instead, we select
Gti = I so that L(hϕ(fψ,θ(x))) = L(hθ(fψ,θ′(x))). The second condition shows the case where the
best possible value of Gti is the identity function itself. In the second condition, then we can state

L(hϕ(fψ,θ′(x)))− L(hθ(fψ,θ(x))) = 0 (A18)

Combining both inequations A17 and A18, then we prove Theorem 1 that states : Assume that G,
f , h, and L are continues functions in R, if Gti can produce identity output, then there is ϵ ≥ 0 that
satisfies L(hϕ(fψ,θ′(x))) − L(hϕ(fψ,θ(x))) = ϵ. Theorem 1 shows that a possibility to achieve
better or at least similar learning performance with learnable generator networks than without them.

A.2 PROOF OF THEOREM 2

Given a model with loss error L ≤ δ, then

−
t=T∑
t=1

∑
c∈Ct

log
exp(hϕ(fψ,θ(x))[c])∑t=T

t=1

∑
c′∈Ct exp(hϕ(fψ,θ(x))[c′])

≤ δ (A19)

Linter(x, (ψ, θ, ϕ)) = −
t=T∑
t=1

∑
c∈Ct

log
exp(hϕ(fψ,θ(x))[c])∑t=T

t=1

∑
c′∈Ct exp(hϕ(fψ,θ(x))[c′])

≤ δ (A20)

Or simply
Linter(x, (ψ, θ, ϕ)) ≤ δ (A21)

From equation 4 We get intra-task probability as

P (x ∈ X tc |x ∈ X t, T , θ) = P (x ∈ X tc |T , θ)/P (x ∈ X t|T , θ) (A22)

Since P (x ∈ X tc |x ∈ X t, T , θ), P (x ∈ X tc |T , θ), and P (x ∈ X t|T , θ) are in the range of (0, 1)
then we have:

P (x ∈ X tc |x ∈ X t, T , θ) ≥ P (x ∈ X tc |T , θ) (A23)

Applying log to both sides, then we have

log(P (x ∈ X tc |x ∈ X t, T , θ)) ≥ log(P (x ∈ X tc |T , θ)) (A24)

Multiplying both sides with −1, then we have

−log(P (x ∈ X tc |x ∈ X t, T , θ)) ≤ −log(P (x ∈ X tc |T , θ)) (A25)

Let inter-task probability and intra task probability represented as:

P (x ∈ X tc |T , θ) =
t=T∑
t=1

∑
c∈Ct

exp(hϕ(fψ,θ(x))[c])∑t=T
t=1

∑
c′∈Ct exp(hϕ(fψ,θ(x))[c′])

P (x ∈ X tc |x ∈ X t, T , θ) =
∑
c∈Ct

exp(hϕ(fψ,θ(x))[c])∑
c′∈Ct exp(hϕ(fψ,θ(x))[c′])

(A26)

Subtituting equations A26 into A25 and combining equation A21, then we have:

−log(
∑
c∈Ct

exp(hϕ(fψ,θ(x))[c])∑
c′∈Ct exp(hϕ(fψ,θ(x))[c′])

) ≤ −log(

t=T∑
t=1

∑
c∈Ct

exp(hϕ(fψ,θ(x))[c])∑t=T
t=1

∑
c′∈Ct exp(hϕ(fψ,θ(x))[c′])

) ≤ δ

(A27)

15

Published as a conference paper at ICLR 2025

−
∑
c∈Ct

log
exp(hϕ(fψ,θ(x))[c])∑

c′∈Ct exp(hϕ(fψ,θ(x))[c′])
≤
t=T∑
t=1

∑
c∈Ct

log
exp(hϕ(fψ,θ(x))[c])∑t=T

t=1

∑
c′∈Ct exp(hϕ(fψ,θ(x))[c′])

≤ δ

(A28)
Thefore, we have

Lintra(x, (ψ, θ, ϕ)) = −
∑
c∈Ct

log
exp(hϕ(fψ,θ(x))[c])∑

c′∈Ct exp(hϕ(fψ,θ(x))[c′])
≤ δ (A29)

or in the simplified form
Lintra(x, (ψ, θ, ϕ)) ≤ δ (A30)

The explanation above proves Theorem 2 that assuming a pre-trained ViT as the backbone, if the
loss error L ≤ δ then exist Lintra ≤ δ and Linter ≤ δ.

A.3 PROOF OF THEOREM 3

Let F and F ′ denote the task-predictor functions parameterized by ({Kt}, {Ltc}) and {Kt} respec-
tively therefore, F is presented in equation 3 and simplified into equation A31 while F ′ is presented
in equation A32.

F (x) = t = argmax
t∈[1..T],c∈Ct

{cos(x,Kt)cos(x, Ltc)} (A31)

F ′(x) = t = argmax
t∈[1..T],

{(x.Kt)/(max(||x||2.||Kt||2, ϵ)} = argmax
t∈[1..T],

{cos(x,Kt)} (A32)

Let cos(.) denote cosine similarity function, L denotes similarity loss i.e. difference between the
right and wrong representation. Therefore, for any x ∈ X tc then we have

L(F (x)) = cos(x,Kt)cos(x, Ltc)−
1

(T − 1)|Ct′ |
∑
t′ ̸=t

∑
c∈Ct′

cos(x,Kt′)cos(x, Lt
′

c)

− 1

(|Ct| − 1)

∑
c′ ̸=c∈Ct

cos(x,Kt)cos(x, Ltc′)

(A33)

L(F ′(x)) = cos(x,Kt)− 1

T − 1

∑
t′ ̸=t

cos(x,Kt′) (A34)

Thus minimizing L(F (x)) and LF ′(x) imply maximizing F and F ′ respectively. Suppose that
Kt and Ltx are trained well enough so that for any x ∈ X tc , it satisfy cos(x,Kt) ≈ S1, and
cos(x,Kt′) ≈ Sa = S1 − ϵ1, cos(x, Ltc) ≈ S2 and cos(x, Ltc′ ̸=c) ≈ cos(x, Lt

′

c) ≈ Sb = S2 − ϵ2,
where S1, S2, Sa, Sb, ϵ1, and ϵ2 have positive values. Then equations A33 can be derived into

L(F (x)) = S1S2 −
1

(T − 1)|Ct′ |
∑
t′ ̸=t

∑
c∈Ct′

SaSb −
1

(|Ct| − 1)

∑
c′ ̸=c∈Ct

S1Sb (A35)

L(F (x)) = S1S2 − SaSb − S1Sb (A36)
and A34 can be derived into

L(F ′(x)) = S1 −
1

T − 1

∑
t′ ̸=t

Sa (A37)

L(F ′(x)) = S1 − Sa (A38)

Now, assuming that S1 ≈ S2 ≈ S and ϵ1 ≈ ϵ2 ≈ ϵ, then we have

L(F (x)) = S2 − (S − ϵ)(S − ϵ)− S(S − ϵ) (A39)

L(F (x)) = S2 − (S2 − 2Sϵ+ ϵ2)− (S2 − Sϵ) (A40)

L(F (x)) = S2 − S2 + 2Sϵ− ϵ2 − S2 + Sϵ (A41)

16

Published as a conference paper at ICLR 2025

L(F (x)) = 3Sϵ− S2 − ϵ2 (A42)
and we have,

L(F ′(x)) = S1 − Sa = S − (S − ϵ) = ϵ (A43)

Suppose that we want to find a condition where L(F (x))L ≤ (F ′(x)), then we have

3Sϵ− (S2 + ϵ2) ≤ ϵ (A44)

3Sϵ− S2 − ϵ2 ≤ ϵ (A45)
Note that ϵ < S. Then we can choose ϵ = 1/3S, so the equation above becomes

3S(1/3)S − S2 − ϵ2 ≤ ϵ (A46)

S2 − S2 − ϵ2 ≤ ϵ (A47)
−ϵ2 ≤ ϵ (A48)

that always true for any ϵ > 0. Note that ϵ = (1/3)S means Sa = S − ϵ = S − (1/3)S = (2/3)S.
Choosing ϵ < (1/3)S also satisfies the inequation above. The derivation above proves Theorem
3:i.e. let F and F ′ denote the task-pedictor functions parameterized by ({Kt}, {Ltc}) and {Kt}
respectively, and cos(,) denote cosine similarity function. If Kt and Ltx are trained well enough
so that cos(x,Kt) ≈ cos(x, Ltc) ≥ S, and cos(x,Kt′) ≈ cos(x, Ltc′) ≈ cos(x, Lt

′

c) ≤ 2/3S for
any x ∈ X tc then it guarantees L(F (x)) ≤ L(F ′(x)) that implies P (x ∈ X t|T , θF) ≥ P (x ∈
X t|T , θF ′).

B PSEUDO-CODE OF LEAPGEN ALGORITHM

In this section we present the procedures of LEAPGen training and inference that are shown in
algorithm 1 and 2 respectively.

Algorithm 1 LEAPGen Training
1: Input: A sequence of tasks T 1, T 2,...,T T , a frozen L-layered (with H MSA heads/layer) pre-

trained ViT fψ(.) , training epochs E, and batch size B.
2: for t = 1 : T do
3: Initiate trainable parameters for task t, θt = {{Gti}ki=1,K

t, {Ltc}
|Ct|
c=1}

4: B ← Split T t into B sized batches
5: for e = 1 : E do
6: for b = 1 : B do
7: Find top-k Ljc where j ∈ [1..t], c ∈ [1..|Cj |]
8: Generate prompt P = {(PKl,h, PVl,h)}l∈[1..L],h∈[1..H] as in eq. 2
9: Compute logits by forwarding the input i.e. hϕ(fψ,θ(x))

10: Compute Lintra as in eq. 6
11: Compute Linter as in eq. 7
12: Compute Lt as in eq. 8
13: Compute Lc as in eq. 9
14: Compute Ltotal as in eq. 10
15: Update parameters θt = {{Gti}ki=1,K

t, {Ltc}
|Ct|
c=1} based on Ltotal

16: end for
17: end for
18: end for
19: Output: Optimum parameters θ = {thetat}Tt=1 = {{Gti}ki=1,K

t, {Ltc}
|Ct|
c=1}Tt=1

C COMPLEXITY ANALYSIS

Following the pseudo-code in Algorithm 1, LEAPGen has several atomic operations e.g. selecting
top-k Lic (line 7), prompt generation (line 8), computing logits (line 9), computing loss (line 10-
14) and update parameter (line 15). Let N t = |T |t, and accumulating the operations on all batches,

17

Published as a conference paper at ICLR 2025

Algorithm 2 LEAPGen Inference
1: Input: An input x, a frozen L-layered (with H MSA heads/layer) pre-trained ViT fψ(.) , and

optimized parameters θ = {thetat}Tt=1 = {{Gti}ki=1,K
t, {Ltc}

|Ct|
c=1}Tt=1

2: Predict task-id t using soft task-id prediction as in eq. 3
3: Find top-k Ljc where j ∈ [1..t], c ∈ [1..|Cj |]
4: Generate prompt P = {(PKl,h, PVl,h)}l∈[1..L],h∈[1..H] as in eq. 2
5: Compute logits by forwarding the input i.e. logits = hϕ(fψ,θ(x))
6: Compute Pedicted label ŷ = argmax(logits)
7: Output: Predicted label ŷ

then selecting top-kLic costsO(N t.T.|Ct|), the prompt generation costsO(N t.k), computing losses
costs O(N t), and parameters update cost costs O(N t), then the the complexity of LEAPGen will
be:

O(LEAPGen) = T.E.(O(N t.T.|Ct|) +O(N t.k) +O(N t) +O(N t)) (A49)

O(LEAPGen) = T.E.(O(N t.T.|Ct|) +O(N t.k) +O(N t)) (A50)

O(LEAPGen) = E.(O(T.N t.T.|Ct|) +O(T.N t.k) +O(T.N t)) (A51)

Note that T.N t = N that represents the number of all samples from the first task until the last task,
and T.|Ct| = |C| that represents the number of all learned classes where |C| << N , and k is small
constant ¡ 10. Then LEAPGen complexity becomes

O(LEAPGen) = E.(O(N |C|) +O(Nk) +O(N)) (A52)

O(LEAPGen) = E.(O(N |C|)) (A53)

O(LEAPGen) = O(EN |C|) (A54)

Assuming that learning epoch E and number of classes |C| are constant, then the equation above is
derived into:

O(LEAPGen) = O(EN |C|) = O(N) (A55)

D EXTENDED ANALYSIS

D.1 HIGH SIMILARITY OF TASK KEY VECTORS

We investigate the further detail of conventional task-id prediction computed by cosine similarity
between input x and task-key K as implemented by DualPrompt. After completing the 10 task
learning on the ImageNet-R dataset, we evaluate the similarity between task keys. Table A7 shows
the cosine similarity between Kt and Kt′ for all t, t′ ∈ [1..T]. The tables show that a pair of
different task keys has a high similarity. For example, except for task-3, task-1 has 0.8 to 0.96
cosine similarity to other task keys. During the inference step, this high similarity between different
task keys causes a false task prediction that leads to the wrong selected prompt, unexpected feature
value, and finally, misclassification.

This empirical analysis is one of our motivations to develop a better task-id prediction i.e. by utiliz-
ing both task-wise key Kt and class-wise key Ltc. Combining the similarity score of input x to both
Kt and key Ltc produces a more discriminative task prediction than using Kt only. Another way to
solve this issue is by creating an uninstructed representation where a class may have several proto-
types as used in HiDe-Prompt. However, this mechanism takes a longer time since the uninstructed
representation optimization needs prototype augmentation and many iteration updates.

18

Published as a conference paper at ICLR 2025

Task-1 Task-2 Task-3 Task-4 Task-5 Task-6 Task-7 Task-8 Task-9 Task-10
Task-1 1.000 0.961 0.728 0.857 0.932 0.901 0.866 0.827 0.809 0.877
Task-2 0.961 1.000 0.749 0.866 0.932 0.909 0.879 0.844 0.825 0.899
Task-3 0.728 0.749 1.000 0.873 0.738 0.785 0.725 0.672 0.660 0.687
Task-4 0.857 0.866 0.873 1.000 0.872 0.893 0.828 0.771 0.755 0.806
Task-5 0.932 0.932 0.738 0.872 1.000 0.921 0.893 0.850 0.843 0.908
Task-6 0.901 0.909 0.785 0.893 0.921 1.000 0.933 0.893 0.873 0.893
Task-7 0.866 0.879 0.725 0.828 0.893 0.933 1.000 0.937 0.920 0.907
Task-8 0.827 0.844 0.672 0.771 0.850 0.893 0.937 1.000 0.905 0.857
Task-9 0.809 0.825 0.660 0.755 0.843 0.873 0.920 0.905 1.000 0.872
Task-10 0.877 0.899 0.687 0.806 0.908 0.893 0.907 0.857 0.872 1.000

Table A7: Cosine similarity of task-key vectors after completing 10-task training on ImageNet-R by
DualPrompt method.

D.2 HIGH SIMILARITY OF LANGUAGE EMBEDDING

We continue our deeper investigation on the encoded language embedding as implemented in previ-
ous SOTAs i.e. LGCL. LGCL generates the language embedding by forming the string ”The photo
of class name”. then patches it into the CLIP encoder. Surprisingly, prototypes from some classes
have high similarity to the other classes’ prototypes. For example, in class ’Great White Shark’ has
0.9 similarities to the prototypes of class ’Tree Frog’ and ’Iguana’, despite those classes being to-
tally different and not the sub-classes of the same superclass. On the contrary, the class ’Great White
Shark’ has lower similarity to the class ’Goldfish’ which is despite both of them are the species from
the same super-category i.e. fish.

In that case, we can’t utilize the language embedding as a reference or anchor in the training process
as it may pull the adjusted (ViT) prototype closer to its value, while its value is highly similar
to other classes’ prototypes. Thus, in dealing with this challenge, we choose to use the language
embedding as an input for prompt generation. In a such way, the trainable generators can produce a
more discriminative prompt than the undiscriminating language embedding.

’Gold-
fish’

’Great
White
Shark’

’Ham-
mer-
head’

’Sting-
ray’ ’Hen’ ’Os-

trich’
’Gold-
finch’ ’Junco’ ’Bald

Eagle’
’Vul-
ture’ ’Newt’ ’Axo-

lotl’
’Tree
Frog’

’Igu-
ana’

’Afri-
can

Chame-
leon’

’Co-
bra’

’Scor-
pion’

’Taran-
tula’

’Centi-
pede’

’Pea-
cock’

’Goldfish’ 1.000 0.711 0.732 0.724 0.659 0.766 0.746 0.750 0.697 0.424 0.589 0.734 0.714 0.759 0.724 0.682 0.595 0.734 0.565 0.736
’Great
White
Shark’

0.711 1.000 0.916 0.608 0.760 0.719 0.848 0.887 0.744 0.538 0.719 0.901 0.904 0.896 0.654 0.668 0.751 0.824 0.577 0.882

’Hammer-
head’ 0.732 0.916 1.000 0.631 0.654 0.714 0.811 0.878 0.657 0.445 0.573 0.850 0.871 0.846 0.584 0.608 0.648 0.806 0.575 0.815

’Stingray’ 0.724 0.608 0.631 1.000 0.616 0.676 0.652 0.693 0.680 0.425 0.579 0.669 0.655 0.651 0.644 0.635 0.606 0.674 0.617 0.680
’Hen’ 0.659 0.760 0.654 0.616 1.000 0.693 0.798 0.807 0.858 0.780 0.927 0.794 0.805 0.875 0.613 0.682 0.858 0.713 0.589 0.886

’Ostrich’ 0.766 0.719 0.714 0.676 0.693 1.000 0.626 0.736 0.742 0.425 0.614 0.752 0.665 0.734 0.646 0.689 0.671 0.742 0.621 0.696
’Goldfinch’ 0.746 0.848 0.811 0.652 0.798 0.626 1.000 0.813 0.778 0.685 0.772 0.778 0.916 0.917 0.677 0.598 0.767 0.718 0.564 0.919

’Junco’ 0.750 0.887 0.878 0.693 0.807 0.736 0.813 1.000 0.774 0.542 0.719 0.929 0.873 0.913 0.590 0.716 0.726 0.859 0.562 0.893
’Bald-
Eagle’ 0.697 0.744 0.657 0.680 0.858 0.742 0.778 0.774 1.000 0.669 0.832 0.765 0.794 0.821 0.639 0.690 0.805 0.742 0.665 0.856

’Vulture’ 0.424 0.538 0.445 0.425 0.780 0.425 0.685 0.542 0.669 1.000 0.815 0.462 0.686 0.690 0.360 0.389 0.723 0.502 0.371 0.718
’Newt’ 0.589 0.719 0.573 0.579 0.927 0.614 0.772 0.719 0.832 0.815 1.000 0.721 0.762 0.830 0.609 0.623 0.835 0.655 0.557 0.844

’Axolotl’ 0.734 0.901 0.850 0.669 0.794 0.752 0.778 0.929 0.765 0.462 0.721 1.000 0.822 0.879 0.665 0.745 0.713 0.866 0.597 0.864
’Tree
Frog’ 0.714 0.904 0.871 0.655 0.805 0.665 0.916 0.873 0.794 0.686 0.762 0.822 1.000 0.922 0.584 0.623 0.786 0.753 0.554 0.926

’Iguana’ 0.759 0.896 0.846 0.651 0.875 0.734 0.917 0.913 0.821 0.690 0.830 0.879 0.922 1.000 0.657 0.671 0.804 0.815 0.572 0.941
’African

Chameleon’ 0.724 0.654 0.584 0.644 0.613 0.646 0.677 0.590 0.639 0.360 0.609 0.665 0.584 0.657 1.000 0.629 0.594 0.585 0.648 0.645

’Cobra’ 0.682 0.668 0.608 0.635 0.682 0.689 0.598 0.716 0.690 0.389 0.623 0.745 0.623 0.671 0.629 1.001 0.651 0.709 0.674 0.692
’Scorpion’ 0.595 0.751 0.648 0.606 0.858 0.671 0.767 0.726 0.805 0.723 0.835 0.713 0.786 0.804 0.594 0.651 1.000 0.664 0.665 0.826
’Tarantula’ 0.734 0.824 0.806 0.674 0.713 0.742 0.718 0.859 0.742 0.502 0.655 0.866 0.753 0.815 0.585 0.709 0.664 1.000 0.581 0.794
’Centipede’ 0.565 0.577 0.575 0.617 0.589 0.621 0.564 0.562 0.665 0.371 0.557 0.597 0.554 0.572 0.648 0.674 0.665 0.581 1.000 0.619
’Peacock’ 0.736 0.882 0.815 0.680 0.886 0.696 0.919 0.893 0.856 0.718 0.844 0.864 0.926 0.941 0.645 0.692 0.826 0.794 0.619 1.000

Table A8: Encoded Language Embedding similarity of the first 20 classes of ImageNet-R, encoded
by C:IP encoder as implemented in LGCL.

D.3 TRADE-OFFS BETWEEN COST AND PERFORMANCE

We extend our analysis on the trade-offs between Cost and Performance. Table A9 shows the cost
performance on LEAPGen in comparison to ConvPrompt as the SOTA of the growing component
approach and HiDe-Prompt as the SOTA of the task-wise prompt approach. We also compare our

19

Published as a conference paper at ICLR 2025

proposed method to the bigger version of ConvPrompt and HiDe-Prompt i.e. ConvPrompt-Large
and HiDe-Prompt large that utilize a bigger number of executed parameters than our method. Please
note that the number of executed parameters in the table means the total executed parameters in
forward operation, excluding ViT backbone and classifiers head.
(a) Performance vs Parameter and Running Time: . Our method outperforms the default version
of ConvPrompt and HiDe-Prompt with up to 9% average accuracy margin and up to 4% average for-
getting measure with the drawback of the higher number of executed parameters. However, with the
higher number of executed parameters, our method requires a significantly lower running time than
both of the method i.e. 1.5 h vs 2.11h and 5.4h for ConvPrompt and Hide-Promt respectively. Even
though utilizing far smaller parameters, Hide-Prompt requires extremely high running time since
it executes too many operations i.e. augmenting the prototypes and then forming an uninstructed
representation that requires high epochs to converge. Thus, it spends far higher running time in
total.

The large version of ConvPrompt and HiDe-Prompt executes a higher number of parameters than
LEAPGen. In line to the higher parameters, they require far higher running time than their original
version. Unfortunately, with the extremely high number of parameters, they didn’t achieve a higher
performance, rather lower than the performance of their standard version. Compared to the large
version of ConvPrompt and HiDe-Prompt, LEAPGen has a better performance and lower cost. This
evidence confirm our sensitivity analysis that a model has the best setting that achieves optimal per-
formance. The higher number of parameters or training epochs doesn’t imply a higher performance.
Thus we evaluate the competitor methods following their advised setting described on the respective
papers or official code.

LEAPGen-lite outperforms ConvPrompt and Hide-Prompt with a significant margin i.e. 6-8% even
though with utilizing a smallest number of parameters on average and without class descriptors as
in ConvPrompt and LEAPGen. However, it achieves smaller final (task-10) average accuracy than
LEAPGen with more than 1.5% margin.

(b). Total Running Time: Table A10 shows the simulation time for LEAPGen, ConvPrompt as
SOTA in 3 benchmark datasets i.e. CIFAR100, ImageNet-R, and CUB. The table shows a similar
trend to the analysis on the ImageNet-R dataset. Descriptor generation consumes a fair running time
i.e. 0.53-1.09 h since it is conducted via online query through the internet connection. In such a
manner, we don’t need extra storage to save the LLM model. Please note that descriptor generation
is conducted only once before the training phase. Thus the LLm is not utilized during the training
and testing phases of our method. Despite requiring additional time to generate classes’ descriptors,
our method still has significantly lower total grinning time than HiDe-Prompt i.e. 3 times, 3 times,
and 2.8 times smaller in CIFAR100, ImageNet-R and, and CUB datasets respectively. Compared to
our method, ConvPrompt requires a higher training time in those 3 datasets with a significant gap
i.e. up to 7.7 hours. Please note that ConvPrompt utilizes evolving generators and the number of
its generators grows with the increasing of tasks. Thus in the later tasks, its forward operation takes
more time than in the earlier tasks. Having no additional time for descriptor generation LEAPGen-
lite spends the smallest total running time and training+inference time.

(c). Inference time only: Table A10 shows that our methods i.e. LEAPGen and LEAPGen-lite hae
a moderate inference time i.e. lower than ConvPrompt and higher than HiDe-Prompt. This empir-
ical evidence is in line with our previous analysis where growing components/generators approach
executes more generators in its forward function with the increasing number of tasks. Thus, on aver-
age, it takes more inference time than our task-wise generator approach. Hide-Prompt requires less
inference time since it utilizes task-wise prompting where the prompts are not generated, but rather
directly prepended into the ViT MSA heads. Thus it takes less operation to execute which implies its
lower inference time. In spite of its lower inference time, HiDe-Prompt requires far higher training
time which makes it a higher total running time than our method. In summary, this evidence proves
the running efficiency of our proposed method both in terms of inference time or the total running
time in a simulation, in spite that our method executes a higher number of parameters.

(d). Performance vs Storage: Table A11 shows the performance vs storage of the consolidated
methods in the ImageNet-R dataset with 10 task settings. Model saving is conducted by executing
the method ”torch.save(model.state dict().filename)”. Please note that this storage doesn’t include
the LLM model, since it is used via online (remote) query, not saved in our storage. The table
shows that LEAPGen requires a bigger storage size than ConvPrompt, as LEAPGen has more at-

20

Published as a conference paper at ICLR 2025

tributes and parameters. Please note that the model saving is represented in a dictionary object,
thus, more attributes require more dictionary keys and items that imply more storage consumption.
Different from ConvPrompt and HiDe-Prompt, LEAPGen has a more complex generator structure
and task-id predictors that utilize task-wise key and class-wise keys. In addition, LEAPGen also
saves the descriptors embedding for the testing phase, different from ConvPrompt which doesn’t
save the embeddings as it uses the descriptors embedding to calculate the number of generators dur-
ing the training phase only. Therefore it requires a bigger storage to save its model. The storage
consumption can be minimized by using a lightweight generator. In comparison to large versions
of ConvPrompt and HiDe-Prompt that have a higher number of parameters, our method achieves a
lower storage consumption while achieving a higher performance i.e. FAA and CAA.

Method Metrics Performance After Finishing Task AVG Running
Time (h)1 2 3 4 5 6 7 8 9 10

HiDe-Prompt Avg.Accuracy 85.22 82.93 82.35 79.74 78.85 77.81 77.37 76.38 76.31 75.75 79.27 -
HiDe-Prompt-Large Avg.Accuracy 85.76 83.12 82.03 79.49 78.55 76.55 76.00 74.82 74.98 74.30 78.56 -
ConvPrompt Avg.Accuracy 89.53 86.24 84.40 81.88 80.79 80.04 78.80 78.15 77.74 77.08 81.47 -
ConvPrompt-Large Avg.Accuracy 90.12 86.22 83.96 81.45 80.52 79.73 76.40 74.19 74.56 - 80.79 -
LEAPGen-lite Avg.Accuracy 89.73 88.66 86.94 86.43 86.04 83.03 82.75 82.52 82.94 82.38 85.14 -
LEAPGen Avg.Accuracy 89.83 87.63 86.46 85.97 84.71 84.79 84.01 83.77 84.12 84.09 85.54 -
HiDe-Prompt Avg.Forgetting 3.29 1.50 2.41 2.19 2.53 2.20 2.25 2.30 2.29 2.33 2.33 -
HiDe-Prompt-Large Avg.Forgetting - 3.05 1.89 2.14 2.15 3.25 2.91 2.93 2.66 2.70 2.63 -
ConvPrompt Avg.Forgetting - 2.57 1.57 2.60 2.93 3.15 3.53 3.44 4.07 4.17 3.11 -
ConvPrompt-Large Avg.Forgetting - 4.65 3.39 4.62 4.69 5.56 8.91 10.55 10.50 - 6.61 -
LEAPGen-lite Avg.Forgetting 1.11 0.75 0.58 0.56 4.13 3.37 2.92 2.70 3.01 2.13 2.13 -
LEAPGen Avg.Forgetting - 3.97 1.96 1.38 2.63 2.24 1.99 1.77 1.60 1.46 2.11 -
HiDe-Prompt #Parameters (M) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 5.40
HiDe-Prompt-Large #Parameters (M) 12.29 12.29 12.29 12.29 12.29 12.29 12.29 12.29 12.29 12.29 12.29 15.15
ConvPrompt #Parameters (M) 0.55 0.60 0.70 0.80 0.85 0.89 0.99 1.09 1.19 1.28 0.89 2.11
ConvPrompt-Large #Parameters (M) 5.18 5.82 6.65 7.28 7.91 8.60 9.81 10.94 12.01 13.23 8.74 15.28
LEAPGen-lite #Parameters (M) 0.02 0.03 0.05 0.07 0.08 0.10 0.11 0.13 0.15 0.16 0.09 0.53
LEAPGen #Parameters (M) 6.21 6.23 6.24 6.26 6.27 6.29 6.31 6.32 6.34 6.35 6.28 1.79

Table A9: Trade-offs between cost and performance on ImageNet-R dataset with 10 task setting.
ConvPrompt-Large is run for 9 task only since it crashed on the final task.

Method
Running time (h)

CIFAR100 ImageNet-R CUB
Descriptor
Generation

Inference
Only

Training +
Inference Total Descriptor

Generation
Inference

Only
Training +
Inference Total Descriptor

Generation
Inference

Only
Training +
Inference Total

HiDe-Prompt - 0.037 4.63 4.63 - 0.019 5.40 5.40 - 0.017 3.94 3.94
ConvPrompt 0.53 0.023 2.01 2.54 1.07 0.033 1.04 2.11 1.09 0.035 8.08 9.17
LEAPGen-lite - 0.016 1.2 1.2 - 0.028 0.53 0.53 - 0.028 0.38 0.38
LEAPGen 0.53 0.017 0.98 1.51 1.07 0.025 0.72 1.79 1.09 0.025 0.32 1.41

Table A10: Total running time including descriptor generation, training, and testing.

Method Performance Storage (MB)FAA CFA
HiDe-Prompt 75.75 79.27 334
HiDe-Prompt-Large 74.30 78.56 797
ConvPrompt 77.08 81.47 346
ConvPrompt-Large 74.56* 80.79 632
LAEPGen-lite 82.38 85.14 332
LEAPGen 84.09 85.54 567

Table A11: Performance vs Storage Trade-offs in ImageNet-R dataset, * denotes measurement at
task-9 since the method crashed after task-9

D.4 CLASS NAME AS LANGUAGE DESCRIPTOR

We extend our investigation of our proposed method in case there is no descriptor generated by GPT
or other LLMs. We evaluate LEAPGen performance in a such condition in those 3 datasets as
presented in table A12.LEAPGen-CN indicates the variant of LEAPGen that utilizes class names
as descriptors embedding. LEAPGen-CN only utilizes a text encoder similar to the majority of
language-guided methods such as LGCL. In addition, it doesn’t utilize LLM such as GPT as in

21

Published as a conference paper at ICLR 2025

ConvPrompt and GMM. Table A12 shows that substituting descriptors with class names doesn’t
significantly decrease LEAPGen performance i.e. less than 1.1% performance. Despite utilizing
class names as descriptors LEAPGen-CN to outperforms existing methods with a significant margin
i.e. 5-14% FAA and 3-9% CAA in CIFAR100, 6-20% FAA and 3-17% CAA in ImageNet-R, and
1-21% FAA and 2.8-16% CAA in CUB dataset. This evidence confirms the promising impact of
our ideas i.e. task-wise prompt generators and soft task-id prediction. Second, It confirms that
utilizing language embedding as input for prompt generator remains effective, rather than utilizing
the embedding directly as a guiding prototype or loss anchor.

Method CIFAR100 10-Task @10 classes/task ImageNet-R 10-Task @20 classes/task CUB 10-Task @20 classes/task
FAA CAA FFM CFM F.Gap C.Gap FAA CAA FFM CFM F.Gap C.Gap FAA CAA FFM CFM F.Gap C.Gap

L2P 83.84 88.67 6.55 5.16 14.46 9.50 62.50 67.05 5.01 4.41 20.73 17.46 66.95 74.03 5.18 7.39 21.41 16.46
DualPrompt 85.36 89.77 5.41 4.33 12.94 8.40 68.59 72.18 4.61 3.70 14.64 12.33 73.95 80.29 7.87 8.60 14.41 10.20
CODA-P 86.44 91.27 6.38 5.09 11.86 6.90 73.77 79.38 7.94 6.72 9.46 5.13 72.99 82.64 11.71 9.91 15.37 7.85
LGCL 85.68 90.16 5.46 4.25 12.62 8.01 68.65 72.57 4.75 3.38 14.58 11.94 79.93 83.07 5.45 5.58 8.43 7.42
HiDe-Prompt 92.89 95.01 1.98 1.56 5.41 3.16 75.75 79.27 2.29 2.33 7.48 5.24 87.21 87.66 1.90 2.66 1.15 2.83
PGP 86.36 90.83 5.49 4.28 11.94 7.34 68.62 72.19 4.53 3.63 14.61 12.32 78.35 82.21 5.76 6.10 10.01 8.28
EvoPrompt 88.17 92.18 5.39 3.97 10.13 5.99 76.00 80.97 4.22 3.59 7.23 3.54 76.23 81.00 3.96 3.57 12.13 9.49
CPrompt 86.92 91.73 5.43 4.01 11.38 6.44 76.32 81.50 6.10 5.60 6.91 3.01 77.14 85.67 11.65 8.69 11.22 4.82
ConvPrompt 88.77 92.71 4.12 2.67 9.53 5.46 77.08 81.47 4.17 3.11 6.15 3.04 80.12 84.70 6.04 4.61 8.24 5.79
LEAPGen 98.38 98.15 0.10 0.05 -0.08 0.02 84.09 85.54 1.46 2.11 -0.86 -1.03 88.45 90.90 1.32 1.29 -0.09 -0.41
LEAPGen-CN 98.30 98.17 0.14 0.14 0.00 0.00 83.23 84.51 1.55 2.79 0.00 0.00 88.36 90.49 1.31 1.23 0.00 0.00

Table A12: Performance of LEAPGen with class name as descriptors compared to existing method
and original LEAPGen. F.Gap and C.Gap indicate gap of the respective method to LEAPGen-CN
in terms of final average accuracy (FAA) and cumulative average accuracy (CAA).

D.5 PERFORMANCE ON VARIOUS DESCRIPTORS

We explore 3 types of descriptors i.e. short, long, and narrative generated by popular LLms i.e.
GPT, Gemini, and Llama. The examples of descriptors for classes ”Strawberry” and ”Lemon” for
respective types and LLMs are shown in Table A13. The table shows that GPT generates a longer
phrase than Gemini and Llama for the same descriptor type. We evaluated the performance of
LEAPGen and compared it to ConvPrompt which is the second-best achiever in ImageNet-R dataset
and also uses descriptors. Note that ConvPrompt utilizes descriptors to define the number of new
generators, while LEAPGen utilizes them as input to generate prompt components.

Table A14 shows the summarized result of LEAPGen and ConvPrompt performance on various
descriptors. Overall, In any descriptors type generated by any LLMs, LEAPGen achieves at least
83.6% FAA and 85.0% CAA, where ConvPrompt achieve at maximum 77.6% FAA and 81.5%
CAA. This implies than regardless any type of descriptors generated by any LLM, LEAPGen consis-
tently outperforms ConvPrompt with at least 6% and 3.5% margin for FAA and CAA respectively.
Looking at the average forgetting metrics, LEAPGEn also consistently outperforms ConvPrompt
with least 3% and 1% margin for FFM and CFM respectively. Figure A5 shows the historical per-
formance of LEAPGEn and ConvPrompt in various types of detectors and LLMs. The figure shows
that despite LEAPGen achieving slightly lower average accuracy in the first task, It consistently
achieves higher accuracy in the second until the last task. In addition, the gap is getting higher with
the increasing number of learned tasks. The figure also shows that despite LEAPGen achieving a
slightly higher forgetting in the second task, It manages to decrease the forgetting measure in the
following task, until the last task. On the other hand, ConvPrompt suffers from the increasing av-
erage forgetting so its average forgetting becomes far higher than LEAPGen’s average forgetting in
the later tasks.

Table A14 shows that the best result is achieved by LEAPGen with short descriptors generated
by LLama. However, LEAPGen with short descriptors generated by Gemini achieves the least
performance. Surprisingly, short descriptors generated by Llama are the shortest descriptors among
all the evaluated types. This result gives us insight that the length of descriptors is not the main factor
in achieving maximum performance, rather the discriminative text has more impact. According to
table A14, we also get insight that GPT produces more stable descriptors than the other LLSm, as the
performance difference between types of descriptors is insignificant (< 0.15%). Thus, regardless
type of preferred descriptors, GPT is preferrable than the other LLMs.

22

Published as a conference paper at ICLR 2025

LLM Type of Descriptors
Short Long Narrative

GPT-4

”Strawberry”:
[
”red, heart-shaped fruit”,
”small, green leaves”,
”white seeds on the surface”,
”yellow or white center”,
”pointed tip”,
”juicy texture”
]
”Lemon”:
[
”yellow or greenish-yellow
in color”,
”oval or round shape”,
smooth, glossy skin”,
”dimpled surface”,
”acidic smell”,
”sour taste”,
”thick, white pith”,
”seeds inside”
]

”Strawberry”:
[
”Red, heart-shaped fruit”,
”Small, green leafy crown”,
”Juicy and sweet”,
”Tiny seeds on surface”,
”Bright red color”,
”Soft, tender texture”,
”Used in desserts and salads”,
”Often enjoyed fresh or
in preserves”,
”Distinctive aroma”,
”Popular in summer”
]
”Lemon”:
[
”Bright yellow, oval fruit”,
”Tangy, acidic flavor”,
”Thick, dimpled skin”,
”Juicy, citrusy interior”,
”Used for flavoring and zest”,
”Common in cooking
and beverages”,
”Refreshing and tart”,
”Variety of sizes”,
”Often used in garnishes”,
”Distinctive, vibrant color”
]

”Strawberry”:
[
”A strawberry rests temptingly,
its red surface dotted with
tiny seeds hinting at juiciness.”,
”The green leaves crown the top,
contrasting beautifully with
its vibrant hue.”,
”With a sweet spirit, it embodies
the essence of summer.”
]
”Lemon”:
[
”A lemon sits cheerfully, its bright
yellow skin and dimpled texture
promising a burst of citrus flavor.”,
”The zesty aroma and vibrant color
invite culinary exploration.”,
”With a tangy spirit, it embodies
the essence of refreshment.”
]

Gemini-1.5

”Strawberry”:
[
”red fruit with seeds on
the outside”,
”red color”,
”small size and
Sweet taste”
]
”Lemon”:
[
”yellow citrus fruit”,
”yellow skin”,
”sour taste”
]

”Strawberry”:
[
”red fruit with seeds on
The outside”,
”red color”,
”small size and sweet taste”,
”fruit”,
”red color”,
”small size and sweet taste”,
”used in desserts and jams”
]
”Lemon”:
[
”yellow citrus fruit”,
”yellow skin”,
”sour taste”,
”citrus fruit”,
”yellow skin”,
”sour taste”,
”used in drinks and cooking”
]

Strawberry”:
[
”A small, red fruit with seeds
on the outside.
It is a popular fruit and is often
used in jams, jellies, and desserts.”
]
”Lemon”:
[
”A yellow citrus fruit with a
sour taste.
It is often used in drinks,
cooking, and baking.”
]

Llama-3.0

”Strawberry”:
[
”fruit”,
”red color”,
”sweet”
]
”Lemon”:
[
”fruit”,
”yellow skin”,
”sour”
]

”Strawberry”:
[
”fruit”,
”sweet”,
”juicy”,
”red color”,
”summer”,
”shortcake”,
”vitamin-rich”,
”antioxidant”,
”delicious”,
”romantic”
]
”Lemon”:
[
”fruit”,
”citrus”,
”sour taste”,
”yellow skin”,
”juicing”,
”cooking”,
”flavorful”,
”refreshing”,
”zesty”,
”invigorating”
]

”Strawberry”:
[
”Sweet fruit delights,
luscious landscape indulging,
happy heart enjoying like a
Joyful, little treat.”
]
”Lemon”:
[
”Zesty slice refreshes,
citrusy landscape revitalizing,
Rejuvenated heart refreshing
Like a bright, little sunrise.”
]

Table A13: Types and examples of descriptors generated by popular LLMs.

23

Published as a conference paper at ICLR 2025

LLM Desc. Type LEAPGen ConvPrompt
FAA CAA FFM CFM FAA CAA FFM CFM

GPT-4 Short 84.70 86.36 0.70 1.74 77.08 81.47 4.17 2.98
GPT-4 Long 84.73 86.14 0.91 1.48 77.03 81.40 3.95 3.28
GPT-4 Narrative 84.60 85.72 0.84 1.66 77.33 81.53 3.95 3.28

Gemini-1.5 Short 83.67 85.07 0.96 1.45 77.27 81.33 3.89 3.43
Gemini-1.5 Long 84.65 85.69 0.81 1.74 77.18 81.37 4.24 3.52
Gemini-1.5 Narrative 84.63 85.68 0.53 1.28 77.22 81.37 3.96 3.40
Llama-3.0 Short 85.22 86.35 0.79 1.54 77.25 81.37 3.94 3.40
Llama-3.0 Long 84.72 86.24 0.77 1.49 77.15 81.45 3.92 3.29
Llama-3.0 Narrative 83.72 85.33 0.80 1.49 77.59 81.49 3.93 3.27

Table A14: Performance of LEAPGEn vs ConvPrompt in various descriptors

2 4 6 8 10
Task

80

85

90

Ac
cu

ra
cy

(%
)

Avg. Accuracy with
GPT-4 Short

2 4 6 8 10
Task

77.5

80.0

82.5

85.0

87.5

90.0

Avg. Accuracy with
GPT-4 Long

2 4 6 8 10
Task

77.5

80.0

82.5

85.0

87.5

90.0

Avg. Accuracy with
GPT-4 Narrative

2 4 6 8 10
Task

2

4

6

Fo
rg

et
tin

g(
%

)

Avg. Forgetting with
GPT-4 Short

2 4 6 8 10
Task

1

2

3

4

Avg. Forgetting with
GPT-4 Long

2 4 6 8 10
Task

1

2

3

4

Avg. Forgetting with
GPT-4 Narrative

2 4 6 8 10
Task

77.5

80.0

82.5

85.0

87.5

90.0

Ac
cu

ra
cy

(%
)

Avg. Accuracy with
Gemiini-1.5 Short

2 4 6 8 10
Task

77.5

80.0

82.5

85.0

87.5

90.0

Avg. Accuracy with
Gemiini-1.5 Long

2 4 6 8 10
Task

77.5

80.0

82.5

85.0

87.5

90.0

Avg. Accuracy with
Gemiini-1.5 Narrative

2 4 6 8 10
Task

1

2

3

4

Fo
rg

et
tin

g(
%

)

Avg. Forgetting with
Gemiini-1.5 Short

2 4 6 8 10
Task

1

2

3

4

Avg. Forgetting with
Gemiini-1.5 Long

2 4 6 8 10
Task

1

2

3

4

Avg. Forgetting with
Gemiini-1.5 Narrative

2 4 6 8 10
Task

77.5

80.0

82.5

85.0

87.5

90.0

Ac
cu

ra
cy

(%
)

Avg. Accuracy with
Llama-3.0 Short

2 4 6 8 10
Task

77.5

80.0

82.5

85.0

87.5

90.0

Avg. Accuracy with
Llama-3.0 Long

2 4 6 8 10
Task

77.5

80.0

82.5

85.0

87.5

90.0

Avg. Accuracy with
Llama-3.0 Narrative

2 4 6 8 10
Task

1

2

3

4

Fo
rg

et
tin

g(
%

)

Avg. Forgetting with
Llama-3.0 Short

2 4 6 8 10
Task

1

2

3

4

Avg. Forgetting with
Llama-3.0 Long

2 4 6 8 10
Task

1

2

3

4

Avg. Forgetting with
Llama-3.0 Narrative

ConvPrompt LEAPGen

Figure A5: Visualization of the historical performance of consolidated algorithms in ImageNet-R with 10
tasks setting, in various descriptors and LLM

24

Published as a conference paper at ICLR 2025

1 2 3 4 5
Task

86

88

90

92

94

96

98

Ac
cu

ra
cy

(%
)

CIFAR100 5-Tasks
Average Accuracy

1 2 3 4 5
Task

65

70

75

80

85

ImageNet-R 5-Tasks
Average Accuracy

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Task

0

1

2

3

4

5

6

7

Fo
rg

et
tin

g(
%

)

CIFAR100 5-Tasks
Average Forgetting

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Task

0

2

4

6

8

ImageNet-R 5-Tasks
Average Forgetting

L2P DualPrompt CODA-P LGCL HiDe-Prompt PGP EvoPrompt CPrompt ConvPrompt LEAPGen-lite LEAPGen

Figure A7: Visualization of the historical performance of consolidated algorithms in CIFAR100 and
ImageNet-R with 5 tasks setting

D.6 PERFORMANCE ON VARIOUS TYPES OF DESCRIPTORS

FAA CAA
70

72

74

76

78

80

82

84

86

Ac
cu

ra
cy

(%
)

FFM CFM
0

2

4

6

8

10

Fo
rg

et
tin

g(
%

)

None
Attention
MLP
LSTM
GRU

Figure A6: FAA, CAA, FFM, and CFM of
the proposed method w.r.t types of generator.

LEAPGen’s default generator (GtKi,l,h, G
tV
i,l,h) is a single-

head self-attention (SSA) network parameterized by 3
matrices as explained in section sub-4.d. However, our
method accommodates the different types of generators
e.g. MLP (3-layered), LSTM, and GRU. Figure A6 shows
that LAPGen with any type generator achieves higher
performance than without generators (None). The pro-
posed SSA generator achieves fairly higher performance
than MLP, slightly higher than GRU and comparable to
LSTM. However, LSTM and GRU has approximately 2.5 and 2 times larger number of parameters
than SSA, while MLP has the same number of parameters as SSA.

D.7 HISTORICAL PERFORMANCE ON 5 AND 20-TASK SETTINGS

We continue our analysis on the historical performance of consolidated methods in CIFAR100 and
ImageNet-R with 5 and 20-task settings. Figures A7 and A8 plot the historical performance of the
consolidated methods. The figures show that both in 5-task and 20-task settings, both in CIFAR100
and ImageNet-R datasets, LEAPGen consistently outperforms the existing methods. Figure A7
shows that in the 5-task setting, LEAPGen manages to maintain its performance in CIFAR100 in all
tasks, and suffers from less than 4% accuracy degradation in Imagent-R. The figure also shows that
our method experiences less than 1% forgetting in all tasks in both datasets.

Figure A8 shows that in the 20-task setting, LEAPGen suffers from less than 2% accuracy drop
CIFAR100, while the existing methods suffer from up to 17% accuracy drop. In the Imagenet-R
dataset, our methods experience less than 7% accuracy drop CIFAR100, while the existing methods
suffer from up to 25% accuracy degradation. This is a remarkable achievement pf our proposed
method since the larger task number implies a more challenging setting. In a such difficult setting,
our method can maintain its performance so that experiences the least degradation among the eval-
uated methods. The figure also shows that our method experiences nearly zero forgetting in the
first ten tasks of CIFAR100, and experiences less than 2% forgetting afterward. Our method also
manages to decrease its forgetting measure in the latest tasks on ImageNet-R datasets. On the other
hand, the existing methods suffer from increasing forgetting both in CIFAR100 and Imagenet-R so
its magnitude gets higher i.e. up to 9% and 11% in CIFAF100 and ImageNet-R respectively.

This historical analysis emphasizes the robustness of our method in various number of task settings
and confirms its superiority to the existing SOTAs.

E DETAILED EXPERIMENTAL SETTING

Existing Methods: The existing SOTAs are run by executing the official implementation (code)
of the respective methods. The hyper-parameters setting is chosen based on the official setting.
HiDe-Prompt utilizes S-Prompt(Wang et al., 2022a) i.e. similar to DualPrompt but without the
global (task-shared) prompt. LGCL and PGP don’t propose a specific prompt structure but rather
utilize L2P and DualPrompt. The reported results for PGP and LGCL are obtained with DualPrompt

25

Published as a conference paper at ICLR 2025

5 10 15 20
Task

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

(%
)

CIFAR100 20-Tasks
Average Accuracy

5 10 15 20
Task

55

60

65

70

75

80

85

90

ImageNet-R 20-Tasks
Average Accuracy

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Task

0

2

4

6

8

Fo
rg

et
tin

g(
%

)

CIFAR100 20-Tasks
Average Forgetting

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Task

0

2

4

6

8

10

12

ImageNet-R 20-Tasks
Average Forgetting

L2P DualPrompt CODA-P LGCL HiDe-Prompt PGP EvoPrompt CPrompt ConvPrompt LEAPGen-lite LEAPGen

Figure A8: Visualization of the historical performance of consolidated algorithms in CIFAR100 and
ImageNet-R with 20 tasks setting

structure which is the best from their result. The other methods i.e. L2P, DualPrompt, CODA-P,
EvoPrompt, CPrompt, and ConvPrompt utilize their proposed structure. All the evaluated methods
utilize ViT B/16 pre-trained on ImageNet 21K as the backbone model. LGCL utilizes pre-trained
CLIP text encoder, while ConvPrompt utilizes SentenceTransformer pre-trained on BERT as its text
encoder.

LEAPGen: Our proposed method is implemented on top of the ViT backbone pre-trained on
ImageNet-21K. The prompt structure is as defined in section 4. The prompt length is set to 30,
and the prefix tuning layers is set to 7 i.e. [0,1,2,3,4,5,6] for all main experiments. We utilize Adam
optimizer with a cosine learning rate scheduler. For CIFAR100 dataset, We set 0.01 initial learning
rate and 3, 10, and 10 epochs for 5-task, 10-task, and 20-task settings respectively. For ImageNet-R
dataset, We choose 5, 10, and 20 epochs for 5-task, 10-task, and 20-task settings respectively. The
initial learning rate is chosen from the best of 0.04,0.05,0.06. For CUB dataset, We choose 20 epochs
and 0.005 initial learning rate. Our method accommodates a flat learning rate (not decayed) forKt in
a different optimizer; the soft task-id predictor is computed in a batch-wise manner for convenience.
Similar to ConvPrompt, we utilize SentenceTransformer as the text encoder. The pre-trained models
i.e. ViT, SentenceTransformer and CLIP(LGCL) parameters are frozen (not fine-tuned) following
ConvPrompt (Roy et al., 2024) implementation.

The λ2 and λ3 are set to 1.0, while λ1 is set to 1.0 for CIFAR100, and 0.1 for CUB and ImageNet-R.
The number of generators per task that is the same as top-k descriptors is set to 3. All the consol-
idated methods are run under the same machine and computing environment i.e. single NVIDIA
A100 GPU with 40 GB memory, python 3.8 and Pytorch 2.2.0.

Performance Metrics: Adapted from HidePrompt, we measure both accuracy and forgetting of the
methods. Suppose that Ai,t denotes the accuracy on the t-th task after learning the t-th task. The av-
erage accuracy of all learned task is defined asAAt = (1/t)Σti=1Ai,t. Suppose that T is the number
of all tasks, we measure final average accuracy (FAA), cumulative average accuracy(CAA), final
forgetting measure (FFM), and cumulative forgetting measure (CFM) as defined in the equations
below.

FAA = AAT (A56)

CAA =
1

T
ΣTt=1AAt (A57)

FFM =
1

T − 1
ΣT−1
i=1 maxt∈1,...,T−1(AAi,t −AAi,T) (A58)

CFM =
1

T − 1

1

T − 1
ΣTj=2Σ

j−1
i=1maxt∈1,...,j−1(AAi,t −AAi,j) (A59)

F EXTENDED LITERATURE REVIEW

Rehearsal-based CL e.g. ICARL (Rebuffi et al., 2017), GD (Prabhu et al., 2020), XDER(Boschini
et al., 2022) that saves exemplars from the previous tasks and replays them along with current task
samples. The methods tune the whole backbone e.g. ResNet in each to adapt to learn new knowl-
edge. The forgetting to previously learned tasks is minimized via replaying saved exemplars and
distillation between the previous (saved) model and the current tuned model. The bias correction
approach e.g. BiC (Wu et al., 2019) and LUCIR (Hou et al., 2019) adapt to a new task by adding

26

Published as a conference paper at ICLR 2025

a task-wise bias layer. The bis layer is tuned to learn a new task with a minimum change of model
weight. Therefore It minimizes the forgetting on the previous tasks and achieves stability-plasticity.
The bisa correction approach also utilizes memory replay to minimize forgetting. Regularization
approach e.g. EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al., 2018), and DMC (Zhang et al.,
2020) that tunes the learner parameters to accommodate the previous and current tasks. The regu-
larization can be implemented as a function or a saved gradient to avoid forgetting the previously
learned tasks. The knowledge distillation can be applied in the regularization approach using a
non-memory exemplar e.g. openly accessed dataset that is not part of learned task samples.

The prompt-based approach proposes a breakthrough solution for Class Incremental Learning (CIL)
by training tiny task-aware parameters called prompts on top of frozen pre-trained feature extractor
e.g. visual transformer (ViT)(Dosovitskiy et al., 2020) that contains far bigger parameters. ViT
is a sequence of L-layered model fθ(.) where a layer-l (l ∈ [1..L]) contains H Multi Head Self
Attention (MSA) combined with Multi-Layer Perceptron (MLP) block, Norm, addition and residual
connections. Given an input patched embedding xel,h , the hth head MSA of layer-l, parameterized
by key-query-value matrices i.e. WQ

l,h,W
K
l,h,W

V
l,h performs self-attention function as defined in

equation below:
A(Ql,h,Kl,h, Vl,h) = Softmax((Ql,hK

T
l,h)/

√
Dh)Vl,h (A60)

where Ql,h = xel,hW
Q
l,h,Kl,h = xel,hW

K
l,h, Vl,h = xel,hW

V
l,h are query, key, and value and Dh

denotes their dimension. Prompt-based CL attaches a small set of trainable parameters called
prompts into a frozen pre-trained ViT model (fixed ψ) (Wang et al., 2022c;b). The attachment
techniques are mainly divided into 2 types i.e. prompt tuning (Lester et al., 2021) and prefix tuning
(Li & Liang, 2021). Prompt tuning prepends a prompt vector P ∈ RLP×D into query, key, and
value of MSA. Suppose the prompt is divided into head-wise parts i.e. P = [P1, P2, ...PH], then
Ph ∈ RLP×D/H is prepended into hth head of lth layer, and the attention mechanism is computed
as A([Ph : Ql,h], [Ph : Kl,h], [Ph : Vl,h]). The symbols LP , D, and ”:” denote prompt length,
embedding dimension and concatenation operator respectively. Prefix tuning as utilized in DualP-
prompt (Wang et al., 2022b) divides Ph into pair of PKh and PVh for key and value respectively, then
the attention mechanism becomes A(Ql,h, [PKh : Kl,h], [P

V
h : Vl,h]).

Based on the prompt structure point of view, we can categorize the prompt-based approach into
several categories i.e. (1)Pool-based approach e.g. L2P(Wang et al., 2022c) that uses a pool as
prompt container and select a prompt based on input-similarity, (2) Task-specific approach e.g. Du-
alPrompt(Wang et al., 2022b), SPrompt(Wang et al., 2022a), HiDE-Prompt(Wang et al., 2024a)
and CPrompt (Gao et al., 2024) that train specific prompt for a specific task and uses task identi-
fier in the inference process, (3) Growing component approach e.g. CODA-P(Smith et al., 2023b),
EvoPrompt(Kurniawan et al., 2024), and ConvPrompt(Roy et al., 2024) that increase prompt com-
ponents to adapt with a new task, instead of the task identifier. DualPrompt, and CPrompt utilize
learnable keys as task predictor, while HiDe-Prompt utilizes unstructured representation (clusters) as
the task predictor. CODA-P adds new hand-crafted (fixed size) learnable parameters as new prompt
components, while EvoPrompt and ConvPrompt generate the new prompt components using newly
added generators. Therefore, EvoPrompt and ConvPrompt can be considered as growing generators
approach.

G COMPLETE NUMERICAL RESULTS

In this section, we present the complete numerical results on CIFAR100, ImageNet-R and CUB
datasets in all settings, as presented in table A15 to A21. Color blue and red denote the highest
and runner-up performance respectively. Table A15 to A21 show that our proposed method almost
achieves the highest average accuracy and average forgetting in all cases.

27

Published as a conference paper at ICLR 2025

Task TaskMethod 1 2 3 4 5 Avg. 1 2 3 4 5 Avg.

Average Accuracy (AA) Average Forgetting (FM)
L2P 94.87 ± 0.30 90.11 ± 0.43 87.56 ± 0.33 86.05 ± 0.40 84.77 ± 0.48 88.67 ± 0.30 - 6.25 ± 0.54 6.12 ± 0.28 5.42 ± 0.28 6.18 ± 0.57 5.99 ± 0.29
DualPrompt 95.40 ± 0.15 91.21 ± 0.14 89.22 ± 0.15 87.53 ± 0.15 86.41 ± 0.21 89.95 ± 0.10 - 4.50 ± 0.95 4.72 ± 0.55 4.48 ± 0.29 5.37 ± 0.21 4.77 ± 0.46
CODA-P 97.33 ± 0.45 94.53 ± 1.79 91.66 ± 2.69 89.49 ± 0.99 88.22 ± 1.06 92.25 ± 1.28 - 4.23 ± 3.55 6.15 ± 3.63 6.81 ± 1.50 7.05 ± 2.18 6.06 ± 2.66
LGCL 95.78 ± 0.18 91.97 ± 0.27 89.43 ± 0.03 88.15 ± 0.14 86.90 ± 0.40 90.45 ± 0.18 - 3.78 ± 0.33 4.72 ± 0.34 3.92 ± 0.20 5.01 ± 0.35 4.36 ± 0.13
HiDe-Prompt 97.30 ± 0.22 94.74 ± 0.08 93.18 ± 0.17 92.52 ± 0.11 91.99 ± 0.03 93.95 ± 0.09 - 2.23 ± 0.33 2.34 ± 0.15 2.22 ± 0.07 2.52 ± 0.18 2.33 ± 0.15
PGP 96.42 ± 0.35 92.58 ± 0.12 90.47 ± 0.09 89.17 ± 0.08 87.69 ± 0.06 91.26 ± 0.13 - 4.45 ± 0.41 4.57 ± 0.25 4.07 ± 0.04 5.32 ± 0.18 4.60 ± 0.15
EvoPrompt 97.70 ± 0.40 93.63 ± 0.25 91.20 ± 0.20 90.00 ± 0.20 89.07 ± 0.38 92.32 ± 0.26 - 5.83 ± 0.15 5.40 ± 0.13 5.07 ± 0.12 5.25 ± 0.65 5.39 ± 0.24
CPrompt 97.92 ± 0.32 95.01 ± 0.71 92.43 ± 0.14 90.87 ± 0.18 89.22 ± 0.05 93.09 ± 0.06 - 2.83 ± 0.64 4.76 ± 0.38 4.62 ± 0.20 5.02 ± 0.17 4.31 ± 0.35
ConvPrompt 98.18 ± 0.10 94.96 ± 0.23 92.88 ± 0.23 91.18 ± 0.16 90.26 ± 0.44 93.49 ± 0.19 - 3.37 ± 0.15 3.15 ± 0.23 2.86 ± 0.28 3.64 ± 0.28 3.25 ± 0.16
LEAPGen 97.18 ± 0.67 97.28 ± 0.32 96.51 ± 0.14 96.45 ± 0.10 96.84 ± 0.12 96.85 ± 0.26 - 0.05 ± 0.05 0.06 ± 0.01 0.06 ± 0.05 0.08 ± 0.07 0.06 ± 0.04

Table A15: Complete numerical result of the consolidated algorithms in CIFAR100 dataset with 5 tasks
setting. Color ”blue” and ”red” denotes the highest and runner-up performance respectively.

Method 1 2 3 4 5 6 7 8 9 10 Avg.

Average Accuracy (AA)
L2P 97.40 ± 0.20 93.75 ± 0.30 91.21 ± 0.11 89.73 ± 0.30 88.35 ± 0.24 86.78 ± 0.29 85.82 ± 0.38 85.14 ± 0.30 84.64 ± 0.31 83.84 ± 0.32 88.67 ± 0.16
DualPrompt 98.13 ± 0.15 94.60 ± 0.13 92.22 ± 0.13 90.55 ± 0.13 89.38 ± 0.20 87.76 ± 0.44 87.04 ± 0.32 86.33 ± 0.30 86.36 ± 0.20 85.36 ± 0.20 89.77 ± 0.20
CODA-P 98.67 ± 0.12 95.83 ± 1.25 94.12 ± 1.66 92.98 ± 2.56 91.33 ± 1.18 90.01 ± 1.09 88.36 ± 0.21 87.68 ± 0.60 87.27 ± 0.50 86.44 ± 0.16 91.27 ± 0.56
LGCL 98.23 ± 0.12 94.82 ± 0.42 92.99 ± 0.30 91.15 ± 0.56 89.88 ± 0.54 87.94 ± 0.30 87.33 ± 0.13 86.83 ± 0.14 86.71 ± 0.31 85.68 ± 0.43 90.16 ± 0.29
HiDe-Prompt 99.17 ± 0.06 97.37 ± 0.03 96.03 ± 0.15 95.57 ± 0.19 94.77 ± 0.09 93.99 ± 0.09 93.62 ± 0.17 93.30 ± 0.10 93.44 ± 0.16 92.89 ± 0.11 95.01 ± 0.08
PGP 98.83 ± 0.29 95.32 ± 0.43 93.79 ± 0.28 91.67 ± 0.29 90.64 ± 0.13 88.51 ± 0.23 88.09 ± 0.27 87.69 ± 0.27 87.40 ± 0.17 86.36 ± 0.19 90.83 ± 0.17
EvoPrompt 99.47 ± 0.06 96.37 ± 0.38 94.57 ± 0.35 93.13 ± 0.55 92.23 ± 0.47 89.97 ± 0.95 89.43 ± 0.57 89.20 ± 0.78 89.23 ± 0.55 88.17 ± 0.51 92.18 ± 0.49
CPrompt 98.20 ± 1.05 96.28 ± 0.83 94.18 ± 0.43 93.34 ± 0.24 91.79 ± 1.06 90.69 ± 1.04 89.49 ± 0.94 88.62 ± 0.96 87.76 ± 0.60 86.92 ± 1.04 91.73 ± 0.66
ConvPrompt 99.60 ± 0.00 96.83 ± 0.18 95.06 ± 0.12 93.78 ± 0.24 92.77 ± 0.13 90.66 ± 0.16 90.18 ± 0.11 89.71 ± 0.02 89.74 ± 0.26 88.77 ± 0.24 92.71 ± 0.04
LEAPGen 97.47 ± 1.33 98.30 ± 0.53 98.18 ± 0.37 98.22 ± 0.29 98.33 ± 0.36 98.16 ± 0.33 98.08 ± 0.22 98.14 ± 0.21 98.24 ± 0.15 98.38 ± 0.15 98.15 ± 0.39

Average Forgetting Measure (FM)
L2P - 3.27 ± 0.40 4.13 ± 0.57 4.53 ± 0.33 5.66 ± 0.32 5.34 ± 0.23 5.55 ± 0.39 5.44 ± 0.19 5.95 ± 0.16 6.55 ± 0.34 5.16 ± 0.14
DualPrompt - 3.47 ± 0.23 3.60 ± 0.13 3.58 ± 0.19 4.22 ± 0.28 4.62 ± 0.26 4.73 ± 0.24 4.66 ± 0.21 4.70 ± 0.19 5.41 ± 0.33 4.33 ± 0.15
CODA-P - 2.53 ± 1.65 3.73 ± 0.65 4.33 ± 2.77 5.12 ± 2.21 5.50 ± 1.36 6.11 ± 1.05 5.98 ± 0.93 6.10 ± 1.03 6.38 ± 1.46 5.09 ± 1.19
LGCL - 3.67 ± 1.15 3.05 ± 0.48 3.30 ± 0.67 4.19 ± 0.36 4.66 ± 0.21 4.69 ± 0.28 4.57 ± 0.31 4.64 ± 0.39 5.46 ± 0.22 4.25 ± 0.32
HiDe-Prompt - 0.83 ± 0.38 1.13 ± 0.21 1.26 ± 0.22 1.63 ± 0.25 1.91 ± 0.09 1.74 ± 0.14 1.80 ± 0.14 1.75 ± 0.05 1.98 ± 0.05 1.56 ± 0.15
PGP - 3.50 ± 0.92 2.77 ± 0.71 3.94 ± 0.51 4.36 ± 0.23 4.77 ± 0.33 4.51 ± 0.32 4.47 ± 0.23 4.72 ± 0.31 5.49 ± 0.35 4.28 ± 0.27
EvoPrompt - 1.17 ± 0.70 2.75 ± 0.69 3.61 ± 1.08 4.06 ± 0.88 4.47 ± 1.16 4.84 ± 0.70 4.73 ± 0.65 4.68 ± 0.43 5.39 ± 0.45 3.97 ± 0.73
CPrompt - 1.60 ± 1.25 2.60 ± 1.13 2.94 ± 1.15 3.53 ± 0.49 4.59 ± 0.89 4.88 ± 0.69 5.06 ± 0.55 5.48 ± 1.08 5.43 ± 0.74 4.01 ± 0.81
ConvPrompt - 1.17 ± 0.35 1.85 ± 0.18 1.96 ± 0.31 2.66 ± 0.22 2.95 ± 0.18 3.03 ± 0.03 3.04 ± 0.22 3.22 ± 0.54 4.12 ± 0.44 2.67 ± 0.11
LEAPGen - 0.00 ± 0.00 0.05 ± 0.00 0.02 ± 0.04 0.03 ± 0.04 0.04 ± 0.03 0.06 ± 0.03 0.08 ± 0.02 0.09 ± 0.04 0.10 ± 0.03 0.05 ± 0.00

Table A16: Complete numerical result of the consolidated algorithms in CIFAR100 dataset with 10 tasks
setting. Color ”blue” and ”red” denotes the highest and runner-up performance respectively.

28

Published as a conference paper at ICLR 2025

Average Accuracy (AA)
Method 1 2 3 4 5 6 7 8 9 10 Avg.
L2P 97.07 ± 0.12 96.73 ± 0.15 92.60 ± 0.29 92.35 ± 0.09 91.73 ± 0.46 89.89 ± 0.42 88.71 ± 0.20 87.67 ± 0.32 86.79 ± 0.42 86.22 ± 0.47 -
DualPrompt 97.73 ± 0.31 97.40 ± 0.53 93.31 ± 0.67 93.08 ± 0.58 91.55 ± 0.40 89.52 ± 0.35 89.10 ± 0.20 87.32 ± 0.17 87.10 ± 0.17 86.45 ± 0.16 -
CODA-P 99.13 ± 0.12 96.67 ± 1.48 94.47 ± 2.40 92.60 ± 1.75 91.88 ± 1.39 90.34 ± 1.54 89.75 ± 3.19 89.23 ± 2.62 88.11 ± 0.92 87.08 ± 0.51 -
LGCL 98.20 ± 0.00 98.20 ± 0.10 93.98 ± 0.10 94.00 ± 0.36 93.01 ± 0.22 91.06 ± 0.18 90.88 ± 0.29 89.33 ± 0.34 88.64 ± 0.40 87.99 ± 0.26 -
HiDe-Prompt 99.60 ± 0.20 99.50 ± 0.10 98.36 ± 0.20 98.10 ± 0.05 97.89 ± 0.16 96.97 ± 0.20 96.97 ± 0.20 96.59 ± 0.16 96.39 ± 0.22 95.80 ± 0.14 -
PGP 98.53 ± 0.23 98.57 ± 0.40 94.42 ± 0.14 94.10 ± 0.18 93.13 ± 0.12 91.94 ± 0.13 91.49 ± 0.10 89.94 ± 0.63 89.87 ± 0.39 88.71 ± 0.04 -
EvoPrompt 99.20 ± 0.00 99.10 ± 0.26 94.20 ± 1.35 93.93 ± 0.81 92.93 ± 0.47 91.77 ± 0.40 91.47 ± 0.60 90.23 ± 0.47 89.67 ± 0.55 88.90 ± 0.35 -
CPrompt 99.40 ± 0.00 97.80 ± 0.00 96.93 ± 0.00 95.40 ± 0.00 94.76 ± 0.00 92.20 ± 0.00 90.74 ± 0.00 90.72 ± 0.00 90.07 ± 0.00 89.24 ± 0.00 -
ConvPrompt 99.47 ± 0.12 99.43 ± 0.15 96.16 ± 0.17 95.92 ± 0.25 95.73 ± 0.16 94.10 ± 0.26 93.86 ± 0.37 91.98 ± 0.53 91.77 ± 0.61 90.95 ± 0.66 -
LEAPGen 99.73 ± 0.31 99.60 ± 0.17 99.58 ± 0.08 99.42 ± 0.12 99.45 ± 0.09 99.36 ± 0.07 99.31 ± 0.08 99.35 ± 0.09 99.19 ± 0.07 99.14 ± 0.09 -

11 12 13 14 15 16 17 18 19 20 Avg.
L2P 85.50 ± 0.56 84.74 ± 0.85 83.68 ± 0.74 84.01 ± 0.49 83.12 ± 0.46 83.17 ± 0.50 82.40 ± 0.62 82.10 ± 0.54 82.75 ± 0.33 81.89 ± 0.38 87.16 ± 0.33
DualPrompt 85.96 ± 0.22 84.89 ± 0.23 84.24 ± 0.18 84.11 ± 0.18 82.78 ± 0.26 82.98 ± 0.37 83.01 ± 0.23 83.37 ± 0.22 83.16 ± 0.19 82.32 ± 0.22 87.47 ± 0.24
CODA-P 86.21 ± 1.81 85.64 ± 1.58 85.24 ± 1.53 83.82 ± 0.62 83.35 ± 0.98 82.88 ± 0.87 82.29 ± 0.14 82.50 ± 0.05 81.83 ± 0.34 81.29 ± 0.16 87.72 ± 0.44
LGCL 87.44 ± 0.25 86.29 ± 0.07 85.29 ± 0.54 84.83 ± 0.66 84.12 ± 0.54 84.15 ± 0.50 83.96 ± 0.51 83.91 ± 0.38 84.03 ± 0.51 83.18 ± 0.40 88.63 ± 0.18
HiDe-Prompt - - - - - - - - - - 97.62 ± 0.14
PGP 87.78 ± 0.45 87.22 ± 0.55 86.01 ± 0.20 85.81 ± 0.13 84.55 ± 0.42 85.29 ± 0.43 84.57 ± 0.41 84.80 ± 0.51 84.52 ± 0.21 83.41 ± 0.35 89.23 ± 0.13
EvoPrompt 88.17 ± 0.15 86.27 ± 0.68 85.73 ± 0.70 85.87 ± 0.80 84.90 ± 0.35 85.40 ± 0.26 85.47 ± 0.23 85.73 ± 0.29 85.80 ± 0.17 84.63 ± 0.21 89.47 ± 0.21
CPrompt 89.02 ± 0.00 88.33 ± 0.00 88.08 ± 0.00 87.20 ± 0.00 86.61 ± 0.00 86.49 ± 0.00 85.72 ± 0.00 85.49 ± 0.00 84.14 ± 0.00 83.60 ± 0.00 90.10 ± 0.00
ConvPrompt 89.99 ± 0.69 89.22 ± 0.54 88.29 ± 0.66 88.38 ± 0.57 87.49 ± 0.44 88.05 ± 0.49 87.90 ± 0.37 88.10 ± 0.65 87.99 ± 0.47 87.21 ± 0.20 91.60 ± 0.36
LEAPGen 99.18 ± 0.10 98.46 ± 1.22 98.45 ± 1.08 98.47 ± 1.02 97.83 ± 0.95 97.91 ± 0.89 97.96 ± 0.81 98.03 ± 0.73 97.69 ± 1.35 96.51 ± 2.16 98.73 ± 0.26

Average Forgetting Measure (FM)
Method 1 2 3 4 5 6 7 8 9 10 Avg.
L2P - 1.47 ± 0.50 5.47 ± 0.93 4.29 ± 0.21 5.22 ± 0.48 5.28 ± 0.56 6.19 ± 0.20 6.32 ± 0.40 7.20 ± 0.41 7.19 ± 0.42 -
DualPrompt - 1.27 ± 0.23 4.37 ± 0.25 3.96 ± 0.43 5.80 ± 0.18 5.87 ± 0.33 5.47 ± 0.24 5.01 ± 0.21 5.03 ± 0.18 5.16 ± 0.14 -
CODA-P - 3.40 ± 1.40 2.60 ± 0.75 2.13 ± 0.70 2.78 ± 1.14 3.19 ± 1.12 3.91 ± 1.64 3.91 ± 1.59 4.46 ± 1.24 5.33 ± 1.78 -
LGCL - 0.53 ± 0.31 2.67 ± 0.61 2.36 ± 0.81 3.65 ± 0.61 3.71 ± 0.66 3.09 ± 0.42 3.59 ± 0.87 4.19 ± 0.78 4.69 ± 0.48 -
HiDe-Prompt - 0.33 ± 0.12 0.73 ± 0.21 0.44 ± 0.14 0.68 ± 0.13 0.77 ± 0.02 0.70 ± 0.03 0.86 ± 0.00 0.89 ± 0.07 1.27 ± 0.07 -
PGP - 0.60 ± 0.60 4.87 ± 0.67 4.13 ± 0.70 5.05 ± 0.33 4.11 ± 0.42 4.10 ± 0.38 4.57 ± 0.23 4.62 ± 0.04 5.26 ± 0.19 -
EvoPrompt - 0.60 ± 0.20 6.00 ± 2.35 5.24 ± 1.44 6.42 ± 0.85 5.93 ± 0.77 5.93 ± 1.19 6.81 ± 1.09 7.43 ± 1.06 7.21 ± 0.59 -
CPrompt - 1.60 ± 0.00 1.40 ± 0.00 2.87 ± 0.00 3.15 ± 0.00 3.92 ± 0.00 3.57 ± 0.00 3.60 ± 0.00 4.43 ± 0.00 5.24 ± 0.00 -
ConvPrompt - 0.27 ± 0.12 3.20 ± 0.79 2.60 ± 0.50 2.68 ± 0.38 2.80 ± 0.29 2.60 ± 0.23 3.13 ± 0.45 3.23 ± 0.43 3.62 ± 0.29 -
LEAPGen - 0.00 ± 0.00 0.03 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.02 0.02 ± 0.03 0.05 ± 0.03 0.09 ± 0.00 -

11 12 13 14 15 16 17 18 19 20 Avg.
L2P 7.56 ± 0.50 7.66 ± 0.55 8.18 ± 0.60 7.77 ± 0.41 7.63 ± 0.25 7.69 ± 0.75 8.31 ± 0.55 8.73 ± 0.31 8.11 ± 0.13 8.81 ± 0.10 6.79 ± 0.33
DualPrompt 6.12 ± 0.17 6.41 ± 0.34 6.47 ± 0.22 6.52 ± 0.36 6.75 ± 0.29 6.61 ± 0.51 6.51 ± 0.27 6.29 ± 0.21 6.54 ± 0.23 6.88 ± 0.35 5.63 ± 0.23
CODA-P 5.25 ± 1.87 5.66 ± 1.49 5.79 ± 1.53 6.35 ± 1.33 6.42 ± 1.14 6.40 ± 1.25 6.79 ± 1.84 6.57 ± 1.59 6.87 ± 1.74 6.82 ± 1.60 4.98 ± 0.95
LGCL 5.62 ± 0.90 5.82 ± 0.51 6.34 ± 0.94 6.72 ± 1.02 6.47 ± 0.87 6.55 ± 0.76 6.56 ± 0.64 6.78 ± 0.43 6.74 ± 0.56 7.22 ± 0.47 4.91 ± 0.56
HiDe-Prompt - - - - - - - - - - 0.74 ± 0.03
PGP 6.38 ± 0.34 6.27 ± 0.32 6.83 ± 0.12 6.95 ± 0.18 7.36 ± 0.46 6.72 ± 0.48 7.35 ± 0.50 7.11 ± 0.66 7.29 ± 0.19 7.95 ± 0.23 5.66 ± 0.22
EvoPrompt 8.13 ± 0.50 9.20 ± 0.63 9.36 ± 0.69 9.24 ± 0.83 9.23 ± 0.38 8.90 ± 0.45 8.79 ± 0.45 8.46 ± 0.39 8.36 ± 0.33 9.19 ± 0.41 7.39 ± 0.65
CPrompt 5.46 ± 0.00 5.69 ± 0.00 5.65 ± 0.00 6.29 ± 0.00 6.41 ± 0.00 6.32 ± 0.00 6.18 ± 0.00 6.09 ± 0.00 6.44 ± 0.00 6.47 ± 0.00 4.78 ± 0.00
ConvPrompt 4.76 ± 0.50 4.90 ± 0.58 5.33 ± 0.35 5.17 ± 0.28 5.10 ± 0.22 4.74 ± 0.23 4.98 ± 0.19 4.87 ± 0.48 4.96 ± 0.43 5.47 ± 0.33 3.92 ± 0.33
LEAPGen 0.11 ± 0.02 0.90 ± 1.31 0.87 ± 1.20 0.83 ± 1.11 1.39 ± 0.97 1.32 ± 0.90 1.30 ± 0.82 1.22 ± 0.75 1.13 ± 0.75 0.66 ± 0.75 0.52 ± 0.39

Table A17: Complete numerical result of the consolidated algorithms in CIFAR100 dataset with 20 tasks
setting. Color ”blue” and ”red” denotes the highest and runner-up performance respectively.

Task TaskMethod 1 2 3 4 5 Avg. 1 2 3 4 5 Avg.

Average Accuracy (AA) Average Forgetting (FM)
L2P 75.14 ± 0.53 68.52 ± 0.66 66.55 ± 0.64 65.24 ± 0.49 64.62 ± 0.32 68.01 ± 0.42 - 3.25 ± 0.48 3.50 ± 0.19 3.49 ± 0.24 3.94 ± 0.16 3.55 ± 0.20
DualPrompt 78.25 ± 0.12 73.59 ± 0.22 72.29 ± 0.27 70.09 ± 0.26 69.71 ± 0.11 72.78 ± 0.14 - 2.75 ± 0.62 2.22 ± 0.13 2.83 ± 0.16 3.32 ± 0.16 2.78 ± 0.25
CODA-P 85.90 ± 1.68 81.65 ± 2.50 79.28 ± 1.96 76.83 ± 0.36 74.89 ± 0.36 79.71 ± 1.27 - 6.30 ± 1.52 7.39 ± 1.29 8.04 ± 0.76 8.89 ± 0.65 7.65 ± 0.98
LGCL 77.72 ± 0.47 73.83 ± 0.16 72.61 ± 0.33 70.44 ± 0.19 69.93 ± 0.21 72.91 ± 0.19 - 2.49 ± 0.54 2.03 ± 0.49 2.44 ± 0.30 3.04 ± 0.36 2.50 ± 0.38
HiDe-Prompt 84.30 ± 0.15 80.28 ± 0.32 78.27 ± 0.16 76.17 ± 0.08 75.40 ± 0.27 78.88 ± 0.04 - 1.72 ± 0.31 2.79 ± 0.25 2.91 ± 0.22 3.15 ± 0.46 2.64 ± 0.16
PGP 78.25 ± 0.12 73.57 ± 0.09 72.29 ± 0.15 70.05 ± 0.17 69.71 ± 0.15 72.77 ± 0.07 - 2.75 ± 0.46 2.33 ± 0.10 2.98 ± 0.22 3.36 ± 0.23 2.85 ± 0.25
EvoPrompt 87.00 ± 0.35 84.07 ± 0.40 81.40 ± 0.20 78.60 ± 0.00 77.27 ± 0.40 81.67 ± 0.18 - 0.90 ± 0.20 1.70 ± 0.61 1.27 ± 0.47 1.79 ± 0.31 1.41 ± 0.32
CPrompt 88.12 ± 0.00 83.42 ± 0.00 81.66 ± 0.00 80.36 ± 0.00 78.65 ± 0.00 82.44 ± 0.00 - 5.75 ± 0.00 4.58 ± 0.00 5.62 ± 0.00 6.00 ± 0.00 5.49 ± 0.00
ConvPrompt 88.56 ± 0.40 84.15 ± 0.40 82.26 ± 0.37 80.33 ± 0.25 79.36 ± 0.08 82.93 ± 0.24 - 1.41 ± 0.18 2.24 ± 0.28 2.36 ± 0.21 3.42 ± 0.05 2.36 ± 0.16
LEAPGen 88.23 ± 0.45 85.96 ± 0.07 85.10 ± 0.03 83.24 ± 0.58 82.79 ± 0.32 85.06 ± 0.29 - 0.02 ± 0.04 0.07 ± 0.12 0.12 ± 0.19 0.51 ± 0.04 0.18 ± 0.07

Table A18: Complete numerical result of consolidated algorithm in ImageNet-R dataset with 5 tasks setting.
Color ”blue” and ”red” denotes the highest and runner-up performance respectively.

29

Published as a conference paper at ICLR 2025

TaskMethod 1 2 3 4 5 6 7 8 9 10 Avg.

Average Accuracy (AA)
L2P 76.89 ± 0.00 72.96 ± 0.33 69.74 ± 0.78 66.35 ± 0.43 65.43 ± 0.43 65.10 ± 0.59 64.27 ± 0.63 63.65 ± 0.63 63.57 ± 0.83 62.50 ± 0.51 67.05 ± 0.47
DualPrompt 78.97 ± 0.83 76.34 ± 0.30 74.96 ± 0.46 72.82 ± 0.21 71.34 ± 0.30 70.92 ± 0.24 69.82 ± 0.24 69.16 ± 0.26 68.87 ± 0.10 68.59 ± 0.24 72.18 ± 0.20
CODA-P 89.24 ± 0.93 84.47 ± 3.00 82.10 ± 2.60 80.19 ± 2.81 78.97 ± 2.44 77.84 ± 1.69 76.79 ± 1.97 75.64 ± 1.43 74.80 ± 1.07 73.77 ± 0.50 79.38 ± 1.48
LGCL 78.59 ± 0.93 76.61 ± 0.26 75.51 ± 0.40 73.50 ± 0.30 72.24 ± 0.22 71.45 ± 0.17 70.10 ± 0.34 69.67 ± 0.41 69.41 ± 0.14 68.65 ± 0.25 72.57 ± 0.19
HiDe-Prompt 85.22 ± 0.22 82.93 ± 0.59 82.35 ± 0.76 79.74 ± 0.10 78.85 ± 0.56 77.81 ± 0.46 77.37 ± 0.58 76.38 ± 0.35 76.31 ± 0.22 75.75 ± 0.40 79.27 ± 0.17
PGP 78.97 ± 0.83 76.44 ± 0.40 74.96 ± 0.45 72.87 ± 0.09 71.32 ± 0.39 70.90 ± 0.26 69.78 ± 0.19 69.20 ± 0.18 68.87 ± 0.12 68.62 ± 0.14 72.19 ± 0.20
EvoPrompt 89.27 ± 0.67 84.90 ± 0.35 83.43 ± 0.23 82.03 ± 0.55 80.97 ± 0.91 80.00 ± 0.72 78.83 ± 0.74 77.43 ± 0.47 76.83 ± 0.25 76.00 ± 0.26 80.97 ± 0.30
CPrompt 90.91 ± 0.70 86.17 ± 2.15 84.25 ± 0.38 82.57 ± 0.17 81.11 ± 0.45 79.76 ± 0.38 78.67 ± 0.55 78.14 ± 0.36 77.13 ± 0.15 76.32 ± 0.53 81.50 ± 0.30
ConvPrompt 89.53 ± 0.52 86.24 ± 0.48 84.40 ± 0.20 81.88 ± 0.14 80.79 ± 0.10 80.04 ± 0.07 78.80 ± 0.02 78.15 ± 0.26 77.74 ± 0.28 77.08 ± 0.26 81.47 ± 0.10
LEAPGen 89.83 ± 0.38 87.63 ± 0.68 86.46 ± 0.63 85.97 ± 0.68 84.71 ± 1.68 84.79 ± 1.55 84.01 ± 1.41 83.77 ± 1.32 84.12 ± 1.05 84.09 ± 0.93 85.54 ± 0.65

Average Forgetting Measure (FM)
L2P - 5.52 ± 0.52 3.98 ± 0.29 4.52 ± 0.65 4.35 ± 0.48 3.81 ± 0.42 4.00 ± 0.48 4.06 ± 0.40 4.43 ± 0.40 5.01 ± 0.40 4.41 ± 0.43
DualPrompt - 3.83 ± 0.80 2.51 ± 0.07 2.97 ± 0.39 3.76 ± 0.48 3.38 ± 0.29 3.77 ± 0.19 3.87 ± 0.12 4.58 ± 0.08 4.61 ± 0.07 3.70 ± 0.18
CODA-P - 5.04 ± 2.63 6.06 ± 0.85 5.83 ± 1.47 6.61 ± 1.12 6.94 ± 0.73 7.13 ± 0.89 7.37 ± 0.94 7.56 ± 0.37 7.94 ± 0.08 6.72 ± 0.79
LGCL - 2.91 ± 1.40 2.08 ± 0.74 2.72 ± 0.84 3.15 ± 0.51 3.23 ± 0.31 3.65 ± 0.62 3.68 ± 0.54 4.29 ± 0.18 4.75 ± 0.33 3.38 ± 0.58
HiDe-Prompt - 3.29 ± 0.73 1.50 ± 0.30 2.41 ± 0.56 2.19 ± 0.15 2.53 ± 0.50 2.20 ± 0.55 2.25 ± 0.37 2.30 ± 0.16 2.29 ± 0.27 2.33 ± 0.17
PGP - 3.83 ± 0.80 2.39 ± 0.12 2.94 ± 0.26 3.67 ± 0.54 3.32 ± 0.45 3.76 ± 0.40 3.75 ± 0.28 4.52 ± 0.55 4.53 ± 0.40 3.63 ± 0.35
EvoPrompt - 5.17 ± 0.21 3.57 ± 0.38 3.57 ± 0.82 2.98 ± 1.07 2.85 ± 0.72 2.70 ± 0.66 3.24 ± 0.40 4.00 ± 0.40 4.22 ± 0.42 3.59 ± 0.52
CPrompt - 4.55 ± 2.51 5.28 ± 2.36 5.57 ± 1.42 5.49 ± 1.47 5.71 ± 1.48 5.99 ± 1.15 5.75 ± 0.80 5.97 ± 0.68 6.10 ± 0.75 5.60 ± 1.35
ConvPrompt - 2.57 ± 0.51 1.57 ± 0.08 2.60 ± 0.31 2.93 ± 0.24 3.15 ± 0.31 3.53 ± 0.36 3.44 ± 0.09 4.07 ± 0.17 4.17 ± 0.04 3.11 ± 0.17
LEAPGen - 3.97 ± 0.08 1.96 ± 0.13 1.38 ± 0.08 2.63 ± 2.66 2.24 ± 2.19 1.99 ± 1.83 1.77 ± 1.59 1.60 ± 1.35 1.46 ± 1.25 2.11 ± 1.21

Table A19: Complete numerical result of the consolidated algorithms in ImageNet-R dataset with 10 tasks
setting. Color ”blue” and ”red” denotes the highest and runner-up performance respectively.

Average Accuracy (AA)
Method 1 2 3 4 5 6 7 8 9 10 Avg.
L2P 80.16 ± 0.46 73.60 ± 0.53 72.34 ± 0.85 69.92 ± 0.99 68.49 ± 1.10 67.47 ± 1.11 65.97 ± 0.53 64.47 ± 0.60 64.33 ± 0.33 63.10 ± 0.24 -
DualPrompt 80.78 ± 0.31 78.08 ± 0.82 76.46 ± 0.40 74.33 ± 0.34 73.22 ± 0.45 73.58 ± 0.52 72.12 ± 0.08 71.10 ± 0.36 70.99 ± 0.55 69.47 ± 0.17 -
CODA-P 91.77 ± 1.70 85.57 ± 1.17 84.23 ± 0.66 82.04 ± 2.20 80.42 ± 2.33 79.51 ± 1.98 78.23 ± 1.94 77.09 ± 2.09 76.45 ± 1.92 75.99 ± 2.12 -
LGCL 80.78 ± 0.81 77.43 ± 0.41 76.07 ± 0.38 74.37 ± 0.41 73.56 ± 0.77 73.02 ± 0.53 71.67 ± 0.43 71.21 ± 0.14 71.57 ± 0.31 70.22 ± 0.35 -
HiDe-Prompt 88.10 ± 0.70 85.34 ± 0.66 84.22 ± 0.20 81.61 ± 0.52 80.95 ± 0.35 80.56 ± 0.67 79.77 ± 0.28 78.76 ± 0.47 79.13 ± 0.80 77.56 ± 0.83 -
PGP 80.78 ± 0.31 78.11 ± 0.77 76.49 ± 0.58 74.36 ± 0.54 73.28 ± 0.27 73.33 ± 0.28 72.04 ± 0.16 70.93 ± 0.46 71.06 ± 0.66 69.73 ± 0.30 -
EvoPrompt 90.13 ± 0.75 87.37 ± 0.45 85.47 ± 0.57 83.53 ± 1.55 82.90 ± 1.56 81.80 ± 0.79 81.27 ± 0.15 80.57 ± 0.15 81.07 ± 0.15 79.93 ± 0.21 -
CPrompt 91.45 ± 1.66 88.61 ± 0.93 87.58 ± 1.38 84.57 ± 2.40 83.04 ± 1.00 81.94 ± 1.21 81.13 ± 1.01 80.45 ± 0.68 79.46 ± 0.49 78.64 ± 0.71 -
ConvPrompt 91.89 ± 0.55 87.69 ± 0.61 85.29 ± 0.53 83.90 ± 0.11 82.58 ± 0.31 82.03 ± 0.71 80.27 ± 0.59 78.67 ± 0.58 78.81 ± 0.69 77.10 ± 0.53 -
LEAPGen 93.03 ± 0.85 91.18 ± 0.59 89.54 ± 1.66 88.18 ± 2.27 87.83 ± 2.28 88.14 ± 1.87 88.06 ± 1.53 87.89 ± 1.38 87.34 ± 1.07 87.01 ± 1.12 -

11 12 13 14 15 16 17 18 19 20 Avg.
L2P 58.15 ± 0.23 58.75 ± 0.13 57.61 ± 0.47 58.14 ± 0.08 57.80 ± 0.30 57.69 ± 0.05 57.56 ± 0.58 57.21 ± 0.63 56.49 ± 0.14 57.40 ± 0.31 63.33 ± 0.21
DualPrompt 67.55 ± 0.11 67.65 ± 0.25 67.12 ± 0.41 67.14 ± 0.53 67.02 ± 0.47 66.65 ± 0.34 66.35 ± 0.35 65.87 ± 0.16 65.60 ± 0.38 65.19 ± 0.17 70.31 ± 0.29
CODA-P 75.39 ± 1.36 74.92 ± 1.46 74.34 ± 1.07 73.98 ± 1.35 73.24 ± 0.76 72.44 ± 0.99 72.14 ± 0.77 71.82 ± 0.80 71.46 ± 0.49 70.55 ± 0.71 77.08 ± 1.02
LGCL 67.67 ± 0.40 67.40 ± 0.29 66.83 ± 1.01 66.85 ± 0.60 66.91 ± 0.54 66.21 ± 0.47 65.85 ± 0.37 65.74 ± 0.40 65.27 ± 0.64 64.96 ± 0.67 70.18 ± 0.37
HiDe-Prompt - - - - - - - - - - 81.6 ± 0.48
PGP 67.54 ± 0.22 67.68 ± 0.50 67.09 ± 0.36 67.18 ± 0.53 67.08 ± 0.23 66.80 ± 0.22 66.72 ± 0.13 65.99 ± 0.32 65.74 ± 0.08 65.24 ± 0.25 70.36 ± 0.26
EvoPrompt 78.40 ± 0.20 78.73 ± 0.29 77.57 ± 0.21 76.63 ± 0.55 76.47 ± 0.71 75.63 ± 0.31 75.67 ± 0.29 75.17 ± 0.25 75.07 ± 0.40 74.93 ± 0.64 79.92 ± 0.13
CPrompt 77.99 ± 0.51 77.26 ± 0.42 76.66 ± 0.71 76.44 ± 0.62 76.35 ± 0.29 75.87 ± 0.17 75.50 ± 0.39 74.95 ± 0.44 74.25 ± 0.10 74.23 ± 0.17 79.82 ± 0.51
ConvPrompt 75.95 ± 0.81 76.36 ± 0.70 75.45 ± 0.63 75.40 ± 0.40 75.38 ± 0.62 74.79 ± 0.15 74.25 ± 0.23 74.51 ± 0.41 74.28 ± 0.32 73.93 ± 0.36 78.92 ± 0.37
LEAPGen 87.16 ± 1.06 86.89 ± 0.25 86.33 ± 0.19 86.61 ± 0.11 86.56 ± 0.14 86.60 ± 0.15 86.73 ± 0.17 86.98 ± 0.15 87.04 ± 0.22 87.03 ± 0.12 87.81 ± 0.48

Average Forgetting Measure (FM)
Method 1 2 3 4 5 6 7 8 9 10 Avg.
L2P - 3.70 ± 0.26 6.31 ± 1.08 6.56 ± 1.11 5.78 ± 0.77 5.45 ± 0.43 5.10 ± 0.31 5.13 ± 0.15 5.30 ± 0.14 4.91 ± 0.33 -
DualPrompt - 3.97 ± 1.47 6.34 ± 0.57 5.86 ± 0.55 5.04 ± 0.49 4.07 ± 0.74 3.95 ± 0.29 3.83 ± 0.32 4.41 ± 0.45 3.80 ± 0.23 -
CODA-P - 6.87 ± 3.87 4.98 ± 1.71 5.08 ± 1.24 5.55 ± 1.18 5.97 ± 1.21 6.41 ± 0.30 6.81 ± 1.32 7.10 ± 1.30 7.13 ± 1.50 -
LGCL - 3.88 ± 1.80 6.02 ± 0.60 5.05 ± 0.63 4.42 ± 0.61 4.29 ± 0.50 3.94 ± 0.23 3.65 ± 0.17 3.83 ± 0.11 3.04 ± 0.09 -
HiDe-Prompt - 1.50 ± 1.19 2.87 ± 0.11 2.98 ± 0.26 2.33 ± 0.32 2.07 ± 0.35 2.05 ± 0.28 1.97 ± 0.29 2.07 ± 0.43 2.26 ± 0.41 -
PGP - 3.70 ± 1.32 6.51 ± 0.86 5.94 ± 0.65 5.08 ± 0.60 4.46 ± 0.33 4.14 ± 0.30 4.08 ± 0.13 4.31 ± 0.37 3.58 ± 0.33 -
EvoPrompt - 2.20 ± 0.53 5.50 ± 0.09 5.84 ± 1.49 5.21 ± 1.29 6.12 ± 0.49 6.14 ± 0.45 5.47 ± 0.09 4.90 ± 0.10 4.66 ± 0.38 -
CPrompt - 3.16 ± 0.67 3.60 ± 0.95 5.42 ± 1.70 5.60 ± 1.03 5.79 ± 0.92 5.74 ± 1.19 5.72 ± 0.82 5.95 ± 0.64 5.86 ± 0.46 -
ConvPrompt - 2.03 ± 0.81 4.28 ± 0.71 3.69 ± 0.64 3.07 ± 0.34 3.27 ± 0.11 3.18 ± 0.18 2.93 ± 0.20 3.14 ± 0.17 2.95 ± 0.19 -
LEAPGen - 0.00 ± 0.00 3.17 ± 2.83 4.83 ± 3.40 3.51 ± 2.70 2.85 ± 2.08 2.62 ± 1.62 2.26 ± 1.39 2.75 ± 1.16 2.57 ± 0.86 -

11 12 13 14 15 16 17 18 19 20 Avg.
L2P 8.78 ± 0.25 8.78 ± 0.45 9.48 ± 0.72 9.73 ± 0.19 10.27 ± 0.28 10.16 ± 0.23 10.52 ± 0.88 11.18 ± 0.98 11.79 ± 0.31 10.76 ± 0.45 7.88 ± 0.17
DualPrompt 4.51 ± 0.31 4.82 ± 0.32 4.61 ± 0.03 5.19 ± 0.31 5.16 ± 0.35 5.46 ± 0.35 5.97 ± 0.12 6.81 ± 0.23 6.97 ± 0.22 7.30 ± 0.18 5.16 ± 0.34
CODA-P 7.23 ± 1.21 7.19 ± 1.20 7.10 ± 1.03 7.25 ± 0.79 7.53 ± 0.56 7.86 ± 0.34 7.83 ± 0.79 7.89 ± 0.54 7.98 ± 0.51 8.23 ± 0.86 6.95 ± 0.70
LGCL 4.29 ± 0.43 4.92 ± 0.18 4.84 ± 0.99 5.39 ± 0.60 5.11 ± 0.52 5.73 ± 0.53 6.24 ± 0.50 6.79 ± 0.40 7.19 ± 0.62 7.35 ± 0.65 5.05 ± 0.32
HiDe-Prompt - - - - - - - - - - 2.23 ± 0.38
PGP 4.54 ± 0.07 4.84 ± 0.31 4.55 ± 0.25 5.05 ± 0.35 4.95 ± 0.11 5.10 ± 0.17 5.36 ± 0.16 6.53 ± 0.29 6.72 ± 0.08 7.17 ± 0.21 5.09 ± 0.25
EvoPrompt 5.54 ± 0.40 5.27 ± 0.54 5.48 ± 0.74 6.22 ± 0.77 6.09 ± 0.69 6.32 ± 0.54 6.28 ± 0.78 6.96 ± 0.59 6.76 ± 0.73 6.72 ± 0.90 5.67 ± 0.26
CPrompt 5.73 ± 0.36 5.73 ± 0.24 5.92 ± 0.08 5.73 ± 0.06 5.70 ± 0.13 5.75 ± 0.19 5.80 ± 0.17 5.92 ± 0.06 6.07 ± 0.30 5.98 ± 0.24 5.54 ± 0.48
ConvPrompt 2.99 ± 0.23 2.93 ± 0.28 3.12 ± 0.38 3.65 ± 0.16 3.57 ± 0.25 4.04 ± 0.51 4.65 ± 0.38 4.74 ± 0.29 4.65 ± 0.40 4.87 ± 0.57 3.57 ± 0.25
LEAPGen 2.31 ± 0.78 2.69 ± 0.26 2.63 ± 0.19 2.51 ± 0.22 2.41 ± 0.21 2.33 ± 0.14 2.35 ± 0.13 2.18 ± 0.09 2.13 ± 0.16 2.17 ± 0.17 2.54 ± 0.77

Table A20: Complete numerical result of the consolidated algorithms in ImageNet-R dataset with 20 tasks
setting. Color ”blue” and ”red” denotes the highest and runner-up performance respectively.

30

Published as a conference paper at ICLR 2025

TaskMethod 1 2 3 4 5 6 7 8 9 10 Avg.

Average Accuracy (AA)
L2P 86.34 ± 0.62 81.21 ± 0.31 75.09 ± 0.88 72.83 ± 0.79 75.51 ± 0.48 74.58 ± 0.32 71.85 ± 0.28 70.72 ± 0.17 65.19 ± 0.41 66.95 ± 0.13 74.03 ± 0.32
DualPrompt 93.33 ± 0.90 93.33 ± 0.90 86.79 ± 0.45 81.47 ± 0.47 79.40 ± 0.19 80.41 ± 0.47 79.38 ± 0.27 77.76 ± 0.39 76.37 ± 0.96 73.95 ± 0.73 80.29 ± 0.15
CODA-P 95.13 ± 4.31 91.97 ± 2.95 88.84 ± 1.34 84.55 ± 0.74 83.27 ± 1.46 81.00 ± 2.63 78.64 ± 1.56 75.94 ± 1.01 74.11 ± 0.68 72.99 ± 0.30 82.64 ± 0.64
LGCL 92.75 ± 0.45 87.06 ± 0.34 82.88 ± 0.39 80.97 ± 0.30 82.54 ± 0.21 82.24 ± 0.26 81.33 ± 0.22 81.15 ± 0.19 79.82 ± 0.35 79.93 ± 0.30 83.07 ± 0.23
HiDe-Prompt 94.08 ± 0.41 87.97 ± 0.18 87.70 ± 0.28 85.87 ± 0.30 87.06 ± 0.27 86.98 ± 0.32 86.77 ± 0.04 86.45 ± 0.11 86.55 ± 0.01 87.21 ± 0.18 87.66 ± 0.01
PGP 92.62 ± 0.89 86.97 ± 0.62 82.34 ± 0.26 80.17 ± 0.53 81.70 ± 0.72 81.11 ± 0.50 80.31 ± 0.36 80.19 ± 0.56 78.32 ± 0.66 78.35 ± 0.68 82.21 ± 0.56
EvoPrompt 88.87 ± 1.27 85.10 ± 0.00 83.83 ± 0.47 82.40 ± 0.95 80.93 ± 0.90 79.93 ± 0.64 78.53 ± 0.84 77.37 ± 0.72 76.83 ± 0.49 76.23 ± 0.51 81.00 ± 0.40
CPrompt 97.39 ± 1.09 92.82 ± 1.78 90.32 ± 0.54 87.83 ± 1.56 85.66 ± 1.12 83.99 ± 0.84 81.76 ± 1.57 80.55 ± 1.54 79.29 ± 1.54 77.14 ± 1.16 85.67 ± 0.56
ConvPrompt 96.57 ± 0.40 88.81 ± 0.09 85.11 ± 0.51 82.95 ± 1.09 84.56 ± 0.84 83.69 ± 0.84 82.59 ± 0.67 81.48 ± 0.35 81.12 ± 0.68 80.12 ± 1.37 84.70 ± 0.64
LEAPGen 95.86 ± 0.96 92.17 ± 0.62 93.38 ± 0.55 90.87 ± 0.66 90.15 ± 1.68 90.24 ± 1.46 89.55 ± 1.37 89.00 ± 1.17 89.33 ± 1.11 88.45 ± 0.58 90.90 ± 0.81

Average Forgetting Measure (FM)
L2P - 2.07 ± 0.30 14.72 ± 1.15 10.04 ± 0.63 8.04 ± 0.29 8.28 ± 0.08 6.95 ± 0.07 5.96 ± 0.08 5.25 ± 0.27 5.18 ± 0.11 7.39 ± 0.23
DualPrompt - 3.75 ± 0.49 13.52 ± 0.86 10.09 ± 0.60 9.89 ± 0.78 9.49 ± 0.54 8.25 ± 0.25 7.62 ± 0.41 6.92 ± 0.19 7.87 ± 0.76 8.60 ± 0.37
CODA-P - 3.92 ± 1.48 7.65 ± 0.76 10.66 ± 1.91 10.26 ± 1.25 10.33 ± 0.99 10.84 ± 1.61 11.83 ± 1.18 11.97 ± 2.02 11.71 ± 1.49 9.91 ± 1.04
LGCL - 1.29 ± 0.49 10.08 ± 0.74 6.92 ± 0.59 5.82 ± 0.40 5.94 ± 0.31 5.29 ± 0.35 4.88 ± 0.29 4.57 ± 0.39 5.45 ± 0.33 5.58 ± 0.39
HiDe-Prompt - 2.23 ± 0.41 2.70 ± 0.86 3.74 ± 0.53 3.20 ± 0.43 2.98 ± 0.16 2.80 ± 0.02 2.37 ± 0.18 2.04 ± 0.26 1.90 ± 0.45 2.66 ± 0.13
PGP - 1.29 ± 0.49 10.92 ± 0.71 7.99 ± 0.44 6.63 ± 0.43 6.71 ± 0.22 5.78 ± 0.11 5.13 ± 0.08 4.70 ± 0.11 5.76 ± 0.10 6.10 ± 0.26
EvoPrompt - 4.67 ± 1.02 3.28 ± 1.07 3.28 ± 1.50 3.08 ± 1.08 3.22 ± 0.52 3.11 ± 1.01 3.44 ± 0.68 4.08 ± 0.54 3.96 ± 0.43 3.57 ± 0.83
CPrompt - 4.25 ± 1.97 6.34 ± 1.04 6.95 ± 1.15 7.71 ± 0.84 9.18 ± 0.84 10.91 ± 0.85 10.38 ± 1.10 10.87 ± 1.27 11.65 ± 0.47 8.69 ± 0.31
ConvPrompt - 0.13 ± 0.22 7.44 ± 0.87 5.01 ± 0.65 4.83 ± 0.30 5.24 ± 0.24 4.74 ± 0.53 4.17 ± 0.44 3.89 ± 0.60 6.04 ± 0.97 4.61 ± 0.45
LEAPGen - 0.19 ± 0.34 0.13 ± 0.22 1.63 ± 1.31 1.85 ± 1.83 1.50 ± 1.44 1.87 ± 0.82 1.62 ± 0.67 1.46 ± 0.52 1.32 ± 0.52 1.29 ± 0.82

Table A21: Complete numerical result of the consolidated algorithms in CUB dataset with 10 tasks setting.
Color ”blue” and ”red” denotes the highest and runner-up performance respectively.

Dataset Setting LEAPGen-lite Average Accuracy on each Task Avg.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
CIFAR100 5-task 97.93 97.68 96.89 96.82 97.07 - - - - - - - - - - - - - - - 97.28

ImageNet-R 5-task 87.41 84.98 84.41 82.59 82.44 - - - - - - - - - - - - - - - 84.37
CIFAR100 10-task 99.50 99.08 98.70 98.65 98.67 98.48 98.36 98.37 98.47 98.58 - - - - - - - - - - 98.69

ImageNet-R 10-task 89.73 88.66 86.94 86.43 86.04 83.03 82.75 82.52 82.94 82.38 - - - - - - - - - - 85.14
CUB200 10-task 96.05 91.56 93.18 89.28 86.45 84.65 83.97 84.07 85.06 86.00 - - - - - - - - - - 88.03

CIFAR100 20-task 99.47 99.50 99.36 99.28 99.35 99.21 99.10 99.17 99.10 99.11 99.15 97.72 97.78 97.27 97.83 97.88 97.91 98.00 95.88 95.28 98.37
ImageNet-R 20-task 92.50 90.89 91.11 82.51 82.88 83.65 84.26 84.43 84.97 84.87 85.07 85.39 85.00 85.21 85.24 85.09 85.22 85.49 85.63 83.67 85.65

Dataset Setting LEAPGen-lite Average Forgetting on each Task Avg.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
CIFAR100 5-task - 0.00 0.03 0.01 0.05 - - - - - - - - - - - - - - - 0.02

ImageNet-R 5-task - 0.05 0.04 0.17 0.43 - - - - - - - - - - - - - - - 0.17
CIFAR100 10-task - 0.03 0.00 0.03 0.05 0.07 0.08 0.09 0.10 0.11 - - - - - - - - - - 0.06

ImageNet-R 10-task - 1.11 0.75 0.58 0.56 4.13 3.37 2.92 2.70 3.01 - - - - - - - - - - 2.13
CUB200 10-task - 0.03 3.68 2.79 2.24 3.59 3.11 2.72 2.46 2.29 - - - - - - - - - - 2.54

CIFAR100 20-task - 0.00 0.07 0.02 0.03 0.03 0.07 0.07 0.07 0.06 0.09 1.64 1.53 2.08 1.38 1.34 1.31 1.21 1.18 1.08 0.70
ImageNet-R 20-task - 0.00 0.09 0.16 0.12 0.17 0.16 0.28 0.31 0.43 0.34 0.49 0.46 0.61 0.67 0.81 0.95 0.88 0.90 1.06 0.47

Table A22: Complete Numerical Results of LEAPGen-lite on CIFAR100, ImageNet-R and CUB dataset.

31

	Introduction
	Related Work
	Preliminary
	Proposed Method
	Overview
	Architecture and Prompt Generation
	Formulation of Learning Mechanism
	Theoretical Analysis

	Experiment and Analysis
	Experiment Setting
	Result and Analysis

	Concluding Remarks
	Theoretical Analysis
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Pseudo-Code of LEAPGen Algorithm
	Complexity Analysis
	Extended Analysis
	High Similarity of Task Key Vectors
	High Similarity of Language Embedding
	Trade-offs Between Cost and Performance
	Class Name as Language Descriptor
	Performance on Various Descriptors
	Performance on Various Types of Descriptors
	Historical Performance on 5 and 20-Task Settings

	Detailed Experimental Setting
	Extended Literature Review
	Complete Numerical Results

