
A BayesPCN’s Auto-Associative and Hetero-Associative read

Algorithm 3 Auto-Associative Memory Read

1: Input: Memory log density log p(x0,h|x0
1:T ), query vector x̄0

2: Output: Recall vector x0∗

3: Set the initial recall vector: x0∗ = x̄0

4: repeat
5: Find the most probable latent code given the input: h∗ = argmaxh log p(x0∗,h|x0

1:T )
6: Find the most probable input given the latent code: x0∗ = argmaxx0 log p(x0,h∗|x0

1:T )
7: until convergence or upper iteration limit

Algorithm 4 Hetero-Associative Memory Read

1: Input: Memory log density log p(x0,h|x0
1:T ), query vector x̄0 = (k, v) where the key k is

known but the value v is arbitrarily initialized
2: Output: Recall vector x0∗

3: Find the most probable value and latent code given the key:
4: v∗,h∗ = argmaxv,h log p((k, v),h|x0

1:T )

5: Set the final recall vector: x0∗ = (k, v∗)

B Derivation of BayesPCN write
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and Equation 18 holds because
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Finally, if S = 1 we get

p̂(W|x0
1:t) =

N∑
n=1

ω
(n)
t−1

p(n)(x0
t ,h

(n)
t |x0

1:t−1)

q(n)(h
(n)
t )∑N

n′=1 ω
(n′)
t−1

p(n′)(x0
t ,h

(n′)
t |x0

1:t−1)

q(n′)(h
(n′)
t )

p(n)(W|x0
1:t,h

(n)
1:t ) (24)

■

C Analytical Posterior Formulae for write

Let z = f(x). Then, BayesPCN’s top layer parameter update given x0:L is

µ∗ ← (Σ−1 +
1

σ2
x

I)−1(Σ−1µ+
1

σ2
x

xL) (25)

Σ∗ ← (Σ−1 +
1

σ2
x

I)−1 (26)

while the update for all other layers given x0:L is

Rl∗ ← Rl + U lzl+1⊤(zl+1U lzl+1⊤ + σ2
xI)

−1(xl − zl+1Rl) (27)

U l∗ ← U l − U lzl+1⊤(zl+1U lzl+1⊤ + σ2
xI)

−1zl+1U l (28)

D Analytical Diffusion Formulae for forget

Let R1:L−1
0 , U1:L−1

0 , µ0,Σ0 be the memory prior parameters and β be the forget strength. Then,
BayesPCN’s top layer diffusion update is

µ∗ =
√
1− βµ+ (1−

√
1− β)µ0 (29)

Σ∗ = (1− β)Σ + βΣ0 (30)

while the update for all other layers is

Rl∗ =
√
1− βRl + (1−

√
1− β)Rl

0 (31)

U l∗ = (1− β)U l + βU l
0 (32)

E Connections to Hopfield Networks

We show that modern Hopfield network’s recall is equivalent to the recall of a BayesPCN model with
L = 0. BayesPCN’s activation log density is defined as log p(x0,h) = log

(∑N
n=1 ω

(n)p(n)(x0,h)
)

,
and its gradient w.r.t. the activations is
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On the other hand, MHN’s energy is

E(q) =
β

2
qqT − log

N∑
j=1

exp(βqKT
j ) (34)

where q ∈ R1×dk is the query row vector, K ∈ RN×dk is the key matrix, and Kj ∈ R1×dk is the
j-th key row vector. q and K correspond to x0 and W 0 in our paper’s notation. The negative of the
energy can be converted to the following Gaussian mixture log density.
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Recall in both BayesPCN and MHN is gradient ascent on the above log density. When we take the
gradient with respect to the input vector q, we recover Equation 33.
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■

We conclude that recall in Modern Hopfield Network is equivalent to recall under our framework,
which is gradient descent on the log joint of a normal mixture w.r.t. neuron activations, where there
are no hidden layers (L = 0). However training our model with L = 0 does not lead to the same
memory update as the suggested training procedure of MHN, which is setting each key vector Kj to
some observed datapoint.

Universal Hopfield network [Millidge et al., 2022] proposes a framework for single-shot associative
memory that decomposes recall into three components: similarity function, separation function, and
projection matrix. Let x = (x̄0,h) be the row vector of all initial network activations when give the
query x̄0. Equation 33 suggests that BayesPCN read’s implementation of those components is per
particle weighted log joint logω(n)p(n)(x) of the query x̄0 for the similarity function, softmax for

the separation function, and the matrix

x+ γ∇x log p
(1)(x)

...
x+ γ∇x log p

(N)(x)

 for the projection matrix where γ

is the learning rate. We can accommodate the fact that BayesPCN’s read does iterated conditional
modes by zeroing out the fixed variable gradients in the projection matrix.

F Additional Experiment Details

All GPCN and BayesPCN models had σW = 1, σx = 0.01, and used Adam with learning rate
0.01 as the neuron activation gradient descent optimizer. All energy minimization w.r.t. the neuron
activations took 500 gradient steps during the write phase. During the read phase, the outer loop
iterated conditional mode in Algorithm 3 was repeated 30 times and the energy minimization in
Algorithm 4 took 30× 500 gradient steps. MHN models had β = 10, 000 (equivalent to σx = 0.01),
used Adam with learning rate 1.0 as the gradient descent optimizer, and performed gradient-descent
based recall similar to BayesPCN based on the connection from Appendix E. All experiments were
run on CIFAR10 and/or Tiny ImageNet datasets (both of which have the MIT License) and the image
pixel values were normalized to fall between [−1, 1]. Offline GPCNs received 4000 iterations of
network weight gradient descent steps. Online GPCNs took a single gradient step w.r.t. the network
weights after the hidden activations converged per observation, a treatment consistent with that of
the fast weight memory in Schlag et al. [2021]. BayesPCN forget models had four hidden layers of
width 1024, a single particle, and GELU activations. All hyperparameter ranges were chosen based
on Salvatori et al. [2021]’s experiments and GPCN/BayesPCN’s empirical results.
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All experiments used NVIDIA Tesla V100 GPUs and were run on the university’s internal clusters.
Training the most expensive GPCN model (hidden layer width of 1024) and BayesPCN model
(hidden layer width of 1024, 4 particles) on 1024 observations took 20 hours and 3 hours respectively.
Evaluating the most expensive GPCN and BayesPCN models on all tasks took 25 minutes and 3
hours respectively.

White Noise CIFAR10 MSE
Sequence Length 128 256 512 1024

Identity 0.1596 ± 0.0003 0.1600 ± 0.0001 0.1600 ± 0.0000 0.1600 ± 0.0001
MHN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

GPCN (Offline) 0.0028 ± 0.0000 0.0046 ± 0.0001 0.0073 ± 0.0000 0.0121 ± 0.0001
GPCN (Online) 0.0103 ± 0.0001 0.0150 ± 0.0001 0.0191 ± 0.0000 0.0210 ± 0.0001

BayesPCN 0.0017 ± 0.0003 0.0085 ± 0.0002 0.0146 ± 0.0001 0.0337 ± 0.0007
BayesPCN (forget) 0.0064 ± 0.0001 0.0102 ± 0.0001 0.0145 ± 0.0001 0.0188 ± 0.0002

White Noise Tiny ImageNet MSE
Sequence Length 128 256 512 1024

Identity 0.1600 ± 0.0000 0.1602 ± 0.0000 0.1601 ± 0.0000 0.1600 ± 0.0001
MHN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

GPCN (Offline) 0.0005 ± 0.0000 0.0010 ± 0.0000 0.0018 ± 0.0000 0.0067 ± 0.0004
GPCN (Online) 0.0089 ± 0.0002 0.0112 ± 0.0002 0.0138 ± 0.0001 0.0181 ± 0.0001

BayesPCN 0.0011 ± 0.0001 0.0033 ± 0.0000 0.0064 ± 0.0001 0.6606 ± 0.0267
BayesPCN (forget) 0.0026 ± 0.0000 0.0059 ± 0.0000 0.0108 ± 0.0001 0.0176 ± 0.0001

Dropout CIFAR10 MSE
Sequence Length 128 256 512 1024

Identity 1.1140 ± 0.0059 1.1178 ± 0.0009 1.1353 ± 0.0014 1.1481 ± 0.0010
MHN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

GPCN (Offline) 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000
GPCN (Online) 0.0022 ± 0.0000 0.0032 ± 0.0001 0.0053 ± 0.0001 0.0073 ± 0.0000

BayesPCN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000
BayesPCN (forget) 0.0000 ± 0.0000 0.0001 ± 0.0000 0.0005 ± 0.0000 0.0019 ± 0.0000

Dropout Tiny ImageNet MSE
Sequence Length 128 256 512 1024

Identity 1.0629 ± 0.0014 1.0889 ± 0.0006 1.1154 ± 0.0005 1.1072 ± 0.0008
MHN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

GPCN (Offline) 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
GPCN (Online) 0.0036 ± 0.0002 0.0053 ± 0.0002 0.0069 ± 0.0001 0.0099 ± 0.0001

BayesPCN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
BayesPCN (forget) 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0002 ± 0.0000 0.0008 ± 0.0000

Mask CIFAR10 MSE
Sequence Length 128 256 512 1024

Identity 1.1272 ± 0.0000 1.1373 ± 0.0000 1.1619 ± 0.0000 1.1653 ± 0.0000
MHN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0011 ± 0.0000 0.0000 ± 0.0000

GPCN (Offline) 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0009 ± 0.0000
GPCN (Online) 0.0127 ± 0.0008 0.0255 ± 0.0009 0.0522 ± 0.0006 0.0791 ± 0.0005

BayesPCN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000 0.0019 ± 0.0000
BayesPCN (forget) 0.0000 ± 0.0000 0.0008 ± 0.0000 0.0096 ± 0.0001 0.0465 ± 0.0001

Mask Tiny ImageNet MSE
Sequence Length 128 256 512 1024

Identity 1.0876 ± 0.0000 1.0884 ± 0.0000 1.0982 ± 0.0000 1.1132 ± 0.0000
MHN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0010 ± 0.0000

GPCN (Offline) 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000
GPCN (Online) 0.0081 ± 0.0007 0.0316 ± 0.0033 0.0441 ± 0.0012 0.0698 ± 0.0010

BayesPCN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
BayesPCN (forget) 0.0000 ± 0.0000 0.0003 ± 0.0000 0.0031 ± 0.0000 0.0235 ± 0.0001

Table 2: Table 1 results with standard deviations calculated across three seeds.

17



G BayesPCN vs MHN Recall on Highly Noised Queries

This section reports the recall performance of MHN and BayesPCN models on high query noise
associative recall tasks. The experiment setup is similar to that of Section 6 aside from the fact that
the white noise tasks had the noise standard deviation set to 0.8 instead of 0.2, the dropout tasks
randomly blacked out 75% of the pixels instead of 25%, and the masking tasks blacked out 75% of
the rightmost pixels instead of 25%. Because the high query noise task is harder, we show the recall
result after the models observed 16, 32, 64, and 128 datapoints. BayesPCN models had four hidden
layers of width 256, a single particle, and GELU activations. MHNs again used β = 10, 000.

White Noise CIFAR10 MSE
Sequence Length 16 32 64 128

Identity 2.5564 ± 0.0086 2.5525 ± 0.0023 2.5586 ± 0.0105 2.5565 ± 0.0052
MHN 0.0086 ± 0.0000 0.0023 ± 0.0000 0.0105 ± 0.0000 0.0052 ± 0.0000

BayesPCN 0.0111 ± 0.0003 0.0203 ± 0.0002 0.0394 ± 0.0007 0.0755 ± 0.0002

White Noise Tiny ImageNet MSE
Sequence Length 16 32 64 128

Identity 2.5586 ± 0.0105 2.5565 ± 0.0052 2.5584 ± 0.0047 2.5582 ± 0.0036
MHN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

BayesPCN 0.0033 ± 0.0001 0.0064 ± 0.0002 0.0125 ± 0.0003 0.0242 ± 0.0002

Dropout CIFAR10 MSE
Sequence Length 16 32 64 128

Identity 1.0060 ± 0.0054 1.0276 ± 0.0044 1.0691 ± 0.0026 1.1095 ± 0.0018
MHN 0.3517 ± 0.0027 0.3596 ± 0.0029 0.3635 ± 0.0031 0.3840 ± 0.0010

BayesPCN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

Dropout Tiny ImageNet MSE
Sequence Length 16 32 64 128

Identity 1.0365 ± 0.0022 1.0746 ± 0.0012 1.1418 ± 0.0007 1.0625 ± 0.0011
MHN 0.4967 ± 0.0026 0.5096 ± 0.0006 0.5741 ± 0.0021 0.5630 ± 0.0036

BayesPCN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

Mask CIFAR10 MSE
Sequence Length 16 32 64 128

Identity 0.9686 ± 0.0000 0.9941 ± 0.0000 1.0563 ± 0.0000 1.0987 ± 0.0000
MHN 0.3361 ± 0.0000 0.3315 ± 0.0000 0.3650 ± 0.0000 0.3957 ± 0.0000

BayesPCN 0.0000 ± 0.0000 0.0001 ± 0.0000 0.0001 ± 0.0000 0.0006 ± 0.0000

Mask Tiny ImageNet MSE
Sequence Length 16 32 64 128

Identity 1.0019 ± 0.0000 1.0606 ± 0.0000 1.1370 ± 0.0000 1.0597 ± 0.0000
MHN 0.4534 ± 0.0000 0.4896 ± 0.0000 0.7033 ± 0.0000 0.6378 ± 0.0000

BayesPCN 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000

Table 3: Average MSE between the training images and the associative memory read outputs for the
high query noise white noise, dropout, and mask tasks on CIFAR10 and Tiny ImageNet datasets.

Figure 4: Sample MHN (left) and BayesPCN (right) read outputs for the white noise (σ = 0.8),
pixel dropout (75%), and pixel masking (75%) tasks. The top row contains the memory read inputs
and the bottom row contains the memory read outputs.
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H Additional Qualitative Results

Figure 5 qualitatively demonstrates how BayesPCN’s read scales with the number of stored datapoints
for the CIFAR10 recall tasks. BayesPCN models are able to output images that are very close to
the original image even when the inputs are significantly corrupted. As the number of observations
increases, the read operation is still able to reconstruct the original image but gets worse at recovering
the original image given a corrupted version of it.

Figure 5: Example BayesPCN recall result from the CIFAR10 auto-associative and hetero-associative
tasks. From top to bottom rows are the comparisons of BayesPCN’s read inputs and outputs where
the task is to recover the first observation seen during the write phase (the top left frog image) after
sequentially observing 127, 255, 511, and 1023 additional datapoints.

I Effects of BayesPCN Hyperparameters

I.1 Network Width and Depth

Figure 6 and Table 4 illustrate how BayesPCN’s recall accuracy and MSE scale with the network
width and depth. A recall is considered correct if the MSE between the ground truth and the recalled
data is less than 0.01. BayesPCN models had GELU activation functions, σW = 1, σx = 0.01, and a
single particle.

We found that the increased network width was helpful across all tasks. Increased network depth was
helpful when moving from network depth of 2 to 4, but moving from network depth of 4 to 8 had
no noticeable impact across all tasks. We note that because the Figure 6 depicts recall accuracy not
MSE, if the memory performance generally declines and the average recall MSE exceeds 0.01, this
can lead to very low accuracy even if the actual recall MSE is not much greater than 0.01.

I.2 Network Weight Prior Uncertainty and Observation Noise

We also investigate the effect of σW and σx hyperparameters on BayesPCN’s scaling properties.
Since σW determines the prior uncertainty and σx determines the observation noise, higher σW

and lower σx reduces the prior’s impact and increases the new observation’s impact on the network
weight’s posterior. Hence, we can control the memory write strength by modulating σW , σx.

Table 5 describes the CIFAR10 recall results of nine structurally identical BayesPCN models with
four hidden layers of size 1024, a single particle, and GELU activations but with different values
of σW and σx. We observe that lower σW and higher σx tend to alleviate the memory overloading
behaviour. We hypothesize that this is the case because lower σW and higher σx encourage the
synaptic weights’ Frobenius norms to remain small, causing activation gradient descent more stable.
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Figure 6: Recall accuracy of BayesPCN with different network width and depth on CIFAR10 (left)
and Tiny ImageNet (right) tasks.

White Noise CIFAR10 MSE
Sequence Length 128 256 512 1024

BayesPCN L2 0.0284 ± 0.0001 0.0445 ± 0.0000 0.0470 ± 0.0001 0.0830 ± 0.0034
BayesPCN L4 0.0058 ± 0.0001 0.0092 ± 0.0001 0.0146 ± 0.0001 0.0337 ± 0.0007
BayesPCN L8 0.0058 ± 0.0001 0.0092 ± 0.0001 0.0146 ± 0.0000 0.0344 ± 0.0015

White Noise Tiny ImageNet MSE
Sequence Length 128 256 512 1024

BayesPCN L2 0.0083 ± 0.0001 0.0096 ± 0.0001 0.0178 ± 0.0001 0.3458 ± 0.1281
BayesPCN L4 0.0020 ± 0.0001 0.0037 ± 0.0001 0.0066 ± 0.0002 12.4499 ± 1.1542
BayesPCN L8 0.0020 ± 0.0001 0.0036 ± 0.0001 0.0065 ± 0.0002 13.8584 ± 1.3771

Dropout CIFAR10 MSE
Sequence Length 128 256 512 1024

BayesPCN L2 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0142 ± 0.0000
BayesPCN L4 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000
BayesPCN L8 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000

Dropout Tiny ImageNet MSE
Sequence Length 128 256 512 1024

BayesPCN L2 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
BayesPCN L4 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
BayesPCN L8 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0006 ± 0.0006

Mask CIFAR10 MSE
Sequence Length 128 256 512 1024

BayesPCN L2 0.0000 ± 0.0000 0.0002 ± 0.0000 0.0081 ± 0.0027 0.1024 ± 0.0001
BayesPCN L4 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000 0.0019 ± 0.0000
BayesPCN L8 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000 0.0019 ± 0.0000

Mask Tiny ImageNet MSE
Sequence Length 128 256 512 1024

BayesPCN L2 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000 0.0004 ± 0.0000
BayesPCN L4 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
BayesPCN L8 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

Table 4: Average MSE between the training images and the associative memory read outputs for the
high query noise white noise, dropout, and mask tasks on CIFAR10 and Tiny ImageNet datasets.
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White Noise CIFAR10 MSE
σW σx 16 32 64 128 256 512 1024
0.5 0.05 0.0294 0.0304 0.0304 0.0289 0.0256 0.0222 0.0189
0.5 0.01 0.0012 0.0018 0.0031 0.0052 0.0083 0.0133 0.0213
0.5 0.005 0.0012 0.0018 0.0032 0.0055 0.0095 0.0169 1.859
1.0 0.05 0.0250 0.0264 0.0267 0.0256 0.0230 0.0204 0.0180
1.0 0.01 0.0014 0.0021 0.0036 0.0058 0.0091 0.0146 0.0329
1.0 0.005 0.0011 0.0045 0.0166 0.0325 0.0361 0.0328 2.8281
5.0 0.05 0.0258 0.0285 0.0279 0.0324 0.0814 0.1494 0.7720
5.0 0.01 0.2567 1.0674 1.5191 1.8586 5.7848 13.1495 29.4737
5.0 0.005 0.3738 1.4906 2.2916 3.0278 14.7747 99.3011 79.1281

Dropout CIFAR10 MSE
σW σx 16 32 64 128 256 512 1024
0.5 0.05 0.0001 0.0002 0.0002 0.0004 0.0007 0.0015 0.0025
0.5 0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
0.5 0.005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.0 0.05 0.0001 0.0002 0.0002 0.0004 0.0007 0.0015 0.0025
1.0 0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
1.0 0.005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0262
5.0 0.05 0.0001 0.0001 0.0002 0.0003 0.0005 0.0009 0.0153
5.0 0.01 0.0001 0.0001 0.0001 0.0002 0.0311 0.1426 0.2543
5.0 0.005 0.0000 0.0001 0.0001 0.0002 0.0274 0.1984 0.7999

Mask CIFAR10 MSE
σW σx 16 32 64 128 256 512 1024
0.5 0.05 0.0002 0.0004 0.0008 0.0017 0.0048 0.0114 0.0239
0.5 0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0028
0.5 0.005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
1.0 0.05 0.0002 0.0003 0.0007 0.0015 0.0046 0.0112 0.0240
1.0 0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0019
1.0 0.005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.2248
5.0 0.05 0.0001 0.0003 0.0005 0.0010 0.0026 0.0061 0.2153
5.0 0.01 0.0000 0.0000 0.0001 0.0002 0.1472 0.7554 1.8079
5.0 0.005 0.0000 0.0000 0.0001 0.0001 0.1713 0.8259 6.8712

Table 5: Average MSE between the training images and the associative memory read outputs for
BayesPCN models with different σW , σx hyperparameters after observing 16, 32, 64, 128, 256, 512,
and 1024 CIFAR10 images.

As an aside, the white noise recall MSE of BayesPCN with σx = 0.05 and σW ∈ {0.5, 1.0} decreased
as more datapoints were observed from sequence length 64 and onward. On visual inspection, we
found that the model’s auto-associative recall outputs for both observed and unobserved inputs
became less blurry as more datapoints were written into memory. We hypothesize that the model
learned to generalize at some point of its training.

J BayesPCN Generalization

Figure 7 illustrates BayesPCN’s read outputs for unseen image queries after different number of
datapoints have been stored into memory. As BayesPCN observes more data, it learns to “generalize”
and gets better at reconstructing and even mildly removing white noise from unseen images. This
can be attributed to the model continual learning its internal representation that better “describe” the
data distribution. We expected this behaviour to occur since S-NCN [Ororbia et al., 2019], a model
similar in structure to GPCN, could continually learn to perform discriminative tasks.
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Figure 7: BayesPCN’s read outputs given ground truth (left) and noised (right) unseen images as
inputs after observing 2, 8, 32, 128, 512 training images.

K BayesPCN Sampling

Both GPCN and BayesPCN at the core are as much generative models as they are associative
memories. We examine the quality of ancestral sampling samples from both models in Figure 8.
When ancestral sampling, BayesPCN did not marginalize out the synaptic weights and instead fixed
them to the mean parameters of p(W|x0

1:t−1,h
(n)
1:t−1).

(a) GPCN trained on 4 ob-
servations.

(b) GPCN trained on 1024
observations.

(c) BayesPCN trained on 4
observations.

(d) BayesPCN trained on
1024 observations.

Figure 8: Ancestral sampling results from GPCN and BayesPCN models trained on CIFAR10.

We find that both GPCN and BayesPCN samples are superpositions of the training images. However,
as BayesPCN is trained on more and more observations, its sample quality quickly deteriorates. We
hypothesize that the poor sample quality for both GPCN and BayesPCN stems from the approximate
nature of their parameter estimation. For example, BayesPCN’s particle count would have to be much
greater than 4 to accurately capture the true posterior p(W|x0

1:t−1) using its sequential importance
sampling estimate and the variational distribution over the hidden activations should not be Dirac
distributed. However, we note that Ororbia and Kifer [2022] has successfully trained predictive
coding networks to be good generative models.
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