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A PROTOTYPES OF COVARIANCE MATRIX AND THEIR PROPERTIES

Here we present derivations for the properties shown in Table 1.

Covariance matrix Σ (Xϕ) = L + 1
nJ . Let us begin with the first covariance matrix, Σ (Xϕ) =

L + 1
nJ . Its expected smoothness index under the condition where E (Xϕ) = 0 can be calculated

following Eq. (2) in the main text

E (S (ϕ)) = tr (LΣ (Xϕ)) , (15)

= tr

[
L

(
L+

1

n
J

)]
. (16)

In the situation where G is a connected graph, we can apply Gutman & Xiao (2004); Chebotarev &
Shamis (2006); Van Mieghem et al. (2017)

LL† = L†L = I − 1

n
J, (17)

where I is the unit matrix, to derive

E (S (ϕ)) = tr
[
L2 + L

(
I − L†L

)]
, (18)

= tr
(
L2 + L− LL†L

)
. (19)

Because the Moore–Penrose pseudoinverse satisfies Barata & Hussein (2012)

LL†L = L, (20)

we can eventually reformulate Eq. (19) to obtain

E (S (ϕ)) = tr
(
L2
)
, (21)

the exact results shown in Table 1. Eq. (21) suggests that the expected smoothness of mapping
ϕ is fully determined by the graph topology properties conveyed by graph Laplacian L if Xϕ ∼
N
(
0, L+ 1

nJ
)
.

Given covariance matrix Σ (Xϕ) = L+ 1
nJ , variables Xϕ (i) and Xϕ (j) will evolve inversely (i.e.,

stronger negative covariance) if nodes vi and vj are connected by an edge with larger weight. There-
fore, the defined Gaussian variable, Xϕ ∼ N

(
0, L+ 1

nJ
)
, is more applicable to node heterogeneity

and local structure descriptions, where edge weights measure node difference.

Covariance matrix Σ (Xϕ) = L†+ 1
nJ . Then we turn to the second covariance matrix, Σ (Xϕ) =

L†+ 1
nJ . Under the same condition introduced above, we can derive its expected smoothness index

shown in Table 1

E (S (ϕ)) = tr (LΣ (Xϕ)) , (22)

= tr

[
L

(
L† +

1

n
J

)]
, (23)

= tr (I)− 1

n
tr (J) + tr

[
L
(
I − L†L

)]
, (24)

= n− 1, (25)

where Eqs. (24-25) are obtained by applying Eq. (17) and Eq. (20) subsequently. Eq. (25) suggests
that the expected smoothness of mapping ϕ in a graph characterized by X♡

ϕ ∼ N
(
0, L† + 1

nJ
)

is
independent of graph topology and fully determined by graph size.

To understand what kind of information is captured by Σ (Xϕ) = L† + 1
nJ , we need to consider the

precision matrix Q (the inverse of covariance matrix) of Gaussian variable X♡
ϕ ∼ N

(
0, L† + 1

nJ
)

Q :=Σ (Xϕ)−1
= L+

1

n
J. (26)
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Eq. (26) is derived according to the invertible property of L + 1
nJ Xiao & Gutman (2003); Cheb-

otarev & Shamis (2006) (
L+

1

n
J

)−1

= L† +
1

n
J. (27)

Given that the partial correlation between Xϕ (i) and Xϕ (j), the actual values of Xϕ on nodes vi
and vj , is determined by matrix Q Rue & Held (2005)

corr
(
Xϕ (i) , Xϕ (j)

∣∣Xϕ \ {Xϕ (i) , Xϕ (j)}
)
: = − Qij√

QiiQjj
(28)

= −
Lij +

1
n√(

Lii +
1
n

) (
Ljj +

1
n

) , (29)

variables Xϕ (i) and Xϕ (j) will have a stronger partial correlation if nodes vi and vj are connected
by an edge with larger weight (i.e., a larger value of −Lij). Therefore, Gaussian variable X♡

ϕ ∼
N
(
0, L† + 1

nJ
)

is more applicable to node homogeneity and global structure descriptions, where
edge weights represent node similarity.

B NECESSARY DETAILS OF CLASSIC GRAPH OPTIMAL TRANSPORT

Here we elaborate necessary details of classic graph-signal-based optimal transport approaches (e.g.,
GOT Petric Maretic et al. (2019); Petric Maretic (2021) and fGOT Maretic et al. (2022)). These
approaches represent graphs Ga (Va, Ea) and Gb (Vb, Eb) as variables X aϕ ∼ N (0,Σa) and X bϕ ∼
N (0,Σb) to formalize the optimal transport problem.

Permutation matrix. Classic approaches consider an optimal transport problem whose solution
is constrained as a permutation matrix M ∈ R|Vb|×|Va|. Applying permutation M on graph Gb, we
can make Gb evolve towards Ga via

M ◦ X bϕ ∼ N
(
0,MTΣbM

)
. (30)

The permutation matrix set to which M belongs is defined as

M =

M ∈ {0, 1}|Va|×|Vb|

∣∣∣∣∣ ∀i, ∑
j

Mi,j = 1, ∀j,
∑
i

Mi,j = 1

 , |Vb| = |Va|, (31)

M =

M ∈ [0,∞)
|Va|×|Vb|

∣∣∣∣∣∀i, ∑
j

Mi,j = |Va|−1, ∀j,
∑
i

Mi,j = |Vb|−1

 , |Vb| ≠ |Va|,

(32)

where Eq. (31) is the standard definition of permutation matrix set Mena et al. (2018) and Eq. (32)
is a generalization proposed in fGOT Maretic et al. (2022).

Sinkhorn operator. Mathematically, the Sinkhorn operator functions as a iterative normalization
approach of the rows and columns of a matrix Mena et al. (2018). Its definition is given as

ς0 (M) = exp (M) , (33)

ςk (M) = Tc ◦ Tr
(
ςk−1 (M)

)
, ∀k ≥ 1, (34)

ς (M) = lim
k→∞

ςk (M) , (35)

where Tr (X) denotes the row normalization

Tr (X) = X ⊘
(
X11T

)
, ∀X, (36)

and Tr (X) denotes the row normalization

Tc (X) = X ⊘
(
11TX

)
, ∀X. (37)

Note that operator ⊘ denotes the element-wise division and 1 is a vector of ones.
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Continuous approximation and implicit entropy regularization via the Sinkhorn operator.
As shown in Mena et al. (2018), the Sinkhorn operator can search the solution of a combinatorial
assignment problem between an arbitrary permutation matrix M ∈ M and the doubly-stochastic
matrices in the Birkhoff polytope B Mena et al. (2017). In other words, the Sinkhorn operator finds
an appropriate continuous approximation of M by elements in B Mena et al. (2018). More specifi-
cally, previous works suggest

ς (M/τ) = argmax
B∈B

[
tr
(
BTM

)
+ τH (B)

]
, ∀τ ∈ (0,∞) , (38)

where H (·) denotes the entropy Mena et al. (2018). The combinatorial assignment is constrained
by an entropy regularization controlled by τ . In the case where τ approaches to zero, one can
approximately find an ideal continuous approximation of permutation matrix M Mena et al. (2018)

argmax
B∈B

tr
(
BTM

)
≃ lim
τ→0+

ς (M/τ) . (39)

Please note that the entropy regularization effects in Eq. (36) are implied by the continuous approxi-
mation of permutation matrixM rather than by the optimal transport process itself. The optimization
objective defined by Eq. (6) in the main text still belongs to pure optimal transport. To distinguish
this type of entropy regularization from the entropy regularization explicitly defined for optimal
transport in Eq. (8), we refer to the entropy regularization introduced by continuous approximation
via the Sinkhorn operator as implicit entropy regularization while the entropy regularization explic-
itly defined as a part of optimal transport objective is referred to as explicit entropy regularization.

C ENTROPY-REGULARIZED OPTIMAL TRANSPORT BETWEEN GRAPHS

As we have described in the main text, we begin to formalize our approach by explicitly considering
the entropy-regularized optimal transport between variables X aϕ and X bϕ Cuturi (2013)

EOε
(
X aϕ ,X bϕ

)
= inf

γ

(∫
Ω×Ω

∥x− y∥22dγ (x, y) + ε

∫
Ω×Ω

log

(
dγ

dρadρb

)
dγ

)
, s.t. γ ∈ Γab

(40)

where parameter ε ∈ [0,∞) denotes the entropy regularization magnitude. Similar to GOT Pet-
ric Maretic et al. (2019); Petric Maretic (2021) and fGOT Maretic et al. (2022), we also constrain
the solution of Eq. (37) as a permutation matrix M ∈ M and continuously approximate it via the
Sinkhorn operator.

The closed-form expression of EOε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
. Based on the Gaussian properties of

our proposed graph representation, we can follow the approach introduced in Mallasto et al. (2021)
to derive an closed-form expression of EOε

(
X aϕ , ς (M/τ) ◦ X bϕ

)
. For convenience, we first intro-

duce three frequently used matrices

Kε
ab = I +

√
I +

16

ε2
Σaς (M/τ)

T
Σbς (M/τ), (41)

Kε
aa = I +

√
I +

16

ε2
[Σa]

2
, (42)

Kε
bb = I +

√
I +

16

ε2

[
ς (M/τ)

T
Σbς (M/τ)

]2
, (43)

where notion I denotes the unit matrix. Based on Eqs. (38-40), we can analytically derive

EOε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
=tr

(
Σa + ς (M/τ)

T
Σbς (M/τ)

)
− ε

2
(tr (Kε

ab)− log det (Kε
ab) + |Va| log 2− 2|Va|) , (44)

where det (·) denotes the determinant.
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Derivations of the closed-form expression of EOε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
. Below, we sketch the

derivation process of Eq. (44). More mathematical proofs can be seen in Mallasto et al. (2021).

FIRST STEP. To offer a clear vision, we begin with analyzing EOε
(
X aϕ ,X bϕ

)
in Eq. (40). As

suggested by Borwein et al. (1994); Csiszár (1975); Mallasto et al. (2021), Eq. (40) has a unique
minimizer (referred to as the entropic transport plan)

γε (x, y) = αε (x)βε (y) exp
(
−ε∥x− y∥22

)
ρa (x) ρb (y) , ∀x, y ∈ Ω, (45)

where

αε (x)

∫
Ω

ρb (y)β
ε (y) exp

(
−ε∥x− y∥22

)
dy = 1, ∀x ∈ Ω, (46)

βε (y)

∫
Ω

ρa (x)α
ε (x) exp

(
−ε∥x− y∥22

)
dx = 1, ∀y ∈ Ω. (47)

Meanwhile, we can have the entropic Kantorovich formulation of Eq. (40) according to Marino &
Gerolin (2020)

EOε
(
X aϕ ,X bϕ

)
= sup
η∈Lε(Xa

ϕ ), ψ∈Lε(X b
ϕ)

{∫
Ω

ρa (x) η (x) dx+

∫
Ω

ρb (y)ψ (y) dy

− ε

[∫
Ω×Ω

ρa (x) ρb (y) exp

(
η (x) + ψ (y)− ∥x− y∥22

ε

)
dxdy − 1

]}
, (48)

where Lε
(
X aϕ
)

and Lε
(
X bϕ
)

are corresponding classes of Entropy-Kantorovich potentials

Lε
(
X aϕ
)
=
{
η
∣∣∣η : R|Va| → R, 0 <

∫
Ω

ρa (x) exp

(
η (x)

ε

)
dx <∞

}
, (49)

Lε
(
X bϕ
)
=
{
ψ
∣∣∣ψ : R|Vb| → R, 0 <

∫
Ω

ρb (y) exp

(
ψ (y)

ε

)
dy <∞

}
. (50)

The unique maximizers of Eq. (48), ηε and ψε, satisfy an analytic relation with the unique minimizer
of Eq. (40) Mallasto et al. (2021)

γε (x, y) = exp

(
ηε (x) + ψε (y)− ∥x− y∥22

ε

)
ρa (x) ρb (y) , ∀x, y ∈ Ω. (51)

Such an relation can further relate αε and βε with ηε and ψε Mallasto et al. (2021)
ηε (x) = ε logαε (x) , ∀x ∈ Ω, (52)
ψε (y) = ε log βε (y) , ∀y ∈ Ω. (53)

Given these derivations, we can insert Eq. (40) and Eqs. (52-53) into Eq. (48) to derive

EOε
(
X aϕ ,X bϕ

)
=ε

(∫
Ω

ρa (x) η
ε (x) dx+

∫
Ω

ρb (y)ψ
ε (y) dy

)
− ε

[∫
Ω×Ω

ρa (x) ρb (y) exp

(
ηε (x) + ψε (y)− ∥x− y∥22

ε

)
dxdy − 1

]
, (54)

=

∫
Ω

ρa (x) logα
ε (x) dx+

∫
Ω

ρb (y) log β
ε (y) dy

− ε

[∫
Ω×Ω

ρa (x) ρb (y)α
ε (x)βε (y) exp

(
−∥x− y∥22

ε

)
dxdy − 1

]
. (55)

To further simplify Eq. (55), we need to relate αε and βε with variables X aϕ ∼ N (0,Σa) and
X bϕ ∼ N (0,Σb). Following the idea of Mallasto et al. (2021), we consider to represent αε and βε
as the functions of certain variables

αε (x) = exp
(
xTAx+ a

)
, ∀x ∈ Ω, (56)

βε (y) = exp
(
yTBy + b

)
, ∀y ∈ Ω. (57)
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To analytically derive A, a, B, and b, we first insert Eqs. (52-53) into Eq. (51)

γε (x, y) = αε (x)βε (y) exp

(
−∥x− y∥22

ε

)
ρa (x) ρb (y) , ∀x, y ∈ Ω. (58)

Because the entropic transport plan needs to have appropriate marginals

ρa (x) =

∫
Ω

γε (x, y) dy, ∀x ∈ Ω, (59)

ρb (y) =

∫
Ω

γε (x, y) dx, ∀y ∈ Ω, (60)

we can have

ρa (x) = αε (x) ρa (x)

∫
Ω

βε (y) exp

(
−∥x− y∥22

ε

)
ρb (y) dy, ∀x ∈ Ω, (61)

ρb (y) = βε (y) ρb (y)

∫
Ω

αε (x) exp

(
−∥x− y∥22

ε

)
ρa (x) dx, ∀y ∈ Ω. (62)

Eqs. (61-62) directly lead to

1 = exp
(
xTAx+ a

) ∫
Ω

exp
(
yTBy + b

)
exp

(
−∥x− y∥22

ε

)
ρb (y) dy, ∀x ∈ Ω, (63)

1 = exp
(
yTBy + b

) ∫
Ω

exp
(
xTAx+ a

)
exp

(
−∥x− y∥22

ε

)
ρa (x) dx, ∀y ∈ Ω. (64)

SECOND STEP. Now, let us relate the above results with EOε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
. We constrain

the entropic transport plan γε as a permutation matrix M ∈M and continuously approximate it via
the Sinkhorn operator. Under this condition, variable X bϕ evolves towards X aϕ following

ς (M/τ) ◦ X bϕ ∼ N
(
0, ς (M/τ)

T
Σbς (M/τ)

)
(65)

in each step. Therefore, we need to update the probability density of X bϕ following Eq. (65). Based

on these settings, we can represent EOε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
in a similar form of Eq. (55)

EOε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
=ε

(∫
Ω

ρa (x) η
ε (x) dx+

∫
Ω

ρ
ς(M/τ)
b (y)ψε (y) dy

)
− ε

[∫
Ω×Ω

ρa (x) ρ
ς(M/τ)
b (y) exp

(
ηε (x) + ψε (y)− ∥x− y∥22

ε

)
dxdy − 1

]
, (66)

=

∫
Ω

ρa (x) logα
ε (x) dx+

∫
Ω

ρ
ς(M/τ)
b (y) log βε (y) dy

− ε

[∫
Ω×Ω

ρa (x) ρ
ς(M/τ)
b (y)αε (x)βε (y) exp

(
−∥x− y∥22

ε

)
dxdy − 1

]
, (67)

=ε

[∫
Ω

ρa
(
xTAx+ a

)
dx+

∫
Ω

ρ
ς(M/τ)
b

(
yTBy + b

)
dy

]
, (68)

where ρς(M/τ)
b denotes the probability density of variable ς (M/τ) ◦ X bϕ in Eq. (65).
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Similar to our idea shown in Eqs. (56-64), we can equivalently represent Eqs. (63-64) as

1 = exp
(
xTAx+ a

) ∫
Ω

exp
(
yTBy + b

)
exp

(
−∥x− y∥22

ε

)
× 1√

(2π)
|Va| det

(
ς (M/τ)

T
Σbς (M/τ)

) exp

(
−1

2
yT ς (M/τ)

T
Σbς (M/τ) y

)
dy, ∀x ∈ Ω,

(69)

1 = exp
(
yTBy + b

) ∫
Ω

exp
(
xTAx+ a

)
exp

(
−∥x− y∥22

ε

)
1√

(2π)
|Va| det (Σa)

× exp

(
−1

2
xTΣax

)
dx, ∀y ∈ Ω. (70)

Please note that we have a term |Va| because the matrix size of ς (M/τ)
T
Σbς (M/τ) is same as Σa

(they all have a size of |Va|). Following the idea of Mallasto et al. (2021), we can have Eqs. (71-72)
after some simplification and reorganization of Eqs. (69-70)

1 =
exp (a+ b)√

(2π)
|Va| det

(
ς (M/τ)

T
Σbς (M/τ)

) exp

[
xT
(
A− 1

ε
I

)
x

]

×
∫
Ω

exp

[
yT
(
B − 1

ε
I − 1

2

(
ς (M/τ)

T
Σbς (M/τ)

)−1
)
y +

2

ε
xT y

]
dy, ∀x ∈ Ω, (71)

1 =
exp (a+ b)√

(2π)
|Va| det (Σa)

exp

[
yT
(
B − 1

ε
I

)
y

] ∫
Ω

exp

[
xT
(
A− 1

ε
I − 1

2
[Σa]

−1

)
x+

2

ε
yTx

]
dx,

∀y ∈ Ω. (72)

Based on the identity that holds for arbitrary C Mallasto et al. (2021)∫
Ω

exp
(
−xTCx+ bTx

)
=

√
π|Va|

det (C)
exp

(
1

4
bTC−1b

)
, ∀C ∈ R|Va|×|Va|, (73)

we can transform Eqs. (71-72) into Mallasto et al. (2021)

A =
1

ε
I +

1

ε2

(
B − 1

ε
I − 1

2

(
ς (M/τ)

T
Σbς (M/τ)

)−1
)−1

, (74)

B =
1

ε
I +

1

ε2

(
A− 1

ε
I − 1

2
[Σa]

−1

)−1

, (75)

exp (a+ b) =

√
det
(
2ς (M/τ)

T
Σbς (M/τ)

)
det

(
1

ε
I +

1

2

(
ς (M/τ)

T
Σbς (M/τ)

)−1

−B
)
,

(76)

exp (a+ b) =

√
det (2Σa) det

(
1

ε
I +

1

2
[Σa]

−1 −A
)
. (77)

Eqs. (74-75) can be further reformulated as

A =
1

ε
I +

1

ε2

(
1

ε
I +

1

ε2

(
A− 1

ε
I − 1

2
[Σa]

−1

)−1

− 1

ε
I − 1

2

(
ς (M/τ)

T
Σbς (M/τ)

)−1
)−1

,

(78)

B =
1

ε
I +

1

ε2

(
1

ε
I +

1

ε2

(
B − 1

ε
I − 1

2

(
ς (M/τ)

T
Σbς (M/τ)

)−1
)−1

− 1

ε
I − 1

2
[Σa]

−1

)−1

.

(79)
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After some reorganization of Eqs. (78-79), we can eventually derive

A =
1

4

√
[Σa]

−1

(
I +

ε

4
Σa −

√
I +

16

ε2

√
Σaς (M/τ)

T
Σbς (M/τ)

√
Σa

)√
[Σa]

−1
, (80)

B =
1

4

√(
ς (M/τ)

T
Σbς (M/τ)

)−1
(
I +

ε

4
ς (M/τ)

T
Σbς (M/τ)

−
√
I +

16

ε2

√
ς (M/τ)

T
Σbς (M/τ)Σa

√
ς (M/τ)

T
Σbς (M/τ)

)√(
ς (M/τ)

T
Σbς (M/τ)

)−1

.

(81)

Meanwhile, we can have

exp (a+ b) =

√
1

2|Va|
det (Kε

ab). (82)

In Mallasto et al. (2021), one can see more mathematical proofs of the above derivations.

THIRD STEP. Given the expressions of A, B, and exp (a+ b), we are abled to analytically derive
the closed-form expression of EOε

(
X aϕ , ς (M/τ) ◦ X bϕ

)
. Applying what we have derived above,

we can reformulate Eq. (68) as

EOε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
=ε
(
tr (ΣaA) + tr

(
ς (M/τ)

T
Σbς (M/τ)B

)
+ a+ b

)
, (83)

=
ε

4
tr

[
I +

4

ε
Σa −

√
I +

16

ε2

√
Σaς (M/τ)

T
Σbς (M/τ)

√
Σa

]
+
ε

4
tr

[
I +

4

ε
ς (M/τ)

T
Σbς (M/τ)

−
√
I +

16

ε2

√
ς (M/τ)

T
Σbς (M/τ)Σa

√
ς (M/τ)

T
Σbς (M/τ)

]
+
ε

2

(
log

1

2|Va|
+ log det (Kε

ab)

)
,

(84)

=
ε

4
tr

[
I +

4

ε
Σa −

√
I +

16

ε2
Σaς (M/τ)

T
Σbς (M/τ)

]
+
ε

4
tr

[
I +

4

ε
ς (M/τ)

T
Σbς (M/τ)

−
√
I +

16

ε2
Σaς (M/τ)

T
Σbς (M/τ)

]
+
ε

2

(
log

1

2|Va|
+ log det (Kε

ab)

)
, (85)

where Eq. (85) is derived from the fact that
√
CD
√
C has the same eigenvalues trace with CD for

arbitrary square matrices C and D Mallasto et al. (2021). Based on simple reorganization, we can
reformulate Eq. (85) as

EOε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
=
ε

4
tr

[
2I +

4

ε
Σa −Kε

ab

]
+
ε

4
tr

[
2I +

4

ε
ς (M/τ)

T
Σbς (M/τ)−Kε

ab

]
− ε|Va|

2
log 2

+
ε

2
log det (Kε

ab) , (86)

=
ε|Va|
2

+ tr (Σa)−
ε

4
tr (Kε

ab) +
ε|Va|
2

+ tr
(
ς (M/τ)

T
Σbς (M/τ)

)
− ε

4
tr (Kε

ab)

− ε|Va|
2

log 2 +
ε

2
log det (Kε

ab) , (87)

=tr
(
Σa + ς (M/τ)

T
Σbς (M/τ)

)
− ε

2
(tr (Kε

ab)− log det (Kε
ab) + |Va| log 2− 2|Va|) , (88)

which is same as Eq. (44) and our results in the main text. Thus, we have finished our derivations
of the closed-form expression of EOε

(
X aϕ , ς (M/τ) ◦ X bϕ

)
.
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D ON THE 2-SINKHORN DIVERGENCE

In this section, we present our derivations of the closed-form expression of the 2-Sinkhorn diver-
gence in our main text (see Eq. (12)).

The closed-form expression of the 2-Sinkhorn divergence. As we have suggested in the
main text, the classic entropy-regularized optimal transport problem between graphs defined by
EOε

(
X aϕ , ς (M/τ) ◦ X bϕ

)
inevitably involves a bias Feydy et al. (2019). This bias is created by

the non-vanishing auto-correlation terms EOε
(
X aϕ ,X aϕ

)
and EOε

(
ς (M/τ) ◦ X bϕ, ς (M/τ) ◦ X bϕ

)
when ε > 0 Feydy et al. (2019). Following the idea in previous studies Feydy et al. (2019); Mallasto
et al. (2021), we control this bias by replacing EOε

(
X aϕ ,X bϕ

)
with the 2-Sinkhorn divergence

SKε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
=EOε

(
X aϕ , ς (M/τ) ◦ X bϕ

)
− 1

2
EOε

(
X aϕ ,X aϕ

)
− 1

2
EOε

(
ς (M/τ) ◦ X bϕ, ς (M/τ) ◦ X bϕ

)
. (89)

Based on the closed-form expression of EOε
(
X aϕ ,X bϕ

)
in Eq. (44), we can analytically derive that

SKε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
=
ε

4

(
tr (Kε

aa − 2Kε
ab +Kε

bb) + log

(
det2 (Kε

ab)

det (Kε
aa) det (K

ε
bb)

))
, (90)

where Kε
aa, Kε

ab, and Kε
bb are defined in Eqs. (41-43).

The derivations of Eq. (90) is rather simple. Let us formalize terms EOε
(
X aϕ ,X aϕ

)
and

EOε
(
ς (M/τ) ◦ X bϕ, ς (M/τ) ◦ X bϕ

)
in Eq. (89). Similar to Eq. (88), we can have

EOε
(
X aϕ ,X aϕ

)
= tr (Σa +Σa)−

ε

2
(tr (Kε

aa)− log det (Kε
aa) + |Va| log 2− 2|Va|) , (91)

EOε
(
ς (M/τ) ◦ X bϕ, ς (M/τ) ◦ X bϕ

)
= tr

(
ς (M/τ)

T
Σbς (M/τ) + ς (M/τ)

T
Σbς (M/τ)

)
− ε

2
(tr (Kε

bb)− log det (Kε
bb) + |Va| log 2− 2|Va|) . (92)

Inserting Eq. (88) and Eqs. (91-92) into Eq. (89), it is trivial to verify the validity of Eq. (90).

Properties of the 2-Sinkhorn divergence. As shown in the main text, the 2-Sinkhorn divergence
can take the advantages of both pure optimal transport and maximum mean discrepancy Feydy et al.
(2019) because it interpolates between them according to entropy regularization magnitude ε Feydy
et al. (2019); Mallasto et al. (2021)

OT2

(
X aϕ , ς (M/τ) ◦ X bϕ

) ε→0←−−− SKε
(
X aϕ , ς (M/τ) ◦ X bϕ

) ε→∞−−−→ MMDε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
,

(93)

where MMDε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
= ∥E

(
X aϕ
)
− E

(
ς (M/τ) ◦ X bϕ

)
∥2 denotes the maximum

mean discrepancy Feydy et al. (2019); Mallasto et al. (2021). Below, we present mathematical
proofs of this in-between property.

At first, we prove the left part of Eq. (93) where the 2-Sinkhorn divergence reduces to the 2-
Wasserstein distance as ε→ 0. Inserting Eqs. (41-43) into Eq. (44) and Eqs. (91-92), we can derive
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the following limit

lim
ε→0

EOε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
= lim
ε→0

[
tr
(
Σa + ς (M/τ)

T
Σbς (M/τ)

)
− ε

2
(tr (Kε

ab)− log det (Kε
ab) + |Va| log 2− 2|Va|)

]
,

(94)

= lim
ε→0

{
tr
(
Σa + ς (M/τ)

T
Σbς (M/τ)

)
− ε

2

[
tr

(
I +

√
I +

16

ε2
Σaς (M/τ)

T
Σbς (M/τ)

)

− log det

(
I +

√
I +

16

ε2
Σaς (M/τ)

T
Σbς (M/τ)

)
+ |Va| log 2− 2|Va|

]}
, (95)

=tr
(
Σa + ς (M/τ)

T
Σbς (M/τ)

)
− 2 lim

ε→0
tr

(
ε

4
I +

√
ε2

16
I +Σaς (M/τ)

T
Σbς (M/τ)

)

+ lim
ε→0

ε

2
log det

(
ε

4
I +

√
ε2

16
I +Σaς (M/τ)

T
Σbς (M/τ)

)
+ lim
ε→0

ε|Va|
2

(log 2− log ε+ 2) ,

(96)

=tr
(
Σa + ς (M/τ)

T
Σbς (M/τ)

)
− 2 tr

(√
Σaς (M/τ)

T
Σbς (M/τ)

)
, (97)

=OT2

(
X aϕ , ς (M/τ) ◦ X bϕ

)
. (98)

Similarly, we can further generalize the derivations in Eqs. (94-98) to terms EOε
(
X aϕ ,X aϕ

)
and

EOε
(
ς (M/τ) ◦ X bϕ, ς (M/τ) ◦ X bϕ

)
in Eq. (89) to obtain

lim
ε→0

EOε
(
X aϕ ,X aϕ

)
=tr (Σa +Σa)− 2 tr

(√
ΣaΣa

)
, (99)

=0, (100)

and

lim
ε→0

EOε
(
ς (M/τ) ◦ X bϕ, ς (M/τ) ◦ X bϕ

)
=tr

(
ς (M/τ)

T
Σbς (M/τ) + ς (M/τ)

T
Σbς (M/τ)

)
− 2 tr

(√
ς (M/τ)

T
Σbς (M/τ) ς (M/τ)

T
Σbς (M/τ)

)
, (101)

=0. (102)

After inserting Eqs. (94-102) into Eq. (89), we can know

lim
ε→0

SKε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
= lim
ε→0

EOε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
− 1

2
lim
ε→0

EOε
(
X aϕ ,X aϕ

)
− 1

2
lim
ε→0

EOε
(
ς (M/τ) ◦ X bϕ, ς (M/τ) ◦ X bϕ

)
,

(103)

=OT2

(
X aϕ , ς (M/τ) ◦ X bϕ

)
, (104)

which proves the left side of Eq. (93).

Then we turn to the right part of Eq. (93) where the 2-Sinkhorn divergence reduces to the maximum
mean discrepancy Feydy et al. (2019); Mallasto et al. (2021) as ε → ∞. Following the idea in
Mallasto et al. (2021), the proof can be derived in a simple way. One only need to consider the
spectral decomposition of a matrix product Σaς (M/τ)

T
Σbς (M/τ) + ς (M/τ)

T
Σbς (M/τ)

Σaς (M/τ)
T
Σbς (M/τ) + ς (M/τ)

T
Σbς (M/τ) = UT diag

([
λ1, . . . , λ|Va|

])
U, (105)
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where diag (·) denotes the diagonal. Then, we can have

lim
ε→∞

EOε
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X aϕ , ς (M/τ) ◦ X bϕ

)
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tr
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2
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(106)
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, (107)
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)
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|Va|∑
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[
− 1 + (1 +
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ε2
)− log(1 +
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, (108)

= lim
ε→∞

{
tr
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Σa + ς (M/τ)

T
Σbς (M/τ)

)
− ε

2

|Va|∑
i=1

[
8

ε2
− log(1 +

4

ε2
)
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, (109)

=tr
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Σa + ς (M/τ)

T
Σbς (M/τ)

)
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ε→∞

|Va|∑
i=1

(
4

ε
− ε

2

4

ε2

)
, (110)

=tr
(
Σa + ς (M/τ)

T
Σbς (M/τ)

)
− lim
ε→∞

|Va|∑
i=1

2

ε
, (111)

=tr
(
Σa + ς (M/τ)

T
Σbς (M/τ)

)
. (112)

Another kind of derivation of Eq. (112) can be seen in Mallasto et al. (2021). After repeating the
above derivations on terms EOε

(
X aϕ ,X aϕ

)
and EOε

(
ς (M/τ) ◦ X bϕ, ς (M/τ) ◦ X bϕ

)
in Eq. (89),

we can readily prove

lim
ε→∞

EOε
(
X aϕ ,X aϕ

)
= tr (Σa +Σa) , (113)

and

lim
ε→∞

EOε
(
ς (M/τ) ◦ X bϕ, ς (M/τ) ◦ X bϕ

)
=tr

(
ς (M/τ)

T
Σbς (M/τ) + ς (M/τ)

T
Σbς (M/τ)

)
. (114)

Inserting Eqs. (112-114) into Eq. (89), we can know

lim
ε→∞

SKε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
= 0, (115)

which coincides with the maximum mean discrepancy Feydy et al. (2019); Mallasto et al. (2021)

MMDε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
= ∥E

(
X aϕ
)
− E

(
ς (M/τ) ◦ X bϕ

)
∥2 = 0. (116)

This result proves the right side of Eq. (93). In fact, what Eq. (116) presents is a special case of
the maximum mean discrepancy between Gaussian variables with a same value of the first-order
moment Feydy et al. (2019); Mallasto et al. (2021).

E OPTIMIZATION ALGORITHM OF ERGOT PROBLEM WITH THE
2-SINKHORN DIVERGENCE

To improve the comparability of our approach with existing frameworks, we solve the ErGOT prob-
lem with the 2-Sinkhorn divergence in Eq. (14) applying the algorithm proposed in GOT Pet-
ric Maretic et al. (2019). Such an algorithm approximates the solution of Eq. (14) by the Bayesian
exploration and re-parameterization Kingma & Welling (2013); Figurnov et al. (2018). Below, we
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Algorithm 1 A stochastic gradient descent algorithm for solving Eq. (123)

Require: X aϕ and X bϕ
Require: Sampling size s ∈ N+, learning rate γ ∈ (0,∞), parameter τ ∈ (0,∞) for the Sinkhorn

operator, parameter ε ∈ (0,∞) for entropy regularization, and epoch number κ ∈ N+

Require: Randomly initialized Ω0 and Σ0

while t < κ do
Randomly sample a set {Ξ1

t , . . . ,Ξ
s
t} where each Ξit ∼ N (0,diag (1))

Approximate the gradient of loss function via SGD

∇EΞt∼N (0,diag(1))

(
SKε

(
X aϕ , (Ωt +Σt ⊙Ξt) ◦ X bϕ

))
≃1

s

s∑
i=1

∇SKε
(
X aϕ , (Ωs

t +Σs
t ⊙Ξst ) ◦ X bϕ

)
, (117)

Define (Ωt+1,Σt+1) by updating (Ωt,Σt) following the approximated gradient in Eq. (117).
end while

sketch this algorithm with reasonable simplification. More details about this algorithm can be seen
in Petric Maretic et al. (2019); Kingma & Welling (2013); Figurnov et al. (2018).

To efficiently solve the optimization problem in our main text

minimize
ς(M/τ)∈R|Vb|×|Va|

SKε
(
X aϕ , ς (M/τ) ◦ X bϕ

)
, s.t. ς (M/τ) is a doubly stochastic matrix, (118)

we can consider an approximation where the algorithm minimizes the expectation of optimization
objective with respect to some parameters Θ of a certain probability distribution ρΘ

minimize
Θ

Eς(M/τ)∼ρΘ
(
SKε

(
X aϕ , ς (M/τ) ◦ X bϕ

))
, s.t. ς (M/τ) is a doubly stochastic matrix.

(119)

In practice, a common choice of probability distribution ρθ is a multivariate normal distribution
Petric Maretic et al. (2019)

ρΘ =
∏
i,j

N
(
ωij , σ

2
ij

)
, (120)

where Θ = (Ω,Σ) ∈ R|Va|×|Va| × R|Va|×|Va|. As suggested in Petric Maretic et al. (2019), we
can know the following equivalence relation after re-parameterization Kingma & Welling (2013);
Figurnov et al. (2018)

ς (M/τ) ∼ ρΘ ⇐⇒
(
[ς (M/τ)]i,j = ωij + σijξij , ξij ∼ N (0, 1) , ∀ (i, j) ∈ {1, . . . , |Va|}2

)
.

(121)

Based on these definitions, we can reformulate Eq. (119) as

minimize
Ω,Σ

EΞ∼N (0,diag(1))

(
SKε

(
X aϕ , (Ω+Σ⊙Ξ) ◦ X bϕ

))
, (122)

where notion ⊙ denotes the Hadamard product and N (0,diag (1)) is the standard multivariate
Gaussian distribution. Then, we can approximate the gradient of the above stochastic function by
sampling from the standard multivariate Gaussian distribution N (0,diag (1))

∇EΞ∼N (0,diag(1))

(
SKε

(
X aϕ , (Ω+Σ⊙Ξ) ◦ X bϕ

))
≃

∑
Ξ∼N (0,diag(1))

∇SKε
(
X aϕ , (Ω+Σ⊙Ξ) ◦ X bϕ

)
, (123)

which can be naturally solved by stochastic gradient descent Khan et al. (2017); Petric Maretic
et al. (2019). In Algorithm 1, we present necessary details of algorithm designs. One can also see
Petric Maretic et al. (2019) for more information.
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In experiment implementation, we also add a numerical acceleration to the algorithm. The acceler-
ation is realized by calculating the 2-Sinkhorn divergence SKε (·, ·) using

K̂ε
ab = (Kε

ab − I)
2
+ I = 2I +

16

ε2
Σaς (M/τ)

T
Σbς (M/τ) , (124)

K̂ε
aa = (Kε

aa − I)
2
+ I = 2I +

16

ε2
[Σa]

2
, (125)

K̂ε
b = (Kε

bb − I)
2
+ I = 2I +

16

ε2

[
ς (M/τ)

T
Σbς (M/τ)

]2
, (126)

rather than using Kε
ab, K

ε
aa, and Kε

bb in Eqs. (41-43). Although we have no strict proof here, the
2-Sinkhorn divergence calculated based on K̂ε

ab, K̂
ε
aa, and K̂ε

bb is empirically observed to achieve
optimal performance. Because excluding the computation of matrix square root is favorable for
algorithm acceleration, we suggest that a strict proof of the validity of Eqs. (124-126) may be a
meaningful direction for future exploration.

F EXPERIMENT SETTINGS AND ADDITIONAL RESULTS

Graph alignment. In Fig. 6, we show the experiment results of graph alignment without numer-
ical tricks. All experimental settings are same as Fig. 5 except that we do not add 0.1I , a scaled
unit matrix, to the covariance matrix. The experiment of sample complexity is no longer repeated

Figure 6: The results of graph alignment (without numerical tricks). (a-b) report the experiment
on Erdős-Rényi graphs while (c-d) report the experiment on stochastic block models. (a) and (c)
compare ErGOT with GOT and GW on different graph sizes. (b) and (d) measure the time cost of
ErGOT (1000 epochs), GOT (1000 epochs), and GW.
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because numerical tricks have no influence on it. In Fig. 6, we can see the data trends similar to Fig.
5. Although the performance of ErGOT and GOT is affected by the absence of numerical tricks,
ErGOT still surpasses GOT because ErGOT is more robust in averting numerical problems.

Graph sketching. In Table 4, we show the experiment results of graph sketching on three data
sets. All experimental settings are same as Table 2.

2X compression 4X compression
BZR MUTAG Synthie BZR MUTAG Synthie

OTC 79.38± 5.01 81.66± 2.98 50.36± 5.47 - - 30.29 ± 4.74
HeavyE 79.23± 6.06 79.7± 6.3 51.60± 10.88 - - -
Variation - 77.27± 3.57 41.93± 3.54 77.02 ± 2.09 - -
Algebraic 81.40± 3.31 68.00± 1.85 43.85± 5.64 - - -
Affinity 78.65± 4.84 69.45± 3.69 47.84± 2.18 - - -

REC 77.08± 3.53 70.00± 5.24 49.32± 7.07 - - -
COPT 74.72± 0.69 71.79± 8.10 30.29± .16 78.86 ± 4.21 84.34 ± 4.41 35.02 ± 8.25
ErGOT 78.45± 3.87 73.13± 6.93 42.99 ± 1.33 77.22 ± 2.20 73.34 ± 3.28 46.31 ± 10.63

Table 4: Graph sketching experiment results on 3 data sets.

We should note that there are multiple missing values in Table 4 because some algorithms, irrespec-
tive of how much effort we devote to fine-tuning them, achieve unreasonably poor performance or
meet numerical problems (e.g., return inf or nan during computation) in our experiment. We suggest
that these algorithms may be numerically unstable on some data sets. It would be unfair to treat the
observed poor performance as their actual capacities. Therefore, we no longer report these results
to avoid misleading.

Graph retrieval. In our graph retrieval experiment, graphs in every data set is first compressed to
a given graph size. Below, we summarize the settings of graph size:

MSRC_9 PROTEINS BZR MUTAG MSRC_21C DHFR COX2_MD
Compressed size 20 13 7 7 20 30 13

Table 5: Compressed graph size on 7 data sets.
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