A Appendix / Supplemental Material

In the appendix, we mainly provide implementation details and more experiment results.

A.1 Datasets and Metrics

Datasets. We evaluate our CGFormer on two datasets: SemanticKITTI [1] and SSC-Bench-KITTI-
360 [9]. These datasets are derived from the KITTI Odometry [4] and KITTI-360 [11] Benchmarks,
respectively. The evaluation focuses on a specific spatial volume: 51.2m in front of the car, 25.6m to
the left and right sides, and 6.4m above the car. Voxelization of this volume results in a set of 3D
voxel grids with a resolution of 256 x 256 x 32, where each voxel measures 0.2m x 0.2m x 0.2m.
SemanticKITTI provides RGB images with dimensions of 1226 x 370 as inputs, encompassing 20
unique semantic classes (19 semantic classes and 1 free class). The dataset includes 10 sequences for
training, 1 sequence for validation, and 11 sequences for testing. SSC-Bench-KITTI-360 [9] offers 7
sequences for training, 1 sequence for validation, and 1 sequence for testing. It contains 19 unique
semantic classes (18 semantic classes and 1 free class), with input RGB images having a resolution
of 1408 x 376.

Metrics. Following previous methods [3, 10, 6], we report the intersection over union (IoU) and
mean IoU (mloU) metrics for occupied voxel grids and voxel-wise semantic predictions, respectively.
The interplay between IoU and mloU offers a comprehensive perspective on the model’s effectiveness
in capturing both geometry and semantic aspects of the scene.

A.2 Implementation Details

Network Structures. Consistent with previous researches [6, 3, 21], we utilize a 2D UNet based on
a pretrained EfficientNetB7 [18] as the image backbone. The CGVT generates a 3D feature volume
with dimensions of 128 x 128 x 16 and 128 channels. The numbers of deformable attention layers
for cross-attention and self-attention are 3 and 2 respectively. We use 8 sampling points around each
reference point for the cross and self-attention head. The voxel-based branch of the LGE comprises 3
stages with 2 residual blocks [5] each. SwinT [13] is employed as the 2D backbone in the TPV-based
branch. Both are followed by feature pyramid networks (FPNs) [12] to aggregate multi-scale features
for dynamic fusion. The final prediction has dimensions of 128 x 128 x 16 and is upsampled to
256 x 256 x 32 through trilinear interpolation to align the resolution with the ground truth.

Training Setup. We train CGFormer for 25 epochs on 4 NVIDIA 4090 GPUs, with a batch size of
4. It approximately consumes 19 GB of GPU memory on each GPU during the training phase. We
employ the AdamW [14] optimizer with 5; = 0.9, 52 = 0.99 and set the maximum learning rate to
3 x 10~*. The cosine annealing learning rate strategy is adopted for the learning rate decay, where
the cosine warmup strategy is applied for the first 5% iterations.

A.3 Results Using Monocular Inputs

In alignment with previous methods [10, 7], we evaluate the performance of our CGFormer using
only a monocular RGB image as input. We replace the depth estimation network with AdaBins [2]
and present the results on the semantickitti validation set in the table 2. To better demonstrate
the advantage of our CGFormer, we also include the results of VoxFormer, Symphonize, and
OccFormer. Compared to the stereo-based methods when using only a monocular image (VoxFormer,
Symphonize), CGFormer achieves superior performance in terms of both IoU and mIoU. Furthermore,
our method also surpasses OccFormer, the state-of-the-art monocular method.

Table 1: The performance of the CGFormer with more lightweight backbone networks.
Backbone Networks | ToU mloU | Parameters Training Memory

EfficientNetB7, Swin Block | 45.99 16.87 122.42 19330
ResNet50, Swin Block 4599 16.79 80.46 19558
ResNet50, ResBlock 45.86 16.85 54.8 18726




Table 2: Comparison of the performance using monocular inputs. For stereo-based methods, we
replace the MobileStereoNet [16] with Adabins [2].
Method | ToU  mloU

VoxFormer-S [10] | 38.68 10.67
VoxFormer-T [10] | 38.08 11.27
Symphonize [7] 38.37 12.20
OccFormer [24] 36.50 13.46
CGFormer (ours) | 41.82 14.06

Table 3: Comparison of training memory and inference time with SOTA methods on the and
SemanticKITTI test set. These metrics were measured on the NVIDIA 4090 GPU.

Method ‘ TPVFormer [6] OccFormer [24] VoxFormer [10]  Symphonize [7]  StereoScene [8] CGFormer (ours)
Training Meomry (M) 18564 18080 18725 17757 19000 19330
Inference Time (ms) 207 199 204 216 258 205
ToU 34.25 34.53 42.95 42.19 43.34 44.41
mloU 11.26 12.20 12.20 15.04 15.36 16.63

A.4 Reults with More Lightweight Backbone Networks

We reanalyze the components of CGFormer, finding that replacing EfficientNetB7, used as the
image backbone, and the Swin blocks, used in the TPV branch backbone, with more lightweight
ResNet50 and residual blocks, respectively, can significantly reduce the number of parameters of our
network. Besides, we also remove the predefined parameters as we find it doesn’t influence the final
performance. The results on the semantickitti validation set are presented in the Table 1. Compared
to the original architecture, CGFormer maintains stable performance regardless of the backbone
networks used for the image encoder and TPV branch encoder, underscoring its effectiveness,
robustness, and potential.

A.5 Additional Quantitative Results

For more comprehensive comparison, we list the results with input modality and image backbones in
Table 4 and Table 5. Table 6 presents the comparison results of CGFormer with the state-of-the-art
methods on the SemanticKITTI validation set. CGFormer outperforms all other methods in terms of
both IoU and mlIoU. Additionally, it ranks either first or second on most of the classes, demonstrating
consistent performance across various semantic categories, as indicated in previous tables.

A.6 Computational Cost

In Table 3, we display the training memory and inference time of CGFormer, along with those of
the comparison methods. Additionally, the table includes the corresponding IoU and mloU metrics
for comprehensive comparison. As shown in the table, CGFormer achieves the best performance in
terms of both IoU and mloU, with comparable training memory and inference time.

A.7 Additional Qualitative Results

We offer additional visualization results in Fig.2 and Fig.3. These examples are randomly selected
from the SemanticKITTI [1] validation set.

A.8 Failure Cases

We provide two failure cases in Fig. 1.

A.9 Limitations

While CGFormer exhibits strong performance on benchmarks, but the accuracy on most of the
categories (e.g., person, bicyclist, other vehicle) is unsatisfactory. Improving the performance on
these instances could be beneficial for the downstream application tasks. Furthermore, there is
a need to explore designing depth estimation networks under multi-view scenarios to extend the
geometry-aware view transformation to these scenes. Despite these limitations, we are confident that
CGFormer will contribute to advancing the field of 3D perception.



Table 4: Quatitative results on SemanticKITTI [1] test set. * represents the reproduced results in
[6, 24]. The best and the second best results are in bold and underlined, respectively. Our CGFormer
outperforms temporal stereo-based (Stereo-T) methods or those methods with larger image backbones
in terms of IoU and mloU.
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Method Input | Image Backbone | IoU [ I ] L

MonoScene* [3] Mono EfficientNetB7 | 34.16 0.70 4.40 1.00 2.10
TPVFormer [6] Mono EfficientNetB7 | 34.25 0.50 2.30 1.10 1.50
SurroundOcc [21] Mono EfficientNetB7 | 34.72 120 4.40 1.40 240
OccFormer [24] Mono EfficientNetB7 | 34.53 170 3.20 2.20 3.70
TAMSSC [22] Mono ResNet50 43.74 0.60 3.90 1.50 4.10
VoxFormer-S [10] Stereo ResNet50 4295 0.70 3.70 1.40 4.90
VoxFormer-T [10] | Stereo-T ResNet50 4321 1.60 4.10 1.60 570
DepthSSC [23] Stereo ResNet50 44.58 098 4.17 1.34 6.23
Symphonize [7] Stereo MaskDINO 42.19 2.60 5.60 3.20 8.00
HASSC-S [19] Stereo ResNet50 43.40 1.00  3.90 1.60 5.50
HASSC-T [19] Stereo-T ResNet50 42.87 1.50 4.90 1.40 7.10
StereoScene [8] Stereo | EfficientNetB7 | 43.34 240 610 2,90 7.20
H2GFormer-S [20] Stereo ResNet50 44.20 090 4.10 1.20 6.30
H2GFormer-T [20] | Stereo-T ResNet50 43.52 120 5.00 110 9.30
MonoOce-S [25] Stereo ResNet50 - 150 540 1.70 6.40
MonoOce-L [25] | Stereo XL | - 240 770 2.80 8.40
CGFormer (ours) Stereo EfficientNetB7 | 44.41 370 130 270 1.70 9.30

Table 5: Quantitative results on SSCBench-KITTI360 test set. The results for counterparts are
provided in [9]. The best and the second best results for all camera-based methods are in bold and
underlined, respectively. The best results from the LiDAR-based methods are in red.
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LiDAR-based methods
SSCNet [17] LiDAR - 5358 1695 [ 3195 0.00 0.17 1029 0.00 8.69  0.67
LMSCNet [15] | LiDAR - 47.35 13.65 | 2091 000 0.00 026 0.58 3.63  0.00
Camera-based methods
MonoScene [3] Mono | EfficientNetB7 | 37.87 12.31 | 1934 043 058 R8.02 2.03 420 3.09
TPVFormer [6] Mono | EfficientNetB7 | 4022 13.64 | 21.56 1.09 137 8.06 257 548 270
OccFormer [24] | Mono EfficientNetB7 | 40.27 13.81 | 22.58 0.66 026 9.89  3.82 695  4.60
VoxFormer [10] | Stereo ResNet50 38.76 1191 | 17.84 116 089 456  2.06 379 243
TAMSSC [22] Mono ResNet50 41.80 1297 | 1853 245 176 512 3.92 635 419
DepthSSC [23] | Stereo ResNet50 40.85 14.28 | 21.90 236 430 1151 4.56 524 351
ies [7] | Stereo MaskDINO 44.12 1858 | 30.02 185 590 2507 12.06 1444 1128
CGFormer (ours) | Stereo | EfficientNetB7 | 48.07 20.05 [ 2985 342 396 17.59 679 10.18  6.77

Table 6: Quatitative results on SemanticKITTI [1] validation set. * represents the reproduced results
in [6, 24, 23]. The best and the second best results are in bold and underlined, respectively.

3 3 = 2

5 g 2 g

z< 3 g

Method Input Image Backbone ToU mloU | u | | u
MonoScene® [3] Mono EfficientNetB7 | 36.86  11.08 0.46 045 148 17.89 281 2964 1.86 120 0.00
‘TPVFormer [6] Mono EfficientNetB7 | 35.61 11.36 0.85 0.05 435 1692 226 3038 051 089 0.00
OccFormer [24] Mono EfficientNetB7 36.50 13.46 0.31 1.19 852 19.63 393 3262 278 282 0.00
TAMSSC [22] Mono ResNet50 4429 1245 0.70 0.15 506 2463 495 3013 132 346 001
VoxFormer-S [10] Stereo ResNet50 44.02 1235 0.70 051 377 2439 508 299 178 332 0.00
VoxFormer-T [10] | Stereo-T ResNet50 44.15 1335 0.42 056 7.81 2610 6.10 33.06 193 197 0.00
DepthSSC [23] Stereo ResNet50 4584 13.28 0.92 1.16 750 2637 452 30.19 258 6.32 0.00
Symphonize [7] Stereo MaskDINO 4192 14.89 0.95 282 1389 2572 6.60 30.87 3.52 224 0.00
HASSC-S [19] Stereo ResNet50 4482 1348 1.04 . 0.86 5.61 2548 6.15 3294 280 471 0.00
HASSC-T [19] Stereo-T ResNet50 4458 1474 1130 23.10 2300 290 190 150 490 2480 9.80 2650 140 3.00 0.00
H2GFormer-S [20] Stereo ResNet50 44.57 1373 045 1974 2821 1000 050 047 739 2625 680 3442 154 288 0.00
H2GFormer-T [20] | Stereo-T ResNet50 44.69 1429 034 2051 2821 680 095 091 932 2744 780 3626 1.15 0.10 0.00
CGFormer (ours) Stereo EfficientNetB7 | 45.99  16.87 0.16 2352 3432 1944 461 271 767 2693 883 3954 238 408 0.00

(a) RGB (b) Ground Truth (c) CGFormer (ours)

Figure 1: Failure cases.
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(a) MonoScene [3]  (b) VoxFormer [10]  (c) OccFormer [24]  (d) CGFormer (ours) (e) Ground Truth

Figure 2: More qualitative comparison results on the SemanticKITTI [1] validation set.
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(a) MonoScene [3]  (b) VoxFormer [10]  (c) OccFormer [24]  (d) CGFormer (ours) (e) Ground Truth

Figure 3: More qualitative comparison results on the SemanticKITTI [1] validation set.
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