w9 A Notations / Symbols

410

411
412
413
414
415
416
417
418
419

Table 2: Definition of Symbols

Symbol Description

g* Reference value corresponding to quantity g

g Nominal value corresponding to quantity g

ATAB € R3 Position of frame B from frame A in frame A

P45 € SO(3) Orientation of frame B in frame A

AvAp € R3 Linear velocity of frame B from frame A in frame A
Awap € R3 Angular velocity of frame B from frame A in frame A

3:50(3) x SO(3) — R3

Difference between two orientations as a rotation error vector [30]

B Frame attached to the base of the robot

E Frame attached to the arm’s end-effector of the robot

H Frame attached to the handle’s center on the object

1 Inertial frame (fixed to the initial frame H on execution)
heom Centroidal momentum of the robot

a = (1718, ®1B) Base pose of the robot

q; Joint positions of the robot

qo Joint positions of the object

q; Joint velocities of the robot

qo Joint velocities of the object

qg; Joint acceleration of the robot

T Joint torques applied to the robot

m Manipulation contact mode between robot and the object
z, = (heom,1 718, P18, qj) Kinematic state of the robot

T, = (9o, qo) Kinematic state of the object

x = (x,, %;%
M = {m}, =
X = {x;}i
task
]lobject =]lobject (m)

]lprehensile =

]lprehensile (m>

Kinematic state of the robot and the object

Manipulation schedule (Sequence of manipulation contact modes)
Kinematic state trajectory (Sequence of kinematic states)

Duration (in s) of the trajectory for the task

True iff at least one end-effector is either already in contact with or
is establishing contact with the object

True iff a prehensile interaction is active

¢ €1[0,1] Phase signal that helps index the reference trajectory (X ™*, M™)
vf’ Task phase rate (first order-dynamics model for ¢)

Qf Task phase rate based on reward-dependent functions

¢ Nominal phase signal computed using v = 7

0y Residual phase rate (output from the policy)

dt Step-size (in s) of the environment

(o2 Observation from the environment at time-step ¢

a; Action applied to the environment at time-step ¢

T Reward from the environment at time-step ¢

B Demonstrations using Loco-Manipulation Planner

The loco-manipulation planner from Sleiman et al. [10] efficiently generates physically con-

sistent demonstrations for our proposed framework.

The planner relies on a high-fidelity

model that integrates the robot’s full centroidal dynamics and first-order kinematics with the

object’s full dynamics [35].
cally feasible.

This helps ensure that the discovered behaviors are dynami-
The planner outputs the following the continuous states and system inputs:

x = (z, o) = (Rcom @ 9 9o go) and u = (W ¢;), where the robot state x, includes the
centroidal momentum h.,,, base pose g, and joint positions q;, whereas the object state x,, con-
sists of its generalized coordinates q, and velocities g,. The control input w is composed of the
robot’s joint velocities g; and the contact wrenches w,, acting at the robot’s end-effectors.

12

420
421
422
423
424
425
426
427
428

429
430
431
432
433
434

436

437

438

440
441
442
443

444

445

[Nonprehensile Feet Contacts Prehensile Arm Contact —> Prehensile Point Contact —> Nonprehensile Surface Contact]

Figure 7: Illustration of two loco-manipulation tasks: i) traversal of a large articulated object, and ii) dishwasher
manipulation. The user-defined robot end-effector contacts and object affordances are highlighted.

Moreover, from a set of user-defined object affordances and the robot’s end-effectors for interac-
tion, a discrete variable 1y represents the manipulation contact mode. A contact mode is a state-
action pair, where the contact state encodes possible robot-object interaction combinations, and a
contact-switching action indicates whether a contact is established, broken, or maintained. By ex-
ploiting loco-manipulation-specific pruning rules, the planning algorithm in [10] efficiently solves
for a multi-modal sequence via a sampling-based bi-level search over manipulation modes 1 and
continuous state-input trajectories (xy(t), u(¢)), aiming to connect the start and goal states. It
then refines the resulting plan through a single long-horizon TO while fixing the discovered contact
sequence. We refer the reader to [10] for further details on the multi-contact planner.

While the references generated from the planner contain the control inputs u(t), these signals are
usually tracked on hardware through a whole-body quadratic programming (QP) controller. This
controller computes the necessary joint torques to achieve the desired motions. However, the QP
controller’s robustness is limited because of its several assumptions, such as no slippages and precise
command tracking. We use only the reference states X * and contact modes M ™ to address these
limitations to guide the RL training process. This approach allows the NN policy to learn the under-
lying actuator dynamics during training and adapt better to the inherent uncertainties and variations
encountered during real-world operations.

Table 3 summarizes the single demonstrations generated for each task. In less than a minute, all
demonstrations are discovered on an Intel Core 17-10750H CPU @2.6GHz hexacore processor. Nav-
igating through a spring-loaded pull door stands out as the most complex task. This can be attributed
to several factors, including the long time horizon, the requirement for a stable prehensile interac-
tion, and the multiple contact transitions involved. Discovering these modes using standard RL
would necessitate careful design and tuning of handcrafted rewards, which we want to alleviate
through our formulation.

Table 3: Computation time and trajectory duration for demonstrations generated using the planner [10].

Task Computation Time (s) Trajectory Duration (s) Trajectory Length
Door Push 6.8 16.8 1195
Dishwasher Open 25.0 11.2 814
Dishwasher Close 23.1 12.6 902
Door Pull 44.2 23.8 1725

C MDP Formulation and PPO Training

This section summarizes the terms that formulate the proposed MDP and the learning algorithm.

13

446

447
448
449
450

451

452
453
454
455

456

457

458

460
461
462

463
464

465
466
467

468
469

C.1 Observation Terms

Table 4 specifies the observation terms and the noise added to them during training. The critic ob-
tains the same observations as the actor but without any noise applied. Importantly, for the adaptive-
phase dynamics formulation, the previous action a;_; comprises both the robot commands a;_1
and the residual phase §,.

Table 4: Observation Terms Summary. We do not perform any scaling or clipping on individual observation
terms. All noise models are additive in nature.

Term Name Definition Noise

Robot Base Position Difference rig — 1T g U(—0.05,0.05)
Robot Base Orientation Difference ®;p H ®75 U(-0.1,0.1)

Robot Base Linear Velocity BUIB U(-0.1,0.1)
Robot Base Angular Velocity BWIB U(-0.2,0.2)
Robot Joint Position Difference q; — q; U(—0.01,0.01)
Robot Joint Velocity d; U(-1.5,1.5)
Robot Arm End-effector Position ITIE U(—0.05,0.05)
Object Joint Position Difference 9 — q; U(—0.05,0.05)
Nominal Task Phase o -
Adaptive Task Phase o) U(—0.005,0.005)
Adaptive Task Phase Speed A U(—0.005,0.005)

Previous Action a;_1 -

C.2 Reward Terms

To design a task-agnostic reward function, we split the reward function into generic reference-
tracking terms that stabilize the open-loop trajectories and standard penalty terms that ensure smooth

. _ [3 . . .
motions: Fiotal = plrack y preguiarize Ror the adaptive phase formulation, the reward also includes
the task progress: (ool = total 4 ¢ The individual terms are:

track __ * 112 * 2 *12
r Y =an |l — 1ripllT + a2 - | B Rl + as - [lg; — g

+as Lopieer - |1go — all* +as- Lprehensite * 11718 — ol
pregarize — g L2 4 By - (o124 Bs - llvs 12 + Ba - || svigll? + Bs - || 5w?S[?
+ s - lla = aea |
=k [@¢ -exp(—kz - ||¢ — 9| *)]

where symbols have their meanings from Table 2. The individual weights are tabulated in Table 5.

C.3 Domain Randomization

Domain randomization helps mitigate overfitting to specific models and addresses inherent unmod-
elled effects by introducing variability during training. In our setup, it takes the following form:

* Object’s kinematics: These include object dimensions (e.g. door width and height), posi-
tioning of object affordances (e.g. handle location on the panel), and handle types (cylinder
or box). For every object category, we load 128 different kinematic variations.

* Object’s dynamics: These include friction and restitution, spring-damping coefficients for
the hinge joint, and constant force/torque offset on the hinge joint.

* Robot’s dynamics: Similar to object dynamics, we vary the friction and restitution within
[0.4,1.0]. Additionally, the mass of the robot’s base is randomized within + 10% of its
nominal values.

* External disturbances: At randomly sampled episode intervals, external pushes are ap-
plied to both the robot and the object. For the robot, this implies adding random velocity

14

470
471

472
473
474
475

476

477
478
479
480
481

482

483
484

Table 5: Reward Terms Summary. The environment scales the reward weights with the time-step dt [36]. For
brevity, we drop the time-step ¢ from individual quantities unless necessary. We use the same reward weights
for all the loco-manipulation tasks.

Term Name Definition Weight
Robot Base Position Tracking ll1ri5 — 152 —0.2
Robot Base Orientation Tracking ||®:5 B ®55]? —0.2
Robot Joint Position Tracking lg; — q;l? -0.2
Object Joint Position Tracking Vpicer 1180 — @312 —0.2
Robot Arm End-effector Position Tracking 1% ;. cpaire - 11718 — 17102 —10.0
Action Rate lla; — a;_1][? —0.05
Robot Base Linear Velocity (along 2) [Bvipll -0.5
Robot Base Angular Velocity (along xy) ||winll? —0.05
Robot Joint Velocity g2 -1.0x107°
Robot Joint Acceleration |g;||? —1.0x 107
Robot Applied Joint Torque [|75]] —2.5x107°
Task Progress (only with adaptive phase) ¢ - exp(—10.0 - ||¢ — ¢[|?) 25.0

(pushes) to the robot’s base. For the door, this is done by applying a randomly sampled
external force on the door panel.

* Reset state at the beginning of an episode: We apply additive offsets to the robot’s ref-
erence configuration at ¢;,,;; = 0 so that the policy is robust to varying initial locations of
the robot in front of the door. Ideally, we would like to apply this at any randomly sampled
¢; doing so is non-trivial due to the difficulty in filtering invalid collision configurations.

C.4 Termination Term

We trigger episode termination when the robotic system loses balance or episode length times out.
Typically, we infer a fall from a significant force acting on the robot’s base, indicating ground con-
tact. However, distinguishing the source of this force becomes challenging during loco-manipulation
tasks, as contact between the robot’s base and an object is both expected and sometimes permissible.
Thus, we rely on the base to not drop below 0.3 m to correctly detect falls.

C.5 Adaptive-Phase Hyperparameters

We now list down the hyperparameters for the remainder of the MDP formulation. These include
parameters for scaling the input actions and those for the adaptive-phase formulation in Eq. 4.

Table 6: MDP Hyperparameters.

Hyperparameter | Value
Episode length 15s
Simulation time-step 0.005s
Control decimation 4
Robot action scale: o 0.5
Residual phase action scale (3): o5 0.01
Adaptive phase (4): oz 0.2
Adaptive phase (4): ae 0.2
Adaptive phase (4): ay 0.2
Adaptive phase (4): A 50.0
Adaptive phase (4): v; 0.002

15

485

486
487
488
489

490

491
492

493

494
495
496
497
498

499

500
501

503

504

505
506
507
508
509

510

511
512
513
514
515

C.6 Learning Algorithm

For each task, we train the policy using the on-policy RL algorithm, Proximal Policy Optimization
(PPO) [34]. The actor and critic networks are designed as a Multi-Layer Perceptron (MLP) with
a [256 x 128 x 64] hidden-layer structure and an ELU activation function. A complete list of
hyperparameters and their values is specified in Table 7.

Table 7: PPO Hyperparameters

Hyperparameter | Value
Empirical Normalization True
Learning Rate (start of training) le-3
Learning Rate Schedule “adaptive” (based on KL-divergence [36])
Discount Factor 0.99

GAE Discount Factor 0.95
Desired KL-divergence 0.01

Clip Range 0.2

Entropy Coefficient 0.0

Value Function Loss Coefficient 1.0

Batch Size 245,760 (4096 x 60)
Mini-Batch Size 61,440 (4096 x 15)
Number of Epochs 5

Number of iterations 10,000

D Supplementary Discussions

In this section, we highlight some of the overlooked challenges our trained policy could face upon
real-world deployment and briefly mention solutions for them.

D.1 Object Locking Mechanism

Our policy is trained on doors where handles are treated as fixed object-attached links. However, a
typical door can only be opened after being unlocked using its handle. By adapting our environment
to incorporate a door-locking mechanism, our current setup results in behaviors involving the robot
pushing the handle downwards, but with significantly lower success rates. One way to resolve this
would be to use an asymmetric actor-critic structure, where the critic obtains the handle angle.

D.2 Unknown Object Type

In real-world scenarios, we expect the robot to autonomously traverse diverse doors without speci-
fying the type of door (i.e., push or pull door). One way to achieve this objective would be to first
train a multi-task policy that can execute both door-traversal behaviors and then separately train a
door-type estimator that outputs the appropriate task command to the policy.

D.3 Unknown Object State

In the current hardware experiments, we rely on explicit sensors such as door encoders to obtain
the joint position of the panel. However, in more realistic scenarios, this information needs to be
extracted from the robot’s onboard sensors. One mechanism to achieve this goal is doing teacher-
student learning by treating the current policy as the teacher policy and training a student policy that
receives depth images directly.

D.4 Applicability to Other Scenarios

In this work, we demonstrated the approach on multi-contact tasks that primarily involved articulated
object manipulation. However, there is an open question on the generalization of the approach to
other tasks and robots. These include rigid object manipulation, such as box pushing, and other
morphologies, such as bimanual manipulation and dexterous hands. While we believe the method
should work for these other scenarios, we leave this as part of future work.

16

