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A SUMMARY
We provide details of our implementation in Appendix B. More
results of the ablation studies are provided in Appendix C. Appendix
D contains further qualitative experiments showing the inpainting
performance of our method in different datasets.

B IMPLEMENTATION DETAILS
We implement this framework in the PyTorch and Python 3.8 envi-
ronment. Our model is trained and tested on a machine equipped
with a GeForce RTX 3090 graphics card. For each scene, we it-
eratively train the NeRF model 100,000 times using the provided
multi-view images and corresponding camera poses to obtain depth
information for all training views in the scene. After that, we select
one view in the training dataset to annotate the occluded area. The
region encoding network in the object segmentation component
follows the color network architecture in NeRF. It consists of 5 fully
connected layers activated by ReLU activation functions, with 128
channels per layer. The segmentation network is able to produce
masks for any view after 50,000 training iterations. We weight the
terms in the loss function with 𝜆1 = 1, 𝜆2 = 𝜆3 = 0.02.

C ADDITIONAL RESULTS OF ABLATION
STUDIES

In the object segmentation network, a joint optimization strategy
of the three losses, including color loss L𝑟𝑔𝑏 , depth loss L𝑑𝑒𝑝𝑡ℎ ,
and area encoding loss L𝑎𝑟𝑒𝑎−𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 , is used to ensure the accu-
rate multi-view segmentation results. We verify its effectiveness
by comparing the segmentation results with that referred by the
combination of color loss and area encoding loss, as well as the com-
bination of depth loss and area encoding loss, respectively. We show
the results in Figure 1 and 2, where the combination of L𝑟𝑔𝑏 and
L𝑎𝑟𝑒𝑎−𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 is not adequate to locate the position and trace the
contour of the obstacle mask. Although the combination of L𝑑𝑒𝑝𝑡ℎ

and L𝑎𝑟𝑒𝑎−𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 provides much better results, the segmentation
is still not precise. In contrast, the joint optimization of all three

losses, which have been adopted in our method, can contribute to
much accurate obstacle masks referring to the ground-truth.

D ADDITIONAL EXPERIMENTS
Here, we provide additional qualitative examples to demonstrate the
effectiveness of our 3D inpainting method. Qualitative comparisons
between our method and four recent solutions on the LLFF [2]
dataset and the our proposed dataset are shown in Figure 3 and 4
respectively. In Figure 3, a display board at the lower left corner
is regarded as the obstacle in the input image. Referring to the
supplementary view, a stand bar has been hidden behind the display
board. After the de-occlusion and inpainting, only the proposed
method successfully reveals the hidden bar in the input image.
Similarly in Figure 4, the proposed method is able to recover more
details realistically behind the obstacle.
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Figure 1: Ablation results in the proposed dataset.
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Input Image L𝑟𝑔𝑏 + L𝑎𝑟𝑒𝑎−𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 L𝑑𝑒𝑝𝑡ℎ + L𝑎𝑟𝑒𝑎−𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 Ours Ground-truth

Figure 2: Ablation results in the SPIn-NeRF [3] dataset.

Input Image Supplementary View E2FGVI [1] LaMa [5]

Mask SPIn-NeRF [3] NeRF-In [4] Ours

Figure 3: Additional qualitative comparison of de-occlusion results in the scene of the LLFF [2] dataset.

Input images E2FGVI [1] LaMa [5] SPIn-NeRF [3]

Mask NeRF-In [4] Ours Ground-truth

Input images E2FGVI [1] LaMa [5] SPIn-NeRF [3]

Mask NeRF-In [4] Ours Ground-truth

Figure 4: Additional qualitative comparison of de-occlusion results in the scene of the proposed dataset.
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