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Abstract: In these supplementary materials, we provide implementation details
for our method and experiments, additional experimental results, and qualitative
examples of our approach compared to the baselines. Please refer to the supple-
mentary video for a visual presentation.

1 Implementation and Experiment Details

1.1 Model Details

Point Encoder: The point encoder is consisted of a voxelizer followed by a CNN-based backbone
and a Feature Pyramid Network (FPN) [1].

Specifically, the voxelizer employs voxel resolution of 10cm in all of X, Y and Z directions, with a
region of interest of [-12, 12] meters along X, [-4, 4] meters along Y, and [-0.2, 3.0] meters along
Z, to construct a N, x Ny x N, voxel grid with N, = 240, N, = 80 and IV, = 320. For all points
in each 3D voxel grid, we first represent each point as (Ax, Ay, Az, At) where (Ax, Ay, Az) is
the positional offset with respect to the voxel centroid and At = ¢ — ¢,y is the difference between
the per-point time and the LiDAR sweep end time of the middle frame in the object trajectory. We
feed this four-vector representation of each point into a two-layer MLP with 16 output channels
each, and LayerNorm [2] and ReLU applied right after the first layer. Then, for each voxel, we
pool all point features inside by summing them and applying a LayerNorm after to derive voxel
grid features RVe* Ny xN=x16 'which can be viewed as N, x N, “feature pillars” along the Z axis.
We additionally encode an z-axis positional embedding via a learnable variable block € RV=*16
We concatenate the non-empty voxels in each feature pillar with the positional embedding block to
obtain an augmented feature € RN=*32 (N/ < N, is the number of non-empty voxels in the pillar),
and pass through a two-layer MLP with 16 and 32 output channels each (with LayerNorm and ReLU
in between), apply LayerNorm after the second layer, and sum all the features along each pillar to
obtain a BEV feature mape RN=*Ny*32,

The backbone takes the BEV feature map as input and first applied three stem layers with 120, 96,
96 output channels each. Each stem layer is consisted of a 3x3 convolutional layer, followed by
GroupNorm (GN) and ReLLU. The first stem layer has stride of 2 while the next two have a stride of
1. Then, the output then passes through three downsampling stages, with each stage containing 6,
6, 4 ResNet [3] blocks with 288, 384, 576 output channels respectively. Each ResNet block applies
a sequence of 1x1 conv, GN, ReLU, 3x3 conv (with an optional stride parameter), GN, ReL.U, 1x1
conv, GN, ReLU to obtain a residual and sum with the input. Each stage first downsamples the input
with a 1x1 conv block with stride 2 followed by GN, and the applies the first ResNet block with
stride 2 in the middle 3x3 conv. The remaining ResNet blocks in each stage all have stride of 1.

The FPN then takes the outputs from all three stages in the backbone, which are 4x, 8 x and 16x
downsampled from the original resolution, and fuses the two lowest resolution feature maps first
by applying a 1x1 conv block + GN to the 16x low-resolution map, upsampling it by 2x with
bilinear interpolation, and adding it to the 8 x downsampled feature map. We then perform a similar
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operation to fuse the 4x downsampled feature map with the new fused 8x downsampled feature
map, and apply a final 3x3 conv to output a feature map of 4x downsampled original resolution
with channel dimension 256.

Attention Block: We next provide more details on the feed-forward MLP in each attention block.
The feed-forward MLP is consisted of a linear layer with input dimension 256 and output dimension
512, followed by ReLLU, DropOut with 10%, a second linear layer with input dimension 512 and
output dimension 256 and another DropOut with 10%. We add the output of the MLP to the input
of the MLP and return the sum.

Training Loss Details: In this section, we provide detailed definitions for our loss functions. The
regression loss is defined as:

. A .
Lyeg({bi}, {b}}) = MZ smoothf; (&;, x7) + smooth¢; (§;, y;) + smoothly (I,1*) + smoothf; (W, w*)

1 . A . * A *
+ MZ smooth/; (sin (6;), sin (67)) + smooth?; (cos (6;), cos (67)) ,

)
with the hyperparameter A = 0.1 in practice, and the IoU loss is given by:

A 1 A
Liov({b;}, {b*}) = MZ ToU(BBox(;, i, [, ), BBox(z?, y, I*, w*)) , 2)
to compare the axis-aligned refined and ground-truth bounding box in each frame.

1.2 Detector and Tracker

To obtain the first-stage coarse initialization, we follow the standard “detect-then-track” approach
where a detection model is trained to output per-frame detections and we leverage a tracker to obtain
consistent tracklets over time. Next, we give more details about the detector and tracker we use.

Detector: To boost detection performance, we adapt the single-frame public implementation of
both PointPillars [4] and VoxelNeXt [5] to a multi-frame version that additionally takes 4 past history
frames and 4 future frames as input. The validation mean AP of the single-frame vs. multi-frame
PointPillars models are 68.78% and 71.02% on the Highway dataset respectively, and 55.98% and
60.58% on AV2 respectively. The validation mean AP of single-frame vs. multi-frame VoxelNeXt
are 81.87%/84.25% on Highway and 60.06%/66.25% on AV2.

Tracker: Following [6, 7], we use a simple online tracker, which is largely inspired by [8], and we
provide the implementation details of our tracker, in particular how association is performed across
frames.

For each new frame at time step ¢ with detections B; = {b.} where each bl = (4, !, I}, w!,0!) €
R® is the individual 2D BEV bounding box, we first filter with Non-Maximum Suppression with
IoU threshold 0.1, and then filter out bounding boxes with low confidence scores. We then compute
a cost matrix with existing tracklets S, = {s7} as follows. For each tracklet j, we first predict
its bbox position (x7,y;) at time ¢: if the tracklet has at least two past frames, we set (z7,y]) =
2% (z7_1,y]_4) — (z]_5,y]_,) via naive extrapolation (assuming constant velocity between two

adjacent frames); otherwise we simply set (z7,y/) = (zJ_,,5/ ). Then, for each pair of the

detected bbox bl and the predicted tracklet bbox b}, we compute the Euclidean distance between

the bbox centroids as ¢! = \/ (x] — )2 4 () — y!)2. For each existing tracklet, we simply

employ a greedy strategy to find the nearest detection [* = arg min, £/, and if the closest distance
171" is greater than a threshold of 5.0m, then the tracklet has no match. We use greedy matching
instead of a more sophisticated matching strategy such as Hungarian matching because it is more
robust to noisy and spurious detections.
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Motion State ~ First-Stage Detector ~ Second-Stage Refinement ~MeanIoU RC @05 RC@0.6 RC@0.7 RC@O0.8

- 64.46 79.34 69.95 53.58 28.66

PointPillars Auto4D 67.51 82.56 74.66 61.26 36.91

3DAL 68.00 81.35 75.04 63.26 41.93

. Ours (LabelFormer) 70.67 84.08 77.31 66.03 46.81
Stationary

- 68.91 83.53 75.15 61.53 38.81

VoxelNeXt Auto4D 70.87 86.11 79.06 66.28 42.86

3DAL 70.63 84.55 77.74 66.50 45.13

Ours (LabelFormer) 73.21 86.77 80.09 69.54 51.08

- 60.53 73.12 61.04 43.23 21.03

PointPillars Auto4D 63.26 76.05 65.56 50.27 27.41

3DAL 60.80 72.70 60.03 45.36 22.12

. Ours (LabelFormer) 65.64 78.06 68.69 54.74 34.10

Dynamic

- 62.25 73.96 62.17 46.66 25.57

VoxelNeXt Auto4D 64.73 77.01 66.77 52.02 30.72

3DAL 63.33 75.85 64.60 48.55 26.18

Ours (LabelFormer) 66.93 79.49 69.64 56.04 35.88

Table 1: [AV2] Performance break-down for ground-truth stationary vs. dynamic objects

If a tracklet is matched to a new detection, we add the detection to the tracklet and update the tracklet
w- sz 1 +Ci

score ¢f = — "4

, Where c{_l is the old tracklet score, ci = 1.0 is the detection confidence score

J . .
we set for every new detection, and w = Z?:tf 0.9° where n]_; is the number of tracking steps in
the tracklet.

If a tracklet is not matched, we grow the tracklet by naively extrapolating the position and angle,
and set the new confidence score as ¢; = 0.9¢]_.

If a new detection is not matched to any tracklet, we start a new tracklet and initialize the confidence
score ¢] with the detection’s confidence.

We terminate all tracklets with a tracking confidence score less than 0.1, and apply NMS at the end
over all existing tracklets in the current frame with an IoU threshold of 0.1. We repeat this process
for the next frame at time ¢ + 1 until the end of the sequence.

1.3 Association with GT Trajectories

For each initial object trajectory detected and tracked in the first stage, we use a simple heuristic
to associate it with a ground-truth object trajectory as follows: for each frame that the detected
trajectory is present, we identify the ground-truth bounding box that has the maximum IoU with the
detected bounding box in that frame. If such ground-truth box has IoU less than 10%, then we fail
to find a matching ground-truth box for this frame. As a result we obtain M’ ground-truth object
IDs for a detected trajectory of length M, with 0 < M’ < M as we might not be able to find a
ground-truth ID for every frame. If M’ is 0, then we have failed to find an associated ground-truth
object: we consider the detected object as a false positive and discard it in trajectory refinement
training and evaluation. Otherwise we take the most common ground-truth actor id out of the M’
objects and assign it as the associated ground-truth object trajectory for training and evaluation.

2 Additional Experiments

Static vs. Dynamic Objects The AV2 validation set contains around 52% stationary objects (we
classify an actor as static if the max displacement in the ground-truth displacement in all X, Y and Z
direction is within 1.0m). Table 1 additionally shows the dynamic vs. stationary object break-down
on the AV2 dataset. Our method is able to achieve significantly higher refinement accuracy on both
static and dynamic objects with a single network.

Ablation with PointPillars Init: We additionally performed the same set of ablation studies as
Table 3 in the main paper on the Highway dataset with the PointPillars-based initializations. Table 2
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Bbox Enc.  PointEnc.  Perturb ~ Window 7# Att ‘ Mean IoU  RC@0.5 RC@0.6 RC@0.7 RC@0.8

My v v All 3 64.20 69.83 59.62 46.11 26.58
Mo v v All 3 69.56 82.36 75.84 64.72 44.50
M3 v v All 3 68.91 80.84 73.05 61.65 42.89
My v v v 5 3 69.07 81.19 74.17 63.47 45.05
Ms v v v 10 3 69.33 81.83 74.80 64.12 45.42
Mg v v v All 3 70.59 83.09 75.77 65.11 46.16
Mo~ v v v All 6 | 70.93 83.50 76.51 66.34 47.85

Table 2: [Highway] Ablation study using the PointPillars initializations. Perturb refers to the
bounding box perturbation augmentation, Window specifies the window size when applicable, and
# Att is the number of self-attention blocks.

Positional Encoding ~ MeanloU  RC @ 0.5 RC@06 RC@0.7 RC@038

Absolute [10] 71.71 83.63 76.97 67.11 48.67
AliBi [9] 72.38 83.68 77.45 68.33 50.06

Table 3: [Highway] Ablation of positional encoding using the VoxelNeXt initializations

shows the results, which give the same conclusions as the VoxelNeXt-based initializations in the
main paper.

Positional Encoding We additionally ablate our choice of positional encoding with the VoxelNeXt
initialization on the Highway dataset. Table 3 shows that the relative positional encoding AliBi [9]
gives overall better performance than using the vanilla absolute positional encodings [10].

3 Qualitative Results

In this section we show qualitative results for trajectory refinement, comparing LabelFormer with
the coarse initialization, 3DAL [7] and Auto4D [6].

We illustrate initial and refined auto-labels for the Highway dataset with VoxelNeXt initializa-
tions. Fig. 1 showcases trajectories of two objects on the top that have sparse observations (and
hence worse initializations) at the beginning, and denser observations towards the end, and ours La-
belFormer is able to give better refinement for the worse initializations because it is able to leverage
more temporal context more effectively than previous works. Fig. 1, 2, 3, 4 additionally showcase
that our method works better qualitatively on trajectories with both sparse and dense observations
and with various speeds. For more visualizations on Argoverse, please refer to the supplementary
video.
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Figure 1: [Highway] Qualitative results showcasing different object trajectories (first-stage init,
refined by 3DAL, Auto4D and Ours LabelFormer) in each object’s trajectory coordinate frame. The
ground-truth bounding box is in magenta, and the auto-label is in orange. To avoid cluttering, we
visualize every other three bounding box in the first 50 frames of the trajectory.
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Figure 2: [Highway] More Qualitative results
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Figure 3: [Highway] More Qualitative results
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