
A Notations / Symbols409

Table 2: Definition of Symbols
Symbol Description
g⇤ Reference value corresponding to quantity g
ḡ Nominal value corresponding to quantity g

ArAB 2 R3 Position of frame B from frame A in frame A
�AB 2 SO(3) Orientation of frame B in frame A
AvAB 2 R3 Linear velocity of frame B from frame A in frame A
A!AB 2 R3 Angular velocity of frame B from frame A in frame A
� : SO(3)⇥ SO(3) ! R3 Difference between two orientations as a rotation error vector [30]
B Frame attached to the base of the robot
E Frame attached to the arm’s end-effector of the robot
H Frame attached to the handle’s center on the object
I Inertial frame (fixed to the initial frame H on execution)
hcom Centroidal momentum of the robot
qb = (IrIB ,�IB) Base pose of the robot
qj Joint positions of the robot
qo Joint positions of the object
q̇j Joint velocities of the robot
q̇o Joint velocities of the object
q̈j Joint acceleration of the robot
⌧j Joint torques applied to the robot
m Manipulation contact mode between robot and the object
xr = (hcom,I rIB ,�IB , qj) Kinematic state of the robot
xo = (qo, q̇o) Kinematic state of the object
x = (xr,xo) Kinematic state of the robot and the object
M = {mt}

Ttask
t=1 Manipulation schedule (Sequence of manipulation contact modes)

X = {xt}
Ttask
t=1 Kinematic state trajectory (Sequence of kinematic states)

Ttask Duration (in s) of the trajectory for the task
object := object (m) True iff at least one end-effector is either already in contact with or

is establishing contact with the object
prehensile := prehensile (m) True iff a prehensile interaction is active

� 2 [0, 1] Phase signal that helps index the reference trajectory (X⇤,M⇤
)

v�
t

Task phase rate (first order-dynamics model for �)
v̂�
t

Task phase rate based on reward-dependent functions
�̄ Nominal phase signal computed using v� =

1
Ttask

�v Residual phase rate (output from the policy)
dt Step-size (in s) of the environment
ot Observation from the environment at time-step t
at Action applied to the environment at time-step t
rt Reward from the environment at time-step t

B Demonstrations using Loco-Manipulation Planner410

The loco-manipulation planner from Sleiman et al. [10] efficiently generates physically con-411

sistent demonstrations for our proposed framework. The planner relies on a high-fidelity412

model that integrates the robot’s full centroidal dynamics and first-order kinematics with the413

object’s full dynamics [35]. This helps ensure that the discovered behaviors are dynami-414

cally feasible. The planner outputs the following the continuous states and system inputs:415

x := (xr xo) = (hcom qb qj qo q̇o) and u = (we q̇j), where the robot state xr includes the416

centroidal momentum hcom, base pose qb, and joint positions qj , whereas the object state xo con-417

sists of its generalized coordinates qo and velocities q̇o. The control input u is composed of the418

robot’s joint velocities q̇j and the contact wrenches we acting at the robot’s end-effectors.419

12



Figure 7: Illustration of two loco-manipulation tasks: i) traversal of a large articulated object, and ii) dishwasher
manipulation. The user-defined robot end-effector contacts and object affordances are highlighted.

Moreover, from a set of user-defined object affordances and the robot’s end-effectors for interac-420

tion, a discrete variable mk represents the manipulation contact mode. A contact mode is a state-421

action pair, where the contact state encodes possible robot-object interaction combinations, and a422

contact-switching action indicates whether a contact is established, broken, or maintained. By ex-423

ploiting loco-manipulation-specific pruning rules, the planning algorithm in [10] efficiently solves424

for a multi-modal sequence via a sampling-based bi-level search over manipulation modes mk and425

continuous state-input trajectories hxk(t),uk(t)i, aiming to connect the start and goal states. It426

then refines the resulting plan through a single long-horizon TO while fixing the discovered contact427

sequence. We refer the reader to [10] for further details on the multi-contact planner.428

While the references generated from the planner contain the control inputs uk(t), these signals are429

usually tracked on hardware through a whole-body quadratic programming (QP) controller. This430

controller computes the necessary joint torques to achieve the desired motions. However, the QP431

controller’s robustness is limited because of its several assumptions, such as no slippages and precise432

command tracking. We use only the reference states X⇤ and contact modes M⇤ to address these433

limitations to guide the RL training process. This approach allows the NN policy to learn the under-434

lying actuator dynamics during training and adapt better to the inherent uncertainties and variations435

encountered during real-world operations.436

Table 3 summarizes the single demonstrations generated for each task. In less than a minute, all437

demonstrations are discovered on an Intel Core i7-10750H CPU@2.6GHz hexacore processor. Nav-438

igating through a spring-loaded pull door stands out as the most complex task. This can be attributed439

to several factors, including the long time horizon, the requirement for a stable prehensile interac-440

tion, and the multiple contact transitions involved. Discovering these modes using standard RL441

would necessitate careful design and tuning of handcrafted rewards, which we want to alleviate442

through our formulation.443

Table 3: Computation time and trajectory duration for demonstrations generated using the planner [10].
Task Computation Time (s) Trajectory Duration (s) Trajectory Length
Door Push 6.8 16.8 1195
Dishwasher Open 25.0 11.2 814
Dishwasher Close 23.1 12.6 902
Door Pull 44.2 23.8 1725

C MDP Formulation and PPO Training444

This section summarizes the terms that formulate the proposed MDP and the learning algorithm.445

13



C.1 Observation Terms446

Table 4 specifies the observation terms and the noise added to them during training. The critic ob-447

tains the same observations as the actor but without any noise applied. Importantly, for the adaptive-448

phase dynamics formulation, the previous action at�1 comprises both the robot commands āt�1449

and the residual phase �v .450

Table 4: Observation Terms Summary. We do not perform any scaling or clipping on individual observation
terms. All noise models are additive in nature.

Term Name Definition Noise
Robot Base Position Difference IrIB � Ir⇤IB U(�0.05, 0.05)
Robot Base Orientation Difference �IB ��⇤

IB
U(�0.1, 0.1)

Robot Base Linear Velocity BvIB U(�0.1, 0.1)
Robot Base Angular Velocity B!IB U(�0.2, 0.2)
Robot Joint Position Difference qj � q⇤

j
U(�0.01, 0.01)

Robot Joint Velocity q̇j U(�1.5, 1.5)
Robot Arm End-effector Position IrIE U(�0.05, 0.05)

Object Joint Position Difference qo � q⇤
o

U(�0.05, 0.05)

Nominal Task Phase �̄ -
Adaptive Task Phase � U(�0.005, 0.005)
Adaptive Task Phase Speed v̂� U(�0.005, 0.005)

Previous Action at�1 -

C.2 Reward Terms451

To design a task-agnostic reward function, we split the reward function into generic reference-452

tracking terms that stabilize the open-loop trajectories and standard penalty terms that ensure smooth453

motions: r̄total
t

= rtrack
t

+ rregularize
t

. For the adaptive phase formulation, the reward also includes454

the task progress: rtotal
t

= r̄total
t

+ r�
t

. The individual terms are:455

rtrack
t

= ↵1 · ||IrIB � Ir
⇤
IB

||
2
+ ↵2 · ||�IB ��⇤

IB
||
2
+ ↵3 · ||qj � q⇤

j
||
2

+ ↵4 ·
⇤
object

· ||qo � q⇤
o
||
2
+ ↵5 ·

⇤
prehensile

· ||IrIE � IrIH ||
2,

rregularize
t

= �1 · ||⌧ ||
2
+ �2 · ||v̇j ||

2
+ �3 · ||vj ||

2
+ �4 · ||Bv

z

IB
||
2
+ �5 · ||B!

xy

IB
||
2

+ �6 · ||āt � āt�1||
2

r�
t
= 1 ·

⇥
v̂� · exp(�2 · ||� � �̄||2)

⇤

where symbols have their meanings from Table 2. The individual weights are tabulated in Table 5.456

C.3 Domain Randomization457

Domain randomization helps mitigate overfitting to specific models and addresses inherent unmod-458

elled effects by introducing variability during training. In our setup, it takes the following form:459

• Object’s kinematics: These include object dimensions (e.g. door width and height), posi-460

tioning of object affordances (e.g. handle location on the panel), and handle types (cylinder461

or box). For every object category, we load 128 different kinematic variations.462

• Object’s dynamics: These include friction and restitution, spring-damping coefficients for463

the hinge joint, and constant force/torque offset on the hinge joint.464

• Robot’s dynamics: Similar to object dynamics, we vary the friction and restitution within465

[0.4, 1.0]. Additionally, the mass of the robot’s base is randomized within ± 10% of its466

nominal values.467

• External disturbances: At randomly sampled episode intervals, external pushes are ap-468

plied to both the robot and the object. For the robot, this implies adding random velocity469

14



Table 5: Reward Terms Summary. The environment scales the reward weights with the time-step dt [36]. For
brevity, we drop the time-step t from individual quantities unless necessary. We use the same reward weights
for all the loco-manipulation tasks.

Term Name Definition Weight
Robot Base Position Tracking ||IrIB � Ir⇤IB ||

2
�0.2

Robot Base Orientation Tracking ||�IB ��⇤
IB

||
2

�0.2
Robot Joint Position Tracking ||qj � q⇤

j
||
2

�0.2
Object Joint Position Tracking ⇤

object
· ||qo � q⇤

o
||
2

�0.2
Robot Arm End-effector Position Tracking ⇤

prehensile
· ||IrIE � IrIH ||

2
�10.0

Action Rate ||at � at�1||
2

�0.05
Robot Base Linear Velocity (along z) ||Bvz

IB
||
2

�0.5
Robot Base Angular Velocity (along xy) ||B!

xy

IB
||
2

�0.05
Robot Joint Velocity ||q̇j ||2 �1.0⇥ 10

�5

Robot Joint Acceleration ||q̈j ||2 �1.0⇥ 10
�5

Robot Applied Joint Torque ||⌧j ||2 �2.5⇥ 10
�5

Task Progress (only with adaptive phase) v̂� · exp(�10.0 · ||� � �̄||2) 25.0

(pushes) to the robot’s base. For the door, this is done by applying a randomly sampled470

external force on the door panel.471

• Reset state at the beginning of an episode: We apply additive offsets to the robot’s ref-472

erence configuration at �init = 0 so that the policy is robust to varying initial locations of473

the robot in front of the door. Ideally, we would like to apply this at any randomly sampled474

�; doing so is non-trivial due to the difficulty in filtering invalid collision configurations.475

C.4 Termination Term476

We trigger episode termination when the robotic system loses balance or episode length times out.477

Typically, we infer a fall from a significant force acting on the robot’s base, indicating ground con-478

tact. However, distinguishing the source of this force becomes challenging during loco-manipulation479

tasks, as contact between the robot’s base and an object is both expected and sometimes permissible.480

Thus, we rely on the base to not drop below 0.3m to correctly detect falls.481

C.5 Adaptive-Phase Hyperparameters482

We now list down the hyperparameters for the remainder of the MDP formulation. These include483

parameters for scaling the input actions and those for the adaptive-phase formulation in Eq. 4.484

Table 6: MDP Hyperparameters.
Hyperparameter Value
Episode length 15 s

Simulation time-step 0.005 s
Control decimation 4
Robot action scale: �1 0.5
Residual phase action scale (3): �2 0.01
Adaptive phase (4): ↵1 0.2
Adaptive phase (4): ↵2 0.2
Adaptive phase (4): ↵4 0.2
Adaptive phase (4): � 50.0
Adaptive phase (4): �i 0.002

15



C.6 Learning Algorithm485

For each task, we train the policy using the on-policy RL algorithm, Proximal Policy Optimization486

(PPO) [34]. The actor and critic networks are designed as a Multi-Layer Perceptron (MLP) with487

a [256 ⇥ 128 ⇥ 64] hidden-layer structure and an ELU activation function. A complete list of488

hyperparameters and their values is specified in Table 7.489

Table 7: PPO Hyperparameters
Hyperparameter Value
Empirical Normalization True
Learning Rate (start of training) 1e-3
Learning Rate Schedule “adaptive” (based on KL-divergence [36])
Discount Factor 0.99
GAE Discount Factor 0.95
Desired KL-divergence 0.01
Clip Range 0.2
Entropy Coefficient 0.0
Value Function Loss Coefficient 1.0
Batch Size 245,760 (4096⇥ 60)

Mini-Batch Size 61,440 (4096⇥ 15)

Number of Epochs 5
Number of iterations 10,000

D Supplementary Discussions490

In this section, we highlight some of the overlooked challenges our trained policy could face upon491

real-world deployment and briefly mention solutions for them.492

D.1 Object Locking Mechanism493

Our policy is trained on doors where handles are treated as fixed object-attached links. However, a494

typical door can only be opened after being unlocked using its handle. By adapting our environment495

to incorporate a door-locking mechanism, our current setup results in behaviors involving the robot496

pushing the handle downwards, but with significantly lower success rates. One way to resolve this497

would be to use an asymmetric actor-critic structure, where the critic obtains the handle angle.498

D.2 Unknown Object Type499

In real-world scenarios, we expect the robot to autonomously traverse diverse doors without speci-500

fying the type of door (i.e., push or pull door). One way to achieve this objective would be to first501

train a multi-task policy that can execute both door-traversal behaviors and then separately train a502

door-type estimator that outputs the appropriate task command to the policy.503

D.3 Unknown Object State504

In the current hardware experiments, we rely on explicit sensors such as door encoders to obtain505

the joint position of the panel. However, in more realistic scenarios, this information needs to be506

extracted from the robot’s onboard sensors. One mechanism to achieve this goal is doing teacher-507

student learning by treating the current policy as the teacher policy and training a student policy that508

receives depth images directly.509

D.4 Applicability to Other Scenarios510

In this work, we demonstrated the approach on multi-contact tasks that primarily involved articulated511

object manipulation. However, there is an open question on the generalization of the approach to512

other tasks and robots. These include rigid object manipulation, such as box pushing, and other513

morphologies, such as bimanual manipulation and dexterous hands. While we believe the method514

should work for these other scenarios, we leave this as part of future work.515

16


