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7. Network

7.1. Network Architecture

Our proposed network architecture mainly consists of three
components: (1) Hierarchical point cloud feature extraction.
(2) Global attentive flow initialization. (3) Local flow refine-
ment. To hierarchically extract semantic features from point
clouds, we begin by adopting a pyramid feature extraction
network. Subsequently, we construct an attentive global flow
embedding that accounts for both high-dimensional feature
space and Euclidean space. The resulting sparse flow is then
upsampled using upsampling and warping layers, enabling
denser flows at lower levels. These flows are accumulated
onto the source frame, ultimately yielding the warped source
frame. Thereafter, spatiotemporal re-embedding features
are used for hierarchical refinement of the residual scene
flow between the warped source frame and the target frame.
Through iterative refinement, full-resolution scene flow is
generated as the ultimate result.

The architecture of our model comprises a total of 5 lev-
els. We take N1 = M1 = 8192 points as input, randomly
sampled from source and target frames if they contain dif-
ferent numbers of points. Within the multi-layer pyramid
network, the down-sampled points vary across different lev-
els, with N2 = 2048, N3 = 512, N4 = 256, and N5 = 64,
respectively. Notably, the 5th layer is referred to as the GF
module.

7.2. Local Flow Embedding

In this section, we input the warped source frame and target
frame into the Local Flow Embedding (LFE) module to
generate a local flow embedding, which is realized following
the patch-to-patch approach [40].

The matching cost between two frames of point clouds
can be defined as follows:

cost (yj , wxk) = MLP(η(STRFk, gj , yj − wxk)), (16)

where η stands for concatenation. STRFk is the feature
of warped source point wxk, and gj is the feature of target
point yj . Afterward, this matching cost can be aggregated
into a point-to-patch cost volume between the two frames.

CVpoint(wxk) =
∑

yj∈NT (wxk)

MLP(yj − wxk)cost (yj , wxk) .

(17)
Finally, the patch-to-patch cost volume for warped source

point wxi can be defined as:

CVpatch (wxi) =
∑

wxk∈NWS(wxi)

MLP(wxk − wxi)CVpoint(wxk).

(18)
Here MLP(wxk −wxi) and MLP(yj −wxk) are the aggre-
gation weights determined by the direction vectors. Follow
the notation in the main text, we use NWS(wxi) to define
the neighbors of wxi in frame WS and NT (wxk) to define
the neighbors of wxk in frame T . The patch-to-patch manner
employed in the cost volume is illustrated in Figure 8.

8. Experiments Settings

8.1. Evaluation Metrics

For fair comparisons, we leverage the same set of evaluation
metrics as in the previous methods [4, 21, 33, 40].

• EPE3D: the main evaluation measuring average 3D end-
point-error which is formulated as EPE3D = 1

N

∑
i∥s̃fi−

sfi∥2
• AS3D: the strict version for scene flow accuracy which

denotes the percentage of points whose EPE3D < 0.05m
or relative error < 5%.

• AR3D: the relax version for scene flow accuracy which
denotes the percentage of points whose EPE3D < 0.1m or
relative error < 10%.

• Out3D: the proportion of points that exhibit significant
miscalculations, characterized by an EPE3D > 0.3m or
relative error > 30%.

• EPE2D: the main measurement for 2D optical flow which
represents the end-point-error by projecting points black
to the 2D image plane.

• Acc2D: the percentage of points whose EPE2D < 3px or
relative error < 5%.

8.2. Search Methods

To assess the enhancement of the KNN+Radius approach
compared to the pure KNN method, we visualize the flow
disparities of different points under the search strategies of
KNN and KNN+Radius local point clusters based on the
ground truth of the scene flow.

From Figure 9 it can be observed that using only KNN in-
troduces noise points that do not belong to the block, thereby
causing greater local flow disparities and leading to deviating
in the network model learning.
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Figure 8. The structure of the Local Flow Embedding (LFE) module. We first generate NWS(wx) and NT (wx) using KNN for each warped
source point wx. Then, we input each point and its neighbors from frames WS and T along with their features into the LFE module.The
spatiotemporal re-embedded feature of the warped point wxk is combined with the features of its neighboring points in NT (wxk), along
with the direction vector yj − wxk. Subsequently, they are processed through an MLP to calculate a point-to-patch cost between wxk and
the target frame T . Following this, each point-to-patch cost in NWS(wxi) is additionally self-aggregated using an MLP to construct a
patch-to-patch cost volume.
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Figure 9. The differences of ground truth scene flow local consis-
tency under different nearest point search methods. The normalized
value is shown in the right color bar.

8.3. Hyper-parameters in DA Losses

We conduct a comprehensive experimental analysis on
the hyper-parameters K,R, and TH in the context of DA
Losses, where R represents the radius truncation of neighbor
search, K represents the number of neighbors in KNN, and
TH represents the cross-frame feature similarity threshold.
It is worth mentioning that R and K are uniform across both
Local Flow Consistency (LCF) and Cross-frame Feature
Similarity (CFS) loss functions since they are utilized to
identify local rigid blocks with similar semantic features.

To analyze the local consistency of ground truth (GT)
flow, we initiate the process by selecting a suitable scenario
in the KITTIs dataset that exhibits minimal visible back-
ground points, as depicted in Figure 10. Subsequently, we
systematically augment the ranges of R and K to acquire di-
verse consistency outcomes. As shown in Figure 10 and Fig-
ure10, the quantity of KNN group points exhibits a gradual
decrease as the truncation radius decreases. Simultaneously,
the average flow differences within each group also decrease,

indicating that the KNN+Radius search method effectively
eliminates the noise points.

We further explore the disparities between KNN and
KNN+Radius search methods. The KNN+Radius search
method results in certain points without any neighboring
points. These isolated points, known as exceptionally sparse
or invalid points, function as noise points that impede flow
smoothing. However, utilizing the pure KNN search method
would optimize flow consistency between noise points and
mandatory surrounding points, which is an incorrect out-
come. By observing the size of local rigid blocks in real-
world scenarios, we finally select R = 0.05m as the trun-
cation radius to perform ablation experiments on different
KNN search numbers. The results are shown in Figure 10.

Threshold TH 0.99 0.95 0.9 0.8 0.7 0.6

EPE3D 0.0149 0.0114 0.0122 0.0138 0.0151 0.0180

Table 8. The EPE3D of KITTIs with different cross-frame feature
similarity threshold.

Regarding the selection of hyper-parameter TH in the
CFS loss function, we fix K = 32 and R = 0.05m that rep-
resent a local rigid block for capturing cross-frame similar
features and test different TH values in the ablation experi-
ments. The corresponding results are listed in Table 8. Our
model was trained for a limited number of 450 epochs on the
FT3Ds dataset and subsequently evaluated on the KITTIs
dataset without undergoing any fine-tuning, which is enough
for observing the trend.



(a) The visualization of a KITTIs dataset scene in which there are rare
background points observed.

𝑅 (𝑚) \ 𝐾 2 7 16 32 64 128

0.001 0.00102 0.00104 0.00104 0.00104 0.00104 0.00104

0.0025 0.00106 0.00111 0.00111 0.00111 0.00111 0.00111

0.005 0.00108 0.00113 0.00114 0.00114 0.00114 0.00114

0.0075 0.00108 0.00113 0.00115 0.00116 0.00116 0.00116

0.01 0.00108 0.00113 0.00115 0.00117 0.00117 0.00117

0.015 0.00108 0.00114 0.00116 0.00118 0.00119 0.00119

0.02 0.00108 0.00114 0.00117 0.00119 0.00121 0.00121

0.05 0.00107 0.00113 0.00116 0.0012 0.00124 0.00128

0.1 0.00106 0.00112 0.00116 0.0012 0.00125 0.00132

0.5 0.00106 0.00112 0.00116 0.0012 0.00126 0.00135

0.75 0.00106 0.00112 0.00116 0.0012 0.00126 0.00135

1 0.00106 0.00112 0.00116 0.0012 0.00126 0.00135

2 0.00106 0.00112 0.00116 0.0012 0.00126 0.00135

5 0.00118 0.00124 0.00128 0.00132 0.00138 0.00147

∞ 0.00118 0.00124 0.00128 0.00232 0.00519 0.007

(b) A color level plot to visualize the average local differences in GT
flow for different combinations of R and K.

𝑅 (𝑚) \ 𝐾 2 7 16 32 64 128

0.001 62.33% 27.51% 12.12% 6.06% 3.03% 1.51%

0.0025 83.36% 58.33% 30.08% 15.06% 7.53% 3.76%

0.005 91.95% 78.96% 56.76% 30.87% 15.43% 7.71%

0.0075 94.36% 86.79% 70.58% 46.24% 23.32% 11.66%

0.01 95.53% 89.98% 77.85% 57.88% 31.06% 15.53%

0.015 96.50% 92.91% 85.72% 71.26% 46.40% 23.26%

0.02 97.13% 94.17% 89.52% 78.64% 58.56% 31.05%

0.05 98.54% 96.58% 94.56% 91.50% 82.45% 65.60%

0.1 99.34% 97.81% 96.15% 94.49% 91.07% 81.74%

0.5 99.95% 99.66% 98.48% 97.11% 96.07% 94.25%

0.75 99.95% 99.78% 98.89% 97.44% 96.47% 95.09%

1 99.97% 99.84% 99.12% 97.68% 96.64% 95.54%

2 99.99% 99.97% 99.59% 98.40% 97.12% 96.25%

5 100.00% 99.99% 99.84% 99.21% 97.96% 96.84%

∞ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

(c) As the value of R progressively increases, a color level plot illustrates
the proportion of points accessible through KNN + Radius compared to
the original KNN. As the radius approaches infinity, the original KNN
behavior is reinstated.
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(d) The EPE3D of KITTIs with increasing the number of KNN searches
on a reasonable local rigid radius (R = 0.05 m). Notably, our model is
tested on the KITTIs dataset without any fine-tuning.

Figure 10. Ablation studies and analysis of adaption losses.

(a) (b) (c)

Figure 11. (a) The occlusion occurs between the source frame and the target frame. In this scenario, red bounding boxes delineate points in
the source frame that vanish when transitioning to the target frame. (b) The green points represent the result of warping the source frame
using our predictions. Here, the red points indicate incorrectly predicted warped points that have an EPE3D greater than 0.1m. (c) The green
points depict the result of warping the source frame using ground truth.

9. Limitations

Inferring motion flow for occluded objects has always been a
challenging task. Particularly, in situations where objects are
completely occluded, as defined in [27], motion inference
relying on the consistency of local motion becomes implau-

sible. In real-world scenarios, taking into account roadway
regulations, it might be feasible to estimate the movement
of occluded vehicles on the lane by considering the overall
directionality of traffic flow. However, for synthetic datasets
like FT3Do, where random motion is assigned, it is challeng-
ing to infer the motion of completely occluded objects even



Model EPE3D↓ Param
size (M)

Run
time (ms)

PointPWC 0.0588 7.72M 76ms
PointPWC+STR 0.0504 8.02M 81ms
PointPWC+STR+GF 0.0402 9.89M 96ms

Bi-PointflowNet 0.0282 7.96M 80ms
Bi-PointFlow+GF 0.0227 9.21M 87ms
Bi-PointFlow+GF+STR 0.0187 10.85M 103ms

FlowNet3D 0.1136 1.23M 70ms
FlowNet3D+GF 0.0837 1.36M 94ms

WM3DSF 0.0281 4.77M 63ms
WM3DSF+DCA Fusion 0.0209 5.37M 72ms

Table 9. Transfer results on FT3Ds.

for humans due to the unpredictable and random nature of
the motion generation. Our model exhibits poor performance
in some completely occluded synthetic scenes, as illustrated
in Figure 11. An effective approach involves integrating a
specific pattern of motion (object-wise relation) during the
generation of a synthesized scene flow dataset.

10. Datasets

Experiments are conducted on four datasets, namely the
synthetic dataset FlyThings3D (FT3D) [23] and three real-
world datasets, including Stereo-KITTI [24, 25], LiDAR-
KITTI [10], and SF-KITTI [8].

The synthetic dataset FT3D is derived from a large-scale
collection of stereo videos. Each pair of point cloud scenes
is generated from RGB stereo images in the ShapeNet [3],
with random motion assigned to multiple objects within
the scenes. Another stereo dataset Stereo-KITTI is a real-
world dataset comprising 200 training sets and 200 testing
sets. Building on the previous literature, two distinct pre-
processing techniques are employed for these two datasets.
A technique from [13] is utilized to remove points that do
not correspond between consecutive frames, resulting in pro-
cessed datasets referred to as FT3Ds and KITTIs. The sec-
ond technique, proposed by [21], takes a different approach
by preserving the occluded points. Instead of removing them,
mask labels are used to indicate occluded points for evalu-
ation purposes. The datasets generated using this method
are referred to as FT3Do and KITTIo. The FT3Ds dataset
comprises 19,640 pairs of training data and 3,824 pairs for
evaluation. On the other hand, the FT3Do dataset consists
of 20,008 point cloud pairs for training and 2,008 pairs for
testing. Regarding the KITTIs and KITTIo datasets, they
contain 142 and 150 pairs of test-only data, respectively.

However, it is noteworthy that the FT3D and Stereo-
KITTI datasets, which are derived from dense and regular
disparity images, differ from real-world LiDAR-scanned

datasets. To demonstrate the robust generalization of our
SSRFlow on LiDAR-scanned datasets, we conducted addi-
tional experiments using datasets [8, 10, 12]. Specifically,
SF-KITTI [8] is a large-scale real-world scene flow dataset
that is based on LiDAR-scanned data. It comprises 7,185
pairs of data. Following [8], we further divide the dataset
into 6,400 pairs for training and 600 pairs for testing. In addi-
tion, the LiDAR-KITTI [10, 12], dataset includes 142 pairs
of real-world scenarios captured by the Velodyne 64-beam
LiDAR, specifically designed for testing purposes. This
dataset is particularly valuable as it highlights the sparse and
non-corresponding point characteristics that are often ob-
served between consecutive frames of the real-world LiDAR-
scanned point clouds.

11. More Results
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Figure 13. The blue points denote the source frame. The green points represent the result of warping the source frame using predictions.
Here, the red points indicate wrong predicted warped points that have an EPE3D greater than 0.1m.


