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Abstract: In these supplementary materials, we provide implementation details1

for our method and experiments, additional experimental results, and qualitative2

examples of our approach compared to the baselines. Please refer to the supple-3

mentary video for a visual presentation.4

1 Implementation and Experiment Details5

1.1 Model Details6

Point Encoder: The point encoder is consisted of a voxelizer followed by a CNN-based backbone7

and a Feature Pyramid Network (FPN) [1].8

Specifically, the voxelizer employs voxel resolution of 10cm in all of X , Y and Z directions, with a9

region of interest of [-12, 12] meters along X , [-4, 4] meters along Y , and [-0.2, 3.0] meters along10

Z, to construct a Nx ×Ny ×Nz voxel grid with Nx = 240, Ny = 80 and Nz = 320. For all points11

in each 3D voxel grid, we first represent each point as (∆x,∆y,∆z,∆t) where (∆x,∆y,∆z) is12

the positional offset with respect to the voxel centroid and ∆t = t − tref is the difference between13

the per-point time and the LiDAR sweep end time of the middle frame in the object trajectory. We14

feed this four-vector representation of each point into a two-layer MLP with 16 output channels15

each, and LayerNorm [2] and ReLU applied right after the first layer. Then, for each voxel, we16

pool all point features inside by summing them and applying a LayerNorm after to derive voxel17

grid features RNx×Ny×Nz×16, which can be viewed as Nx ×Ny “feature pillars” along the Z axis.18

We additionally encode an z-axis positional embedding via a learnable variable block ∈ RNz×16.19

We concatenate the non-empty voxels in each feature pillar with the positional embedding block to20

obtain an augmented feature ∈ RN ′z×32 (N ′z ≤ Nz is the number of non-empty voxels in the pillar),21

and pass through a two-layer MLP with 16 and 32 output channels each (with LayerNorm and ReLU22

in between), apply LayerNorm after the second layer, and sum all the features along each pillar to23

obtain a BEV feature map∈ RNx×Ny×32.24

The backbone takes the BEV feature map as input and first applied three stem layers with 120, 96,25

96 output channels each. Each stem layer is consisted of a 3x3 convolutional layer, followed by26

GroupNorm (GN) and ReLU. The first stem layer has stride of 2 while the next two have a stride of27

1. Then, the output then passes through three downsampling stages, with each stage containing 6,28

6, 4 ResNet [3] blocks with 288, 384, 576 output channels respectively. Each ResNet block applies29

a sequence of 1x1 conv, GN, ReLU, 3x3 conv (with an optional stride parameter), GN, ReLU, 1x130

conv, GN, ReLU to obtain a residual and sum with the input. Each stage first downsamples the input31

with a 1x1 conv block with stride 2 followed by GN, and the applies the first ResNet block with32

stride 2 in the middle 3x3 conv. The remaining ResNet blocks in each stage all have stride of 1.33

The FPN then takes the outputs from all three stages in the backbone, which are 4×, 8× and 16×34

downsampled from the original resolution, and fuses the two lowest resolution feature maps first35

by applying a 1x1 conv block + GN to the 16× low-resolution map, upsampling it by 2× with36

bilinear interpolation, and adding it to the 8× downsampled feature map. We then perform a similar37
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operation to fuse the 4× downsampled feature map with the new fused 8× downsampled feature38

map, and apply a final 3x3 conv to output a feature map of 4× downsampled original resolution39

with channel dimension 256.40

Attention Block: We next provide more details on the feed-forward MLP in each attention block.41

The feed-forward MLP is consisted of a linear layer with input dimension 256 and output dimension42

512, followed by ReLU, DropOut with 10%, a second linear layer with input dimension 512 and43

output dimension 256 and another DropOut with 10%. We add the output of the MLP to the input44

of the MLP and return the sum.45

Training Loss Details: In this section, we provide detailed definitions for our loss functions. The46

regression loss is defined as:47

Lreg({b̂i}, {b?
i }) =

λ

M

∑
i

smooth`1(x̂i, x
?
i ) + smooth`1(ŷi, y

?
i ) + smooth`1(l̂, l?) + smooth`1(ŵ, w?)

+
1

M

∑
i

smooth`1(sin (θ̂i), sin (θ?i )) + smooth`1(cos (θ̂i), cos (θ?i )) ,

(1)

with the hyperparameter λ = 0.1 in practice, and the IoU loss is given by:48

LIoU ({b̂i}, {b?
i }) =

1

M

∑
i

IoU(BBox(x̂i, ŷi, l̂, ŵ),BBox(x?i , y
?
i , l

?, w?)) , (2)

to compare the axis-aligned refined and ground-truth bounding box in each frame.49

1.2 Detector and Tracker50

To obtain the first-stage coarse initialization, we follow the standard “detect-then-track” approach51

where a detection model is trained to output per-frame detections and we leverage a tracker to obtain52

consistent tracklets over time. Next, we give more details about the detector and tracker we use.53

Detector: To boost detection performance, we adapt the single-frame public implementation of54

both PointPillars [4] and VoxelNeXt [5] to a multi-frame version that additionally takes 4 past history55

frames and 4 future frames as input. The validation mean AP of the single-frame vs. multi-frame56

PointPillars models are 68.78% and 71.02% on the Highway dataset respectively, and 55.98% and57

60.58% on AV2 respectively. The validation mean AP of single-frame vs. multi-frame VoxelNeXt58

are 81.87%/84.25% on Highway and 60.06%/66.25% on AV2.59

Tracker: Following [6, 7], we use a simple online tracker, which is largely inspired by [8], and we60

provide the implementation details of our tracker, in particular how association is performed across61

frames.62

For each new frame at time step t with detections Bt = {bl
t} where each bl

t = (xlt, y
l
t, l

l
t, w

l
t, θ

l
t) ∈63

R5 is the individual 2D BEV bounding box, we first filter with Non-Maximum Suppression with64

IoU threshold 0.1, and then filter out bounding boxes with low confidence scores. We then compute65

a cost matrix with existing tracklets St = {sjt} as follows. For each tracklet j, we first predict66

its bbox position (xjt , y
j
t ) at time t: if the tracklet has at least two past frames, we set (xjt , y

j
t ) =67

2 ∗ (xjt−1, y
j
t−1) − (xjt−2, y

j
t−2) via naive extrapolation (assuming constant velocity between two68

adjacent frames); otherwise we simply set (xjt , y
j
t ) = (xjt−1, y

j
t−1). Then, for each pair of the69

detected bbox bl
t and the predicted tracklet bbox bj

t , we compute the Euclidean distance between70

the bbox centroids as `j,l =

√
(xjt − xlt)2 + (yjt − ylt)2. For each existing tracklet, we simply71

employ a greedy strategy to find the nearest detection l∗ = arg minl `
j,l, and if the closest distance72

lj,l
∗

is greater than a threshold of 5.0m, then the tracklet has no match. We use greedy matching73

instead of a more sophisticated matching strategy such as Hungarian matching because it is more74

robust to noisy and spurious detections.75
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Motion State First-Stage Detector Second-Stage Refinement Mean IoU RC @ 0.5 RC @ 0.6 RC @ 0.7 RC @ 0.8

Stationary

PointPillars

- 64.46 79.34 69.95 53.58 28.66
Auto4D 67.51 82.56 74.66 61.26 36.91
3DAL 68.00 81.35 75.04 63.26 41.93
Ours (LabelFormer) 70.67 84.08 77.31 66.03 46.81

VoxelNeXt

- 68.91 83.53 75.15 61.53 38.81
Auto4D 70.87 86.11 79.06 66.28 42.86
3DAL 70.63 84.55 77.74 66.50 45.13
Ours (LabelFormer) 73.21 86.77 80.09 69.54 51.08

Dynamic

PointPillars

- 60.53 73.12 61.04 43.23 21.03
Auto4D 63.26 76.05 65.56 50.27 27.41
3DAL 60.80 72.70 60.03 45.36 22.12
Ours (LabelFormer) 65.64 78.06 68.69 54.74 34.10

VoxelNeXt

- 62.25 73.96 62.17 46.66 25.57
Auto4D 64.73 77.01 66.77 52.02 30.72
3DAL 63.33 75.85 64.60 48.55 26.18
Ours (LabelFormer) 66.93 79.49 69.64 56.04 35.88

Table 1: [AV2] Performance break-down for ground-truth stationary vs. dynamic objects

If a tracklet is matched to a new detection, we add the detection to the tracklet and update the tracklet76

score cjt =
w·cjt−1+clt

w+1.0 , where cjt−1 is the old tracklet score, clt = 1.0 is the detection confidence score77

we set for every new detection, and w =
∑nj

t−1

i=1 0.9i where njt−1 is the number of tracking steps in78

the tracklet.79

If a tracklet is not matched, we grow the tracklet by naively extrapolating the position and angle,80

and set the new confidence score as cjt = 0.9cjt−1.81

If a new detection is not matched to any tracklet, we start a new tracklet and initialize the confidence82

score cjt with the detection’s confidence.83

We terminate all tracklets with a tracking confidence score less than 0.1, and apply NMS at the end84

over all existing tracklets in the current frame with an IoU threshold of 0.1. We repeat this process85

for the next frame at time t+ 1 until the end of the sequence.86

1.3 Association with GT Trajectories87

For each initial object trajectory detected and tracked in the first stage, we use a simple heuristic88

to associate it with a ground-truth object trajectory as follows: for each frame that the detected89

trajectory is present, we identify the ground-truth bounding box that has the maximum IoU with the90

detected bounding box in that frame. If such ground-truth box has IoU less than 10%, then we fail91

to find a matching ground-truth box for this frame. As a result we obtain M ′ ground-truth object92

IDs for a detected trajectory of length M , with 0 ≤ M ′ ≤ M as we might not be able to find a93

ground-truth ID for every frame. If M ′ is 0, then we have failed to find an associated ground-truth94

object: we consider the detected object as a false positive and discard it in trajectory refinement95

training and evaluation. Otherwise we take the most common ground-truth actor id out of the M ′96

objects and assign it as the associated ground-truth object trajectory for training and evaluation.97

2 Additional Experiments98

Static vs. Dynamic Objects The AV2 validation set contains around 52% stationary objects (we99

classify an actor as static if the max displacement in the ground-truth displacement in allX , Y and Z100

direction is within 1.0m). Table 1 additionally shows the dynamic vs. stationary object break-down101

on the AV2 dataset. Our method is able to achieve significantly higher refinement accuracy on both102

static and dynamic objects with a single network.103

Ablation with PointPillars Init: We additionally performed the same set of ablation studies as104

Table 3 in the main paper on the Highway dataset with the PointPillars-based initializations. Table 2105
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Bbox Enc. Point Enc. Perturb Window # Att Mean IoU RC@0.5 RC@0.6 RC@0.7 RC@0.8

M1 X X All 3 64.20 69.83 59.62 46.11 26.58
M2 X X All 3 69.56 82.36 75.84 64.72 44.50
M3 X X All 3 68.91 80.84 73.05 61.65 42.89
M4 X X X 5 3 69.07 81.19 74.17 63.47 45.05
M5 X X X 10 3 69.33 81.83 74.80 64.12 45.42
M6 X X X All 3 70.59 83.09 75.77 65.11 46.16

M7 X X X All 6 70.93 83.50 76.51 66.34 47.85

Table 2: [Highway] Ablation study using the PointPillars initializations. Perturb refers to the
bounding box perturbation augmentation, Window specifies the window size when applicable, and
# Att is the number of self-attention blocks.

Positional Encoding Mean IoU RC @ 0.5 RC @ 0.6 RC @ 0.7 RC @ 0.8

Absolute [10] 71.71 83.63 76.97 67.11 48.67
AliBi [9] 72.38 83.68 77.45 68.33 50.06

Table 3: [Highway] Ablation of positional encoding using the VoxelNeXt initializations

shows the results, which give the same conclusions as the VoxelNeXt-based initializations in the106

main paper.107

Positional Encoding We additionally ablate our choice of positional encoding with the VoxelNeXt108

initialization on the Highway dataset. Table 3 shows that the relative positional encoding AliBi [9]109

gives overall better performance than using the vanilla absolute positional encodings [10].110

3 Qualitative Results111

In this section we show qualitative results for trajectory refinement, comparing LabelFormer with112

the coarse initialization, 3DAL [7] and Auto4D [6].113

We illustrate initial and refined auto-labels for the Highway dataset with VoxelNeXt initializa-114

tions. Fig. 1 showcases trajectories of two objects on the top that have sparse observations (and115

hence worse initializations) at the beginning, and denser observations towards the end, and ours La-116

belFormer is able to give better refinement for the worse initializations because it is able to leverage117

more temporal context more effectively than previous works. Fig. 1, 2, 3, 4 additionally showcase118

that our method works better qualitatively on trajectories with both sparse and dense observations119

and with various speeds. For more visualizations on Argoverse, please refer to the supplementary120

video.121
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Init Mean IoU: 73.73

3DAL Mean IoU: 75.37

Auto4D Mean IoU: 80.40

LabelFormer Mean IoU: 85.77

Init Mean IoU: 83.05

3DAL Mean IoU: 77.28

Auto4D Mean IoU: 88.55

LabelFormer Mean IoU: 88.34

Init Mean IoU: 80.43

3DAL Mean IoU: 81.55

Auto4D Mean IoU: 89.82

LabelFormer Mean IoU: 88.54

Init Mean IoU: 78.53

3DAL Mean IoU: 80.71

Auto4D Mean IoU: 82.59

LabelFormer Mean IoU: 86.89

Figure 1: [Highway] Qualitative results showcasing different object trajectories (first-stage init,
refined by 3DAL, Auto4D and Ours LabelFormer) in each object’s trajectory coordinate frame. The
ground-truth bounding box is in magenta, and the auto-label is in orange. To avoid cluttering, we
visualize every other three bounding box in the first 50 frames of the trajectory.
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Init Mean IoU: 77.10

3DAL Mean IoU: 80.47

Auto4D Mean IoU: 86.89

LabelFormer Mean IoU: 87.86

Init Mean IoU: 80.43

3DAL Mean IoU: 86.14

Auto4D Mean IoU: 85.01

LabelFormer Mean IoU: 89.62

Init Mean IoU: 62.84

3DAL Mean IoU: 67.26

Auto4D Mean IoU: 68.23

LabelFormer Mean IoU: 81.50

Init Mean IoU: 79.05

3DAL Mean IoU: 80.96

Auto4D Mean IoU: 86.52

LabelFormer Mean IoU: 90.34

Init Mean IoU: 72.12

3DAL Mean IoU: 81.15

Auto4D Mean IoU: 84.38

LabelFormer Mean IoU: 85.98

Figure 2: [Highway] More Qualitative results
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Init Mean IoU: 65.72

3DAL Mean IoU: 77.98

Auto4D Mean IoU: 80.67

LabelFormer Mean IoU: 84.58

Init Mean IoU: 62.84

3DAL Mean IoU: 67.26

Auto4D Mean IoU: 68.23

LabelFormer Mean IoU: 81.50

Init Mean IoU: 62.55

3DAL Mean IoU: 69.17

Auto4D Mean IoU: 69.73

LabelFormer Mean IoU: 76.55

Init Mean IoU: 63.06

3DAL Mean IoU: 74.98

Auto4D Mean IoU: 74.44

LabelFormer Mean IoU: 85.72

Figure 3: [Highway] More Qualitative results
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Init Mean IoU: 63.74

3DAL Mean IoU: 66.65

Auto4D Mean IoU: 80.50

LabelFormer Mean IoU: 82.37

Init Mean IoU: 80.19

3DAL Mean IoU: 81.81

Auto4D Mean IoU: 82.59

LabelFormer Mean IoU: 86.46

Init Mean IoU: 79.63

3DAL Mean IoU: 81.94

Auto4D Mean IoU: 82.04

LabelFormer Mean IoU: 87.48

Figure 4: [Highway] More Qualitative results
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