Published as a conference paper at ICLR 2025

A ADDITIONAL IMPLEMENTATION DETAIL.

In this section, we provide further details to ensure the reproducibility of our work. Specifically,
for Adaptive Retention, given a batch of test samples, we compute the loss using Equation (3) and
perform a single gradient update based on this loss. For non-prompt-based methods, we utilize the
SGD optimizer, while for prompt-based methods, we employ the Adam optimizer.

Conceptually, this approach is equivalent to training on the test data for a single epoch, where each
test sample is used exactly once. This design of performing only one gradient update aligns with
our objective of simulating realistic scenarios. In standard testing, models process a batch of test
samples in a single forward pass to generate predictions. In ARC, we extend this principle by limiting
the process to one forward pass and one gradient update, thereby preserving both the efficiency and
practicality of the testing procedure.

For details on hyperparameter settings, we refer readers to our codebase.

B ADDITIONAL COMPARISON WITH TTA METHOD.

We also attempt to compare with the CoTTA Wang et al. (2022b) method. However, our findings
reveal that CoTTA is not compatible with prompt-based methods. Directly applying CoTTA to these
methods leads to a decrease in performance, as shown in Table 6. For non-prompt-based methods,
while CoTTA does provide some improvements, the gains are less significant than those achieved by
ARC. This is evident in the comparison of Table 7.

Split Imagenet-R Inc 20 Split Imagenet-R Inc 20

Method Method ‘

Ap B

L2p 72.6 iCarL + CoTTA 64.7

L2P + CoTTA 722 iCarL + ARC 67.6

DualPrompt 69.1 Memo + CoTTA 67.6

DualPrompt + CoTTA 67.7 Memo + ARC 68.2
Table 6: CoTTA on prompt based methods. Table 7: CoTTA on non-prompt based

methods.

C TIME COMPLEXITY.

We also perform time complexity analysis in Table 8. As shown, there is a certain amount of
additional inference time required for ARC. This is expected, as ARC is specifically designed to
address classification bias during inference, which naturally incurs some additional computational cost.
Furthermore, it is worth noting that research in other areas, such as large language models (LLMs),
are increasingly exploring methods that enhance performance by utilizing additional inference-time
computation. There is a growing consensus that additional inference time is a reasonable trade-
off when it leads to significant improvements in model performance. Similarly, we believe the
computational cost of our method is well-justified by the substantial performance gains it delivers.

Split Imagenet-R Inc 20

Method ‘ 5
Split Imagenet-R Inc 20
Method Additi p 1 Ti g Perf. . iCarL + ARC 64.7
dditional Time Performance Gain iCarL. + ARC-Last 67.6
iCarLL 11% 6.6 Memo + ARC ‘ 67.6
Memo 8% 2.0 Memo + ARC-Last 68.2
L2p 37% 25 Libs ARG | o7
-Las! .
DualPrompt 32% 1.4
DualPrompt + ARC 67.6
DualPrompt + ARC-Last 68.2

Table 8: Additional time requirement for ARC.
Table 9: ARC applied on last task only.

14



Published as a conference paper at ICLR 2025

D ARC ONLY ON FINAL TASK.

Currently, we apply ARC after completing training on each task. However, it is also valuable to
explore how ARC performs when applied only after the final training task. In Table 9, we denote
this approach as ARC-Last. As shown, ARC continues to yield significant improvements even when
applied exclusively after the final task, further demonstrating the effectiveness of our approach.

15



