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ABSTRACT

A common goal of mechanistic interpretability is to decompose the activations of
neural networks into features: interpretable properties of the input computed by
the model. Sparse autoencoders (SAEs) are a popular method for finding these
features in LLMs, and it has been postulated that they can be used to find a canon-
ical set of units: a unique and complete list of atomic features. We cast doubt
on this belief using two novel techniques: SAE stitching to show they are in-
complete, and meta-SAEs to show they are not atomic. SAE stitching involves
inserting or swapping latents from a larger SAE into a smaller one. Latents from
the larger SAE can be divided into two categories: novel latents, which improve
performance when added to the smaller SAE, indicating they capture novel in-
formation, and reconstruction latents, which can replace corresponding latents
in the smaller SAE that have similar behavior. The existence of novel features
indicates incompleteness of smaller SAEs. Using meta-SAEs - SAEs trained
on the decoder matrix of another SAE - we find that latents in SAEs often de-
compose into combinations of latents from a smaller SAE, showing that larger
SAE latents are not atomic. The resulting decompositions are often interpretable;
e.g. a latent representing “Einstein” decomposes into “scientist”, “Germany”, and
“famous person”. To train meta-SAEs we introduce BatchTopK SAEs, an im-
proved variant of the popular TopK SAE method, that only enforces a fixed av-
erage sparsity. Even if SAEs do not find canonical units of analysis, they may
still be useful tools. We suggest that future research should either pursue differ-
ent approaches for identifying such units, or pragmatically choose the SAE size
suited to their task. We provide an interactive dashboard to explore meta-SAEs:
https://metasaes.streamlit.app/

1 INTRODUCTION

Mechanistic interpretability aims to reverse-engineer neural networks into human-interpretable al-
gorithms (Olah et al., 2020; Meng et al., 2022; Geva et al., 2023; Nanda et al., 2023; Elhage et al.,
2021). A key challenge of mechanistic interpretability is identifying the correct units of analysis —
fundamental components that can be individually understood and collectively explain the network’s
function. Ideally, these units would be unique, with no variations (Bricken et al., 2023); complete,
encompassing all necessary features (Elhage et al., 2022); and atomic or irreducible, indivisible into
smaller components (Engels et al., 2024). We refer to a set of units with all of these properties as
canonical.

∗These authors contributed equally to this work.
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Figure 1: Decomposition of an SAE latent representing “Einstein” into a set of interpretable meta-
latents. The edges connecting the nodes indicate shared activation by a meta-latent, with thicker
lines representing stronger connections. It demonstrates the ability of meta-SAEs to uncover the
underlying compositional structure of SAE latents, revealing how a complex concept can be rep-
resented as a sparse combination of meta-latents. We built a dashboard where you can explore all
meta-latents: https://metasaes.streamlit.app

Initially, researchers hoped that individual MLP neurons (Meng et al., 2022; Olah et al., 2020) and
attention heads (Wang et al., 2022; Olsson et al., 2022) could serve as these units. However, these
proved insufficient for interpretability due to polysemanticity, where a single neuron responds to
multiple unrelated concepts (Olah et al., 2020; Elhage et al., 2022).

Recently, sparse autoencoders (SAEs) have emerged as a promising alternative by decomposing the
activations of LLMs into a dictionary of interpretable and monosemantic features (Bricken et al.,
2023; Cunningham et al., 2023). A key hyperparameter when training SAEs is the dictionary size,
i.e. number of latent units. Previous work conjectured that SAEs might identify a set of “true
features” with sufficient dictionary size (Bricken et al., 2023), i.e. the canonical features that are the
goal of much mechanistic interpretability research.

One challenge to the theory that SAEs identify a canonical set of units is the phenomenon of feature
splitting, where latents from smaller SAEs “split” into multiple, more fine-grained latents in larger
SAEs (Bricken et al., 2023). For example, Bricken et al. (2023) find a base64 feature that splits
into three features in a larger SAE: activating on letters, digits, and encoded ASCII in base64 text.
Furthermore, Templeton (2024) finds that a larger SAE has latents that activate on certain specific
individual chemical elements that a smaller SAE did not represent. Currently, the effect of dictionary
size on the features has not been systematically studied, in part because we lack good methods to
compare latents found in SAEs of different sizes.

To better understand how SAEs of different sizes capture features, we develop a method called
SAE stitching. When stitching SAEs, we systematically swap clusters of latents between SAEs
of different dictionary sizes based on their cosine similarity. Through this method, we observe that
larger SAEs learn both more fine-grained versions of latents found in smaller SAEs, but also entirely
novel latents. The existence of novel latents suggests that the reconstruction error of smaller SAEs
is partially due to missing out information altogether, not just imperfect approximations to features
or overly coarse latents, indicating incompleteness.

Contrary to the story of feature splitting, we observed that some reconstruction latents had split
from multiple latents in the smaller SAE, indicating those latents were composing into more com-
plex latents. Previous work has predicted that the sparsity penalty incentivizes latents to represent
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Figure 2: Example of composition of latents in SAEs of different sizes. The smaller SAE has six
latents, three of which reconstruct shape features, and three of which reconstruct color features.
Reconstructing a shape of a specific color requires two active latents (e.g. blue and square). On the
other hand, the larger SAE has nine latents, each of which reconstructs a different color and shape
combination. In the larger SAE, only a single active latent is required to reconstruct the colored
shape (e.g. blue square). The sparsity penalty incentivizes larger SAEs to learn compositions of
latents rather than atomic latents.

composed features, even if they are independent (Wattenberg & Viégas, 2024; Bricken et al., 2023;
Anders et al., 2024). For instance, consider a neural network that represents color and shape fea-
tures, each with three values (red/green/blue and circle/square/triangle). A small SAE might learn a
latent for each value. A large SAE, however, might learn latents for all 9 color-shape combinations
(i.e. blue square) instead of the 6 fundamental features (Smith, 2024). The large SAE can represent
this is sparser as only one latent activates per input rather than two, see Figure 2.

To investigate this, we introduce meta-SAEs, which are SAEs trained to find sparse decompositions
of the decoder directions of another SAE. These decompositions are often interpretable, e.g. a la-
tent representing “Einstein” decomposes into meta-latents representing “scientist”, “Germany”, and
“prominent figures”, among others (see Figure 1). This shows that latents are often not atomic, espe-
cially in larger SAEs. We find that meta-latents are similar to latents in smaller SAEs, demonstrating
that latents from larger SAEs can be interpreted as the composition of latents from smaller SAEs.

With SAE stitching, we observed reconstruction latents that had split from a small number of small
SAE latents. To train Meta-SAEs, we wanted very few meta-latents active per input, e.g. four, a
regime where the state-of-the-art JumpReLU SAEs (Rajamanoharan et al., 2024b) perform poorly.
Another popular method is TopK SAEs (Gao et al., 2024), but these impose a fixed number of active
meta-latents, which is also undesirable. To address these limitations we introduce BatchTopK, a
novel method for training SAEs that enforces a fixed sparsity across a batch producing only a fixed
average sparsity per individual input. We find that BatchTopK is useful for training SAEs on model
activations too and is a Pareto improvement over TopK SAEs. Furthermore, it has better performance
than JumpReLU SAEs at the desired sparsity levels for Meta-SAEs.

In summary, our contributions are:

1. SAE stitching, as a method for comparing latents across different sizes of SAE. Latents in
a larger SAE are either novel latents, missing in smaller SAEs, or reconstruction latents,
similar to some latents in smaller SAEs.

2. Meta-SAEs, as an approach for decomposing the decoder directions of SAEs into inter-
pretable, monosemantic meta-latents.

3. We also introduce BatchTopK SAEs, the state-of-the-art SAE architecture for sparse dic-
tionary learning on language model activations at a fixed average sparsity.

Our empirical results suggest that simply training larger SAEs is unlikely to result in a canonical set
of units for all mechanistic interpretability tasks, and that the choice of dictionary size is subjective.
We suggest taking a pragmatic approach to applying SAEs to mechanistic interpretability tasks,
trying SAEs of several widths to see which is best suited. We are uncertain whether canonical units
of analysis exist, but our results suggest that alternative approaches should be explored.
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2 SPARSE AUTOENCODERS

Sparse dictionary learning is the problem of finding a decomposition of a signal that is both sparse
and overcomplete (Olshausen & Field, 1997). Lee et al. (2007) initially applied the sparsity con-
straint to deep belief networks, with SAEs later being applied to the reconstruction of neural network
activations (Bricken et al., 2023; Cunningham et al., 2023). In the context of large language models,
SAEs decompose model activations x ∈ Rn into sparse linear combinations of learned directions,
which are often interpretable and monosemantic.

An SAE consists of an encoder and a decoder:

f(x) := σ(Wencx+ benc), (1)

x̂(f) := Wdecf + bdec. (2)

where f(x) ∈ Rm is the sparse latent representation and x̂(f) ∈ Rn is the reconstructed input. Wenc

is the encoder matrix with dimension n×m and benc is a vector of dimension m; conversely Wdec

is the decoder matrix with dimension m × n and bdec is of dimension n. The activation function σ
enforces non-negativity and sparsity in f(x), and a latent i is active on a sample x if fi(x) > 0.

SAEs are trained on the activations of a language model at a particular site, such as the residual
stream, on a large text corpus, using a loss function of the form

L(x) := ∥x− x̂(f(x))∥22︸ ︷︷ ︸
Lreconstruct

+λS(f(x))︸ ︷︷ ︸
Lsparsity

+αLaux (3)

where S is a function of the latent coefficients that penalizes non-sparse decompositions, and λ is a
sparsity coefficient, where higher values of λ encourage sparsity at the cost of higher reconstruction
error. Some architectures also require the use of an auxiliary loss Laux, for example to recycle
inactive latents in TopK SAEs (Gao et al., 2024). We expand on the different SAE variants in
Appendix A.2 and provide a glossary of terms in Appendix A.1.

3 RELATED WORK

SAEs for Mechanistic Interpretability. SAEs have been demonstrated to recover sparse, monose-
mantic, and interpretable features from language model activations (Bricken et al., 2023; Cunning-
ham et al., 2023; Templeton, 2024; Gao et al., 2024; Rajamanoharan et al., 2024a;b), however their
application to mechanistic interpretability is nascent. After training, researchers often interpret the
meaning of SAE latents by examining the dataset examples on which they are active, either through
manual inspection using features dashboards (Bricken et al., 2023) or automated interpretability
techniques (Gao et al., 2024). SAEs have been used for circuit analysis (Marks et al., 2024) in the
vein of (Olah et al., 2020; Olsson et al., 2022); to study the role of attention heads in GPT-2 (Kissane
et al., 2024); and to replicate the identification of a circuit for indirect object identification in GPT-2
(Makelov et al., 2024). Transcoders, a variant of SAEs, have been used to simplify circuit analysis
and applied to the greater-than circuit in GPT-2 (Dunefsky et al., 2024). While these applications
highlight SAEs as valuable tools for understanding language models, it remains unclear whether
they identify canonical units of analysis.

Representational Structure. Language models trained on the next-token prediction task learn rep-
resentations that model the generative process of the data. For example, Li et al. (2022) found that
transformers trained by next-move prediction to play the board game Othello explicitly represent the
board state; and Gurnee & Tegmark (2023) used linear probes to predict geographical and temporal
information from language model activations. SAEs learn these structures as well, for example,
the activations of a cluster of GPT-2 SAE latents form a cycle when reconstruction activations for
weekday name tokens (Engels et al., 2024). Bricken et al. (2023) find evidence of convergent global
structure by applying a 2-dimensional UMAP transformation to decoder directions of SAEs of dif-
ferent sizes. This results in a rich structure of latent projections with regions of latents relating to
similar concepts close to each other.
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Tuning Dictionary Size. Previous work on tuning dictionary size has mixed findings regarding
how SAEs scale with dictionary size. For instance, Templeton (2024) observed that larger SAEs
learn latents absent in smaller ones, such as specific chemical elements. Conversely, Bricken et al.
(2023) found similar latents across various SAE sizes, noting that latents in smaller SAEs sometimes
split into multiple latents as the dictionary size increases (Appendix A.4 includes such examples
taken from our SAEs). Currently, the effect of dictionary size on the learned latents has not been
systematically studied.

Model Stitching. Model stitching is a method by which layers from one neural network are
“stitched” or swapped into another neural network. Lenc & Vedaldi (2015); Bansal et al. (2021)
propose that model stitching can be used to quantify representation similarity across different neu-
ral network architectures and training regimes by demonstrating that if two networks trained on the
same task can be stitched together with minimal loss in performance, it suggests a high degree of
alignment in their intermediate representations.

4 SAE STITCHING

Templeton (2024) finds that a larger SAE has latents that activate on certain specific individual
chemical elements that a smaller SAE did not represent. Conversely, Bricken et al. (2023) observes
that smaller SAEs learn latents activating on broad mathematical text, while larger SAEs learn latents
activating on more specific mathematical categories. On the one hand, this suggests that training
large SAEs is necessary to learn latents relating to all relevant concepts. On the other hand, this
means that some of the capacity of larger SAEs is used to represent similar information as smaller
SAEs, but with more latents.

To compare latents of SAEs with different dictionary sizes, we introduce SAE stitching. In SAE
stitching, we add or replace latents in one SAE with latents from another and observe the effect
on the reconstruction performance. We find that larger SAEs learn both finer-grained versions of
latents from smaller SAEs (reconstruction latents) and entirely new latents that capture additional
information (novel latents). SAE stitching allows us to identify these two categories of latents in
larger SAEs.

4.1 STITCHING OPERATION

The output of an SAE can be expressed as a sum of the contributions from the individual latents:

x̂ :=

d∑
i=0

Wdec
i fi(x) + bdec (4)

where d is the size of the SAE dictionary, Wdec
i is an individual decoder direction, fi(x) is the

activation value for the latent i, and bdec is the decoder bias term. To stitch latents from one SAE
into another, we modify the reconstruction as follows:

x̂ := αbdec
0 + (1− α)bdec

1 +
∑
l0∈L0

Wdec
0,l0f0,l0(x) +

∑
l1∈L1

Wdec
1,l1f1,l1(x) (5)

where α = |L0|
|L0|+|L1| , W

dec
0,l0

and Wdec
1,l1

represent individual decoder directions and L0 and L1 are
the set of latents we include from the respective SAEs. Unlike with model stitching (Bansal et al.,
2021), SAE decoder directions are privileged and require no transformations to stitch.

We experiment with stitching on eight SAEs trained on the residual stream of layer 8 of GPT 2 Small
(Radford et al., 2019) with dictionary sizes ranging from 768 to 98,304 and two of the Gemma Scope
SAEs (Lieberum et al., 2024) trained on Gemma 2 2B (Team et al., 2024) with dictionary size 16,384
and 32,768. For the full list of SAE properties and training details see Appendix A.6.
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Figure 3: SAE stitching operation: connected subgraphs of latents can be swapped between SAEs
based on cosine similarity

4.2 NOVEL AND RECONSTRUCTION LATENTS

Using SAE stitching, we want to find out whether latents in larger SAEs are just more fine-grained
versions of latents of smaller SAEs, or whether they represent novel information that is missed by
the smaller SAEs. If we stitch a latent from a larger SAE into a smaller SAE and the reconstruction
performance improves, this indicates that the latent is adding new information to the smaller SAE.
If the reconstruction performance worsens instead, this indicates that the latent is overlapping and
the stitched SAE is now representing the same information twice. In this case, we can instead swap
the latent from the smaller SAE with its corresponding latents from the larger SAE.

However, evaluating all combinations of latents when stitching two SAEs is computationally infea-
sible. Bricken et al. (2023) finds that the decoder directions of latents with similar behavior across
SAEs of different sizes form local clusters with high cosine similarity. As such, we propose thresh-
olding on the maximum decoder cosine similarity metric as a heuristic to classify latents into the
two categories, i.e. for an SAE decoder direction Wdec

1,i , the feature is assigned to the novel group if

max
j

(
Wdec

1,i ·Wdec
0,j

∥Wdec
1,i∥∥Wdec

0,j∥

)
< θ (6)

where Wdec
0,j represents any decoder direction in Wdec

0 . If the maximum cosine similarity is larger
than the threshold, it is assigned to the reconstruction group. Figure 4 shows the relationship between
cosine similarity and the effect on the reconstruction loss of independently stitching that feature for
a pair of GPT-2 SAEs. In our experiments we set the cosine threshold to 0.7 for the GPT-2 SAEs,
and 0.4 for the Gemmascope SAEs, based on our exploratory analysis. Appendix Figure 15 shows
the ROC curve for using different thresholds to predict the effect of adding a latent based on the
maximum cosine similarity.

Inserting reconstruction latents into the target SAE decreases the performance due to overlapping
functionality. We resolve this by removing latents in the target SAE that have a high cosine similarity
to the ones we are inserting, effectively swapping them with similar latents. To select which latents
we swap, we construct a bipartite graph where latents from the smaller SAE form one set of vertices
and latents from the larger SAE form the other. We connect latents if they have a decoder cosine
similarity above the threshold. For each connected subgraph, the latents from the smaller SAE
can be swapped by their corresponding connected latents in the larger SAE (see Appendix A.5 for
examples of connected subgraphs).

Figure 5 shows four transitions between pairs of SAEs of increasing size. For each transition, we
first identify novel latents from the larger SAE and add them one by one, increasing the average
L0 since we are inserting extra latents. We then identify groups of related reconstruction latents
as defined by our bipartite graph and swap each group - removing similar latents from the smaller
SAE and replacing them with their counterparts in the larger SAE. This decreases L0 on average
since the larger SAE represents similar information more sparsely. Each step leads on average to
improved reconstruction performance, allowing us to interpolate between different SAEs in terms
of dictionary size, sparsity, and reconstruction performance.

The existence of the novel group of latents demonstrates that smaller SAEs are incomplete, and that
larger SAE learn features that are missed by the smaller SAE. The reconstruction group seems to
largely reconstruct the same features as the latents in the smaller SAE, but uses more features to
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Figure 4: Change in MSE when adding each feature from GPT2-1536 to GPT2-768, plotted against
the maximum cosine similarity of that feature to any feature in GPT2-768. Features with cosine
similarity less than 0.7 tend to improve MSE, while more redundant features hurt performance. A
few extreme outliers with very high cosine similarity and effect on MSE are not visible in this plot.

achieve lower sparsity (Appendix Figure 16). In some cases, a single latent splits into two more
specific latents - this is the feature splitting observed in Bricken et al. (2023). However, we find
some reconstruction group latents have high decoder cosine similarity to multiple latents in the
smaller SAE, suggesting the large SAE latent is an interpolation or composition of the smaller SAE
latents (Appendix A.5). This supports the predictions of Wattenberg & Viégas (2024); Bricken
et al. (2023); Anders et al. (2024) that the sparsity penalty results in the undesirable composition
of features that may be sparser, but do not add any new information. We explore this phenomenon
further in Section 5.

5 META-SAES

In Section 4, we demonstrated through SAE stitching that increasing dictionary size leads to larger
SAEs learning not only novel features, but also reconstruction latents that encode similar information
to the latents in smaller SAEs. We found that some of these reconstruction latents have high cosine
similarity with multiple latents in the smaller SAE, see Appendix A.5. This suggests that these
smaller SAE latents are composing into more complex latents, such as in the example of a latent
representing “blue” and another latent representing “square” combining in a “blue square”-latent
(see Figure 2). If large SAE features are indeed compositions rather than atomic, it may be possible
to decompose them into more fundamental units.

To decompose the latents of larger SAEs, we introduce meta-SAEs. Meta-SAEs are SAEs trained to
reconstruct the decoder directions Wdec

i of a standard SAE using a dictionary of meta-latents, rather
than reconstructing network activations. That is, we treat the latents Wdec

i as the training data for
our meta-SAE. We find that meta-latents and meta-SAE decompositions are interpretable, with the
meta-latents being monosemantic. Table 1 provides some examples of meta-SAE decompositions.

The latents of meta-SAEs have similar decoder directions to those found in SAEs of comparable size
trained directly on the same network activations. This observation further supports the hypothesis
that larger SAE latents are not entirely new features but may be compositions of features already
learned, albeit less precisely, by smaller models.
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Figure 5: Interpolating between SAE pairs of increasing dictionary size
(768→1536→3072→6144→12288) through two steps per phase: adding novel latents (in-
creasing L0) then swapping groups of reconstruction latents (decreasing L0 on average). Both steps
on average improve reconstruction (MSE). The L0 and MSE are averages over input samples.

Table 1: Example GPT-2 SAE latents and their meta-latent decompositions, with model-generated
explanations (human-summarized) of what the latents activate on. More latent decompositions can
be found on our interactive dashboard: https://metasaes.streamlit.app

SAE Latent Description Meta-Latent Descriptions
Albert Einstein Science & Scientists, Famous People, Space & Astronomy, Germany,

Electricity, Words starting with a capital E
Rugby Sports activities, Words starting with ‘R’, References to Ireland, Refer-

ences to sports leagues, activities & actions
Android Operating System Mobile phones, operating systems, Californian cities

We use the BatchTopK SAE, as described in Section 6, to train our meta-SAEs. We train our meta-
SAE on the decoder directions of the GPT-2 SAE with dictionary size 49152. The meta-SAE has a
dictionary size of 2304 meta-latents, with on average 4 of meta-latents active per SAE latent. Due
to small number of training samples for the meta-SAE (49152), the meta-SAE is trained for 2000
epochs. We use the Adam optimizer with learning rate 1e-4 and a batch size of 4096. After training,
the meta-SAE explains 55.47% of the variance of the decoder directions of the SAE.

5.1 EVALUATING META-SAE DECOMPOSITIONS

We follow the lead of (Bills et al., 2023; Bricken et al., 2023; Cunningham et al., 2023; Rajamanoha-
ran et al., 2024b) in evaluating neural network and SAE latents using automated interpretability with
LLMs.

First, we generate explanations of SAE latents by presenting GPT-4o-mini with a list of input se-
quences that activate an SAE latent to varying degrees, and prompting it to generate a natural lan-
guage explanation of the feature consistent with the activations. Second, we collect all of the SAE
latents on which a meta-SAE latent is active, and prompt again with the explanation and a number
of top activating examples of each of the SAE latents, asking the model to provide an explanation of
the common behavior of the SAE latents, which becomes the meta-SAE latent explanation.

We evaluate the meta-SAE latent explanations in a zero-shot multiple-choice-question setting. For a
given latent we prompt GPT-4o-mini with the explanations of the meta-SAE latents that are active on
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that latent, and ask it to choose which of 5 SAE latent explanations most relate to the explanations
of the meta-SAE latents. One of these SAE latent explanations is of the correct latent, with the
remaining 4 explanations corresponding to random latents from the SAE. On a random sample of
1,000 SAE latents, GPT-4o-mini chose the correct answer of the five options 73% of the time.

5.2 COMPARISON TO SMALLER SAE LATENTS

In Section 4, we hypothesised that latents in larger SAEs can be described as the composition of
latents in smaller SAEs. We find that meta-SAEs learn similar latents to similar sized SAEs trained
on the original reconstruction problem. Plots of the maximum cosine similarity between meta-SAE
latents and latents from SAEs of different sizes are shown in Figure 22. We validate this by replac-
ing meta-SAE decoder directions with the most similar SAE decoder direction, and retrained the
encoder. This results in only a small decrease in meta-SAE reconstruction performance (Appendix
Figure 23). This suggests that larger SAE latents are indeed composed of latents from smaller SAEs.

6 BATCHTOPK SPARSE AUTOENCODERS

In Section 5, we hypothesised that SAE latents will linearly decompose into a small, variable number
of meta-latents. Of the popular SAE variants, top-k SAEs (Gao et al., 2024) decompose each input
into a fixed number of latents, whilst ReLU (Bricken et al., 2023; Cunningham et al., 2023) and
JumpReLU Rajamanoharan et al. (2024b) have poor performance at that sparsity level and require
hyperparameter tuning to achieve a specific sparsity level. We provide further details on these SAE
variants in Appendix A.2.

To address these limitations, we introduce BatchTopK SAEs, a novel variant that extends the TopK
concept to operate at the batch level rather than on individual samples. This approach allows for a
flexible number of active latents per sample while maintaining a desired average sparsity across the
batch. Therefore, we use BatchTopK SAEs throughout our meta-SAE experiments.

The training objective for BatchTopK SAEs is defined as:

L(X) = ∥X− BatchTopK(WencX+ benc)Wdec + bdec)∥22 + αLaux (7)

Here, X is the input data batch; Wenc and benc are the encoder weights and biases, respectively;
Wdec and bdec are the decoder weights and biases. The BatchTopK function sets all activation
values to zero that are not among the top n × k activations by value in the batch, not changing the
other values. The term Laux is an auxiliary loss scaled by the coefficient α, used to prevent dead
latents, and is the same as in TopK SAEs.

BatchTopK introduces a dependency between the activations for the samples in a batch. We alleviate
this during inference by using a threshold θ that is estimated as the average of the minimum positive
activation values across a number of batches:

θ = EX[min{zi,j(X)|zi,j(X) > 0}] (8)

where zi,j(X) is the jth latent activation of the ith sample in a batch X. With this threshold, we use
the JumpReLU activation function during inference instead of the BatchTopK activation function,
zeroing out all activations under the threshold θ.

We evaluate the performance of BatchTopK on the activations of two LLMs: GPT-2 Small (residual
stream layer 8) and Gemma 2 2B (residual stream layer 12). We use a range of dictionary sizes and
values for k, and compare our results to TopK and JumpReLU SAEs in terms of normalized mean
squared error (NMSE) and cross-entropy degradation. For experimental details, see Appendix A.3.

We find that for a fixed number of active latents (L0=32) the BatchTopK SAE has a lower normalized
MSE and less cross-entropy degradation than TopK SAEs on both GPT-2 activations (Figure 6) and
Gemma 2 2B (Figure 7). Furthermore, we find that for a fixed dictionary size (12288) BatchTopK
outperforms TopK for different values of k on both models.
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Figure 6: On GPT-2 Small activations, BatchTopK largely achieves a better NMSE and CE com-
pared to standard TopK across different dictionary sizes, for a fixed number of active latents of
32 (Left). JumpReLU SAEs are omitted from this comparison as their L0 cannot be fixed to a
value. For fixed dictionary size (12,288) and different levels of k, BatchTopK outperforms TopK
and JumpReLU SAES, both in terms of NMSE and CE (Right).

In addition, BatchTopK outperforms JumpReLU SAEs on both measures on GPT-2 Small model
activations at all levels of sparsity. On Gemma 2 2B model activations the results are more mixed:
although BatchTopK achieves better reconstruction than JumpReLU for all values of k, BatchTopK
only outperforms JumpReLU in terms of CE degradation in the highest sparsity setting (k=16).

7 CONCLUSION

Our findings challenge the idea that SAEs can discover a canonical set of features. Through SAE
stitching, we demonstrated that smaller SAEs are incomplete, missing information that novel fea-
tures in larger SAEs capture. Moreover, our meta-SAE experiments showed that, due to the sparsity
penalty, latents in larger SAEs are often not atomic but compositions of interpretable meta-latents.
These findings suggest that there is no single SAE width at which it learns a unique and complete
dictionary of atomic features that can be used to explain the behavior of the model.

These results imply that rather than converging on a unique, complete, and irreducible set of features,
SAEs of different sizes offer varying granularities and compositions of features. This indicates that
the choice of SAE size should be guided by the specific interpretability task at hand, accepting that
no single SAE configuration provides a universal solution. However, our methods neither identify
canonical units of analysis, nor the size of dictionary to use for a given task. Furthermore, our work
only studies two LLMs and does not include very large SAEs, such as in Templeton (2024). We also
acknowledge that the use of SAEs in mechanistic interpretability is nascent, and whilst early results
are encouraging, associating the learned latents of SAEs with interpretable concepts is still an open
problem. In conclusion, our research suggests that alternative methods are required for identifying
canonical units, and that SAE practitioners should embrace a pragmatic approach towards choosing
dictionary size when using SAEs on interpretability tasks such as probing, unlearning and steering.
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2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Adly Templeton. Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet.
Anthropic, 2024.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

Martin Wattenberg and Fernanda B Viégas. Relational composition in neural networks: A survey
and call to action. arXiv preprint arXiv:2407.14662, 2024.

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 GLOSSARY OF TERMS

Active Latents (L0): For an input x and SAE activation function f(x), the number of non-zero
elements in f(x). Typically measured as average L0 across a batch: L0 = 1

n

∑
i ∥f(xi)∥0.

BatchTopK: A sparsification method that selects the top n × k activations across a batch of size
n, rather than k activations per sample, maintaining a fixed average sparsity. For a n×m batch X,
BatchTopK(X)ij = Xij if Xij is among n× k largest elements, 0 otherwise.

Canonical Unit: Hypothetical, fundamental building blocks of a LLMs computation that are
unique, complete, and atomic.

Cross-Entropy Degradation: The increase in cross-entropy loss when replacing the model acti-
vations with the reconstruction of the SAE.

Decoder Directions: The columns of the decoder matrix W dec that map from latent to input space.
Two decoder directions with high cosine similarity suggest related features.

Dictionary Size: The dimensionality of the latent space in an SAE, determining the maximum
number of unique features that can be learned.

Feature Splitting: A phenomenon where a broad latent learned by a smaller SAE splits into more
fine-grained latents in a larger SAE.

Latent: The encoder-decoder pair corresponding to single element in the SAE’s dictionary, i.e. a
learned feature of the SAE rather than a feature of the data.

Mechanistic Interpretability: The study of reverse-engineering neural networks into inter-
pretable algorithms, focusing on identifying and understanding computational features and circuits.

Meta-latents: Features learned by a meta-SAE when trained on the decoder directions of another
SAE.

Monosemantic: Property of a feature that responds selectively to a single coherent concept. Con-
trasts with polysemantic features.

Novel Latents: Features in a larger SAE with maximum cosine similarity below threshold θ to
any feature in a smaller SAE, indicating capture of previously unrepresented information.

Polysemanticity: The phenomenon where individual neurons or features respond to multiple un-
related concepts.
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Reconstruction Latents: Features in a larger SAE with maximum cosine similarity above thresh-
old θ to features in a smaller SAE, representing refined or specialized versions of existing features.

Residual Stream: In the context of transformer architectures, the residual stream refers to the
main information flow that bypasses the self-attention and feed-forward layers through residual
connections.

SAE Stitching: A technique for analyzing feature relationships across SAEs of different sizes by
systematically transferring latents based on decoder similarity.

Sparsity Coefficient (λ): Hyperparameter in the loss function of some SAE architectures L =
∥x− x̂∥2+λS(f(x)) controlling the trade-off between reconstruction accuracy and activation spar-
sity.

TopK: A sparsification approach that maintains exactly k non-zero activations per input by zeroing
all but the k largest values: TopK(x)i = xi if xi is among k largest elements, 0 otherwise.

A.2 SAE VARIANTS

ReLU SAEs (Bricken et al., 2023) use the L1-norm S(f) := ||f ||1 as an approximation to the
L0-norm for the sparsity penalty. This provides a gradient for training unlike the L0-norm, but
suppresses latent activations harming reconstruction performance (Rajamanoharan et al., 2024a).
Furthermore, the L1 penalty can be arbitrarily reduced through reparameterization by scaling the
decoder parameters, which is resolved in Bricken et al. (2023) by constraining the decoder directions
to the unit norm. Resolving this tension between activation sparsity and value is the motivation
behind more recent architecture variants.

TopK SAEs (Gao et al., 2024; Makhzani & Frey, 2014) enforce sparsity by retaining only the top k
activations per sample. The encoder is defined as:

f(x) := TopK(Wencx+ benc) (9)

where TopK zeroes out all but the k largest activations in each sample. This approach eliminates the
need for an explicit sparsity penalty but imposes a rigid constraint on the number of active latents
per sample. An auxiliary loss Laux = ||e − ê||2 is used to avoid dead latents, where ê = W decz is
the reconstruction using only the top-kaux dead latents (usually 512), this loss is scaled by a small
coefficient α (usually 1/32).

JumpReLU SAEs (Rajamanoharan et al., 2024b) replace the standard ReLU activation function
with the JumpReLU activation, defined as

JumpReLUθ(z) := zH(z − θ) (10)

where H is the Heaviside step function, and θ is a learned parameter for each SAE latent, below
which the activation is set to zero. JumpReLU SAEs are trained using a loss function that combines
L2 reconstruction error with an L0 sparsity penalty, using straight-through estimators to train despite
the discontinuous activation function. A major drawback of the sparsity penalty used in JumpReLU
SAEs compared to (Batch)TopK SAEs is that it is not possible to set an explicit sparsity and target-
ing a specific sparsity involves costly hyperparameter tuning. While evaluating JumpReLU SAEs,
Rajamanoharan et al. (2024b) chose the SAEs from their sweep that were closest to the desired
sparsity level, but this resulted in SAEs with significantly different sparsity levels being directly
compared. JumpReLU SAEs use no auxiliary loss function.
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A.3 BATCHTOPK SAES

Figure 7: On Gemma 2 2B activations, BatchTopK outperforms TopK SAEs across different val-
ues of k. Although BatchTopK has a better reconstruction performance (left), it only outperforms
JumpReLU in terms of downstream CE degradation in the setting where k=16 (right).

In this appendix, we provide details about the datasets used, model configurations, and hyperparam-
eters for our experiments.

We trained our sparse autoencoders (SAEs) on the OpenWebText dataset1, which was processed into
sequences of a maximum of 128 tokens for input into the language models.

All models were trained using the Adam optimizer with a learning rate of 3× 10−4, β1 = 0.9, and
β2 = 0.99. The batch size was 4096, and training continued until a total of 1 × 109 tokens were
processed.

We experimented with dictionary sizes of 3072, 6144, 12288, and 24576 for the GPT-2 Small model,
and used a dictionary size of 16384 for the experiment on Gemma 2 2B. In both experiments, we
varied the number of active latents k among 16, 32, and 64.

For the JumpReLU SAEs, we varied the sparsity coefficient such that the resulting sparsity would
match the active latents k of the BatchTopK and TopK models. The sparsity penalties in the ex-
periments on GPT-2 Small were 0.004, 0.0018, and 0.0008. For the Gemma 2 2B model we used
sparsity penalties of 0.02, 0.005, and 0.001. In both experiments, we set the bandwidth parameter to
0.001.

The results of our experiments on Gemma 2 2B can be found in figure 7.

To confirm that BatchTopK SAEs make use of the enabled flexibility to activate a variable number
of latents per sample, we plot the distribution of the number of active latents per sample in Figure 8.
We observe that BatchTopK indeed uses a wide range of active latents, activating only a single latent
on some samples and activating more than 80 on others. The peak on the left of the distribution are
model activations on the BOS-token. This serves as an example of the advantage of BatchTopK:
when the model activations do not contain much information, BatchTopK does not activate many
latents, whereas TopK would use the same number of latents regardless of the input.

1https://huggingface.co/datasets/openwebtext
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Figure 8: Distribution of the number of active latents per sample for a BatchTopK model. The peak
on the left likely corresponds to BOS tokens, demonstrating BatchTopK’s adaptive sparsity.

A.4 EXAMPLE LATENTS

Figure 9 shows a histogram of the maximum decoder cosine similarity for each latent in GPT2-1536
over all latents in GPT2-768. On the right-hand-side, there is a cluster of latents with high cosine
similarity.

Bricken et al. (2023) use the cosine similarity between latent activations as a measure for latent
similarity. However, we use decoder cosine similarity due its lower computational cost and because
it captures the latent’s effect on the reconstruction. Empirically, we find a high correlation between
these two metrics at values of decoder similarity relevant to our stitching experiments (see Figure
10).

Figure 9: Distribution of maximum cosine similarities between decoder weights of latents in GPT2-
1536 and GPT2-768. Many latents in the larger SAE have high similarity to latents in the smaller
SAE, but there is also a long tail of novel latents.

Figure 11 and Figure 12 show feature dashboards from Neuronpedia (Lin, 2023). Feature dash-
boards are a popular method to visualize and interpret SAE latents, see also Bricken et al. (2023).
These dashboards show tokens in input sentences that maximally activate a certain latent in green,
and the tokens they boost (in blue) and suppress most (in red).
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Figure 10: The activation similarity by the decoder cosine similarity on the GPT2-768 and GPT2-
1536 SAEs. At high values of cosine similarity (> 0.5) the coefficient of determination between
these is 0.87.

Figure 11 shows an example of a latent from GPT-1536 and a latent from GPT-768 that have a cosine
similarity of 0.99. We see that both of these latents activate strongly on the same inputs, and boost
similar logits.

Figure 11: Neuronpedia dashboard of example latents with high cosine similarity. Neuronpedia

However, GPT2-1536 has a latent for “make sure” that has no counterpart in GPT-768. The nearest
latents have a decoder cosine similarity of around 0.3, and are shown in
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Figure 12: Example GPT2-1536 latent with no similar latent in GPT-768, with the three most similar
latents shown. Neuronpedia

We evaluate the reconstruction performance of the two SAEs on inputs where this latent is active
and inactive. The reconstruction performance of the smaller SAE is considerably worse on inputs
where this larger SAE latent is active, compared to inputs where the latent is not active.

Latent inactive Latent active Difference
GPT2-1536 2.225 2.518 0.293
GPT2-768 2.703 3.292 0.589

Averaging this metric across all 657 latents in GPT-1536 that have low maximum cosine similarity
with all latents in GPT-768, we see a similar pattern (Figure 13)

Figure 13: Reconstruction MSE of SAEs on inputs where novel latents in the larger SAE are active
and inactive
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A.5 LATENT FAMILIES

Figure 14: Connected subgraphs of the bipartite graph of latent in GPT2-768 and GPT2-1536.

A.6 OPEN SOURCE SAE WEIGHTS

All GPT-2 Small SAEs were trained on the layer 8 residual stream, which was chosen in line with
Gao et al. (2024). They were trained for 300M tokens on the OpenWebText dataset, which was
processed into sequences of a maximum of 128 tokens for input into the language models. All
models were trained using the Adam optimizer with a learning rate of 4 × 10−4, β1 = 0.9, and
β2 = 0.99. The batch size used was 4096 and all were trained with a sparsity penalty of 8 ×
10−5. The GPT-2 SAEs are available on Neuronpedia. We also use two of the Gemma Scope SAEs
(Lieberum et al., 2024) trained on Gemma 2 2B (Team et al., 2024) with dictionary size 16384
and 32768. We used the TransformerLens (https://transformerlensorg.github.io/
TransformerLens/) implementations of GPT-2 and Gemma 2 2B. CELR is the cross entropy
loss recovered from either zero or mean ablation.
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Table 2: Properties of the SAEs used in this study.

Name Model Dict. size L0 MSE CELR Zero CELR Mean
GPT2-768 gpt2-small 768 35.2 2.72 0.915 0.876

GPT2-1536 gpt2-small 1536 39.5 2.22 0.942 0.915
GPT2-3072 gpt2-small 3072 42.4 1.89 0.955 0.937
GPT2-6144 gpt2-small 6144 43.8 1.63 0.965 0.949

GPT2-12288 gpt2-small 12288 43.9 1.46 0.971 0.958
GPT2-24576 gpt2-small 24576 42.9 1.33 0.975 0.963
GPT2-49152 gpt2-small 49152 42.4 1.21 0.978 0.967
GPT2-98304 gpt2-small 98304 43.9 1.14 0.980 0.970

GemmaScope-16384 Gemma 2 2B 16384 43.4 1.72 0.983 0.980
GemmaScope-32768 Gemma 2 2B 32768 41.5 1.59 0.985 0.982

A.7 STITCHING EXPERIMENTS

Figure 15: Based on the maximum cosine similarity it is possible to predict the direction of the effect
of adding a latent to another SAE. The Receiver operating curve (ROC) is created by varying the
threshold of maximum cosine similarity to classify a latent as novel latent or reconstruction latent.

Figure 16: Effects on MSE and L0 when swapping reconstruction latents from larger SAEs to
smaller ones. Swapping latent structures generally increases the MSE but almost always decreases
L0. Outliers are not shown. The percentual effects per swap get smaller for larger models as the
effects are distributed over more swaps.
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Figure 17: Percentage change of MSE of adding in latents from a larger SAE to a smaller SAE in
a random order. Adding in all the latents with cosine similarity ≤ 0.7 from GPT-1536 in GPT-768
reduces the MSE by almost 10%.

(a) Proportion of reconstruction latents in GPT-2
SAEs with 3072 latents. X and Y labels are ran-
dom training seeds.

(b) Proportion of reconstruction latents in SAEs
of different size. X and Y labels are exponential
expansion factors, or equivalently row indices in
Table 2.

Figure 18: Proportion of reconstruction latents between GPT-2 SAEs of the same size and different
sizes.

We compared the proportion of reconstruction latents between SAEs of the same size and SAEs of
different sizes. We found that when comparing SAEs with the same size, 94% of the latents are
reconstruction latents (cosine similarity > 0.7). These results are displayed in Figure 18.

A concern when stitching two different SAEs is the choice of bdec. However, in practice we find
that the bdecs of SAEs trained on the same latents are very similar (minimum cosine similarity of
0.9970, differing by less than 0.1% in magnitude). Figure 19 shows that the decoder biases can be
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Figure 19: Reconstruction performance (MSE) of SAEs of different sizes when their bdecs are
replaced with the bdecs of SAEs with a different dictionary size.

exchanged in the stitching process with negligible impact on the reconstruction performance of an
SAE.

A.7.1 STITCHING IN GEMMA SCOPE SAES

In order to validate that the SAE stitching results are not an artifact of GPT-2 small or the SAEs that
we trained, we applied the same methods to the open-source Gemma Scope SAEs. In particular, we
compared two SAEs trained on the residual stream of layer 12 of Gemma 2 2B. The first SAE has
dictionary size 16384 (average L0 41) and the second SAE has dictionary size 32768.

We find a lower threshold for distinguishing novel features from reconstruction features (0.4). Using
this threshold, we can also smoothly interpolate between SAEs of different sizes trained on Gemma-
2-2B.

Figure 20: Change in MSE when adding each feature from GemmaScope-32k to GemmaScope-16k,
plotted against the maximum cosine similarity of that feature to any feature in GemmaScope-16k.
Features with cosine similarity less than 0.4 tend to improve MSE, while more redundant features
hurt performance.
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Figure 21: By first adding in novel latents from Gemma Scope 32k to Gemma Scope 16k and
replacing the remaining latents with their similar latents in the larger SAE, we interpolate between
the two SAE siezs.

A.8 METASAE ADDITIONAL FIGURES

Figure 22: Cosine similarity between SAE latents and meta-SAE latents. Note the high maximum
cosine similarity between latents from a meta-SAE with 2304 latents, and a standard SAE with 3072
latents.

Figure 23: Change in reconstruction performance of a meta-SAE when its decoder directions are
replaced with the most similar decoder direction from an SAE with a similar dictionary size.
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A.9 INTERPRETABILITY EXPERIMENTS

In this paper, we demonstrate that larger SAEs may learn more narrow, composed concepts in or-
der to improve sparsity rather than just learning concepts that are missing in smaller SAEs. Here,
we provide some experimental results on sparse probing Gao et al. (2024) and concept removal
benchmarks (Karvonen et al., 2024).

A.9.1 SPARSE PROBING

Similarly to Gao et al. (2024), we use sparse probes to evaluate the presence of known ground-truth
features in our SAEs. If we expect a specific feature to be discovered by an SAE, then a metric for
autoencoder quality is simply checking whether these features are present as latents. We do this by
training a 1-dimensional logistic probe on the activations of the SAE to predict the presence of the
feature. We use the benchmark datasets included in (Karvonen et al., 2024) in our evaluation. These
cover a range of domains, for example predicting the sentiment of Amazon reviews or predicting the
language of the text from the SAE activations.

In our experiments we use a probe that uses only a single SAE latent in its prediction. The results of
these experiments are visualized in Figure 24. They show that the relationship between the size of
the SAE and the evaluation accuracy is complex and dataset dependent.

Figure 24: Sparse probing evaluation accuracy by GPT-2 SAE dictionary size across 8 benchmark
datasets, with a sparse probe using the top latent.
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Figure 25: Sparse probing evaluation accuracy by GPT-2 SAE dictionary size across 8 benchmark
datasets, with a sparse probe using the top 50 latents.

A.9.2 CONCEPT REMOVAL

In the SHIFT method (Marks et al., 2024), a human evaluator debiases a classifier by ablating SAE
latents. (Karvonen et al., 2024) operationalizes SHIFT into an evaluation for SAE quality, Targeted
Probe Perturbation, by training probes on model activations and measuring the effect of ablating sets
of SAE latents on the probe accuracy. Ablating a disentangled set of latents should have an isolated
causal effect on one class probe, while leaving other class probes unaffected.

They consider a dataset with M classes. For each class with index i = 1, . . . ,M they select the set
Li of the most relevant SAE latents. To select those latents, binary probes are trained detecting the
concept c from model activations. The attribution score of latent with index l on concept c is given
by

I(L, c) = (Lpos − Lneg)(dl ·P) (11)

where L denotes the batch of activations of latent l, dl denotes the SAE decoder vector correspond-
ing to l, P is the weight matrix of the binary probe, Lpos is the mean activation of the latent for
inputs of the targeted concept, and Lneg is the mean activation for inputs unrelated to the concept.
The latents with the highest attribution score are those select as most relevant.

For each concept ci, they partition the dataset into samples of the targeted concept and a random mix
of all other labels. They define the model with probe corresponding to class cj with j = 1, . . . ,M
as a linear classifier Cj . Further, Ci,j denotes a classifier for cj where latents Li are ablated. Then,
they iteratively evaluate the accuracy Ai,j of all linear classifiers Ci,j on the dataset partitioned for
the corresponding class cj . The targeted probe perturbation score

STPP = mean(i=j)(Ai,j)− mean(i̸=j)(Ai,j) (12)

represents the effectiveness of causally isolating a single probe. Ablating a disentangled set of
features should only show a significant accuracy decrease if i = j, namely if the latents selected for
class i are ablated in the classifier of the same class i, and remain constant if i ̸= j

The results of this evaluation by SAE dictionary size is displayed in Figure 26. Whilst here there is
a general downward trend, the accuracy is not monotonically decreasing with SAE size.
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Figure 26: TPP evaluation accuracy by GPT-2 SAE dictionary size across 2 benchmark datasets,
ablating up to 50 latents.
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