
Appendix

The appendix is organized as follows.

• Appendix A Proofs related to activation patterns and activation regions.

• Appendix B Proofs related to the numbers of regions attained with positive probability.

• Appendix C Expected number of regions for large rank.

• Appendix D Proofs related to the expected volume of activation regions.

• Appendix E Proofs related to the expected number of activation regions.

• Appendix F Upper bounding the constants.

• Appendix G Proofs related to the expected number of regions for networks with zero bias.

• Appendix H Proofs related to the decision boundary.

• Appendix I Algorithm for counting regions and pieces of the decision boundary.

• Appendix J Initialization procedures.

• Appendix K Details on the experiments and additional experiments.

A Proofs related to activation patterns and activation regions

A.1 Number of activation patterns

Lemma 6 (Simple upper bound on the number of r-partial activation patterns). Let r ∈ N0. The
number of r-partial activation patterns and sub-patterns in a network with a total of N rank-K
maxout units are upper bounded by |Pr| ≤

(
rK
2r

)(
N
r

)
KN−r and |Sr| ≤

(
rK
2r

)(
N
r

)
respectively.

Proof of Lemma 6. To get an r-partial activation pattern one needs at most r neurons. The number
of ways to choose them is

(
N
r

)
. The number of ways to choose a pre-activation feature that attains

a maximum in the rest of neurons is KN−r. The r chosen neurons have in total rK pre-activation
features. Out of them, we need to choose r features that attain maximum, and r additional features to
construct the pre-activation pattern, so 2r features in total. We ignore the restriction that there needs
to be at least one feature from each neuron, which gives us an upper-bound r

(
K
2r

)
. Notice that this

way we also count r-partial patterns that require less than r neurons. Combining everything, we get
the desired result. For the sub-patters, we simply ignore the term Kn−r.

We will use the above upper bound in our calculations due to its simplicity. For completeness, we
note that the exact number of partial activation patterns can be given as follows.
Proposition 14 (Number of r-partial activation patterns). For a network with a total of N rank-K
maxout units the number of distinct r-partial activation patterns is

|Pr| =
∑

(N0,...,NK−1)∈NK
0 :∑K−1

j=0 Nj=N,
∑K−1

j=0 jNj=r

(
N

N0, . . . , NK−1

)K−1∏
j=0

(
K

1 + j

)Nj

.

If K = 2 then the summation index takes only one value (N0, N1) = (N − r, r) and the expression
simplifies to

(
N
N−r

)
2N−r.

Proof. We have N neurons. For a given activation pattern, for j = 0, . . . ,K − 1, denote Nj the
number of neurons with (1 + j) pre-activation features attaining the maximum. Since every neuron
has indecision in the range 0, . . . ,K − 1, we have

∑K−1
j=0 Nj = N . The r-partial activation patterns

are precisely those for which
∑
j jNj = r. The number of distinct ways in which we can partition

the set of N neurons into K sets of cardinalities N0, . . . , NK−1 is precisely
(

N
N0,...,NK−1

)
. For each

j, the number of ways in which a given neuron can have (1 + j) pre-activation features attaining the
maximum is

(
K

1+j

)
.
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A.2 Generic correspondence between activation regions and linear regions

For a fixed activation pattern J , a computation path γ is a path in the computation graph of the
network N that goes from input to the output through one of the units in each layer, where γ =
(γ0, γ1, . . . , γL), γl ∈ [nl]× [K] specifies a unit and a corresponding pre-activation feature in layer
l. For any input x in the activation regionR(J, θ), the gradient with respect to x can be expressed
through the computation paths as

∇N (x, θ) = W (L+1)
x W (L)

x · · ·W (1)
x ,

∂

∂xi
N (x, θ) =

∑
paths γ

starting at i

L+1∏
l=1

w(l)
γ ,

where in W (l)
x ∈ Rnl×nl−1 is a piecewise constant matrix valued function of the input x with rows

corresponding to the pre-activation features that attain the maximum according to the pattern J , and
w

(l)
γ ∈ R are corresponding weights on the edge of γ between the layer (l−1) and l, again depending

on J . For a simple example of when one linear region is a union of several activation regions in a
maxout network, consider a network with one of the weights in the single linear output unit set to
zero. Such a situation can happen, for instance, at initialization, though with probability 0. Then,
switching between the maximums in the unit in the previous layer to which this weight connects will
not be visible when we compute the gradient, and several activation regions created by the transitions
between maximums in this unit will become a part of the same linear region.
Lemma 5 (Activation regions vs linear regions). Consider a maxout networkN . The set of parameter
values θ for which the represented function has the same gradient on two distinct activation regions
is a null set. In particular, for almost every θ, linear regions and activation regions correspond to
each other.

Proof of the Lemma 5. Consider two different non-empty activation regions corresponding to activa-
tion patterns J1 and J2 for which∇N (x; θ) has the same value. This means that n0 equations of the
form ∑

paths γ∈Γ1,i

L+1∏
l=1

w(l)
γ =

∑
paths γ∈Γ2,i

L+1∏
l=1

w(l)
γ

are satisfied, where Γ1,i,Γ2,i are collections of paths starting at i corresponding to the activation
patterns J1 and J2 respectively. For different values of i the sets of paths differ only at the input layer.

Based on this equation, there exists cγ,i ∈ {±1} and a non-empty collection of paths Γi (the
symmetric difference of Γ1,i and Γ2,i) so that∑

paths γ∈Γi

cγ,i

L+1∏
l=1

w(l)
γ = 0.

This is a polynomial equation in the weights of the network. Each monomial occurs either with
coefficient 1 or −1. In particular, this polynomial is not identically zero. The zero set of a polynomial
is of measure zero on R#weights unless it is identically zero, see e.g. Caron and Traynor (2005). We
have a system of n0 such equations (one for each i). The intersection of the solution sets is again
a set of measure zero. The total number of pairs of activation regions is finite, upper bounded by(
KN

2

)
. A countable union of measure zero sets is of measure zero, thus the set of weights for which

two activation regions have the same gradient values has measure zero with respect to the Lebesgue
measure on R#weights.

A.3 Partial activation regions

Now we introduce several objects that are needed to discuss r-partial activation regions.
Definition 15. Fix a value θ of the trainable parameters. For a neuron z in N and a set Jz ⊆ [K],
the Jz-activation region of a unit z is

H(Jz; θ) := {x0 ∈ Rn0 | argmax
k∈[K]

ζz,k(xl(z)−1; θ) = Jz}.
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More generally, for a set of neurons Z = {z} and a corresponding list of sets JZ = (Jz)z∈Z , the
corresponding JZ -activation region is

H(JZ ; θ) :=
⋂
z∈Z
H(Jz; θ). (1)

If we specify an activation pattern for every neuron, J[N ], so that Z = [N ], then we write

R(J[N ]; θ) = H(J[N ]; θ).

Recall that an activation pattern J[N ] with with the property that
∑
z(|Jz| − 1) = r is called an

r-partial activation pattern. To distinguish such patterns, we denote them by Jr ∈ Pr. The union of
all corresponding activation regions is denoted

XN ,r(θ) =
⋃

Jr∈Pr

R(Jr; θ).

Lemma 4 (r-partial activation regions are relatively open convex polyhedra). Consider a maxout
network N . Let r ∈ {0, . . . , n0} and J ∈ Pr. Then for any θ, R(J, θ) is a relatively open convex
polyhedron in Rn0 . For almost every θ, it is either empty or has co-dimension r.

Proof of Lemma 4. Fix an r-partial activation pattern Jr ∈ Pr. Over the activation regionR(J ; θ),
the k-th pre-activation feature of each neuron z is a linear function of the input to the network, namely

w∗z,k · x+ b∗z,k = w
(l(z))
z,k (w(l(z)−1) · · · (w(1) · x+ b(1)) · · ·+ b(l(z)−1)) + b

(l(z))
z,k ,

where w∗z,k and b∗z,k, k ∈ [K] denote the weights and biases of this linear function, which depend
on the weights and biases and activation values of the units up to unit z. For each z specify a fixed
element j0 ∈ Jz . The activation region can be written as⋂

z∈[N ]

{
x ∈ Rn0 | w∗z,j0 · x+ b∗z,j0 = w∗z,j · x+ b∗z,j , ∀j ∈ Jz \ {j0};

w∗z,j0 · x+ b∗z,j0 > w∗z,i · x+ b∗z,i, ∀i ∈ [K] \ Jz
}
.

This means that an r-partial activation region is determined by a set of strict linear inequalities and
r linear equations. The equations are represented by vectors vz,j = (w∗z,j0 , b

∗
zj0

)− (w∗z,j , b
∗
z,j) for

all j ∈ Jz \ {j0} for all z for which |Jz| > 1. For generic parameters these equations are linearly
independent. Indeed, the vectors being linearly dependent means that there is a matrix V >V , where
V has rows vz,j , with vanishing determinant. By similar arguments as in the proof of Lemma 5,
the set of parameters solving a polynomial system has measure zero. Hence, for generic choices of
parameters, the r linear equations are independent and the polyhedron will have a co-dimension r (or
otherwise be empty).

The same result can be obtained for r-partial activation regions of ReLU networks since ReLU
activation regions can be similarly written as a system of linear equations and inequalities.

We can make a statement about the shape of r-partial activation regions of maxout networks. Recall
that a convex polyhedron is the closure of the solution set to finite system of linear inequalities. If it
is bounded, it is called a convex polytope. The dimension of a polyhedron is the dimension of the
smallest affine space containing it.

The next statement follows immediately from Lemma 4.
Lemma 16 (XN ,r consists of (n0 − r)-dimensional pieces). With probability 1 with respect to the
distribution of the network parameters θ, for any x ∈ XN ,r there exists ε > 0 (depending on x
and θ) s.t. XN ,r intersected with the ε ball Bε(x) is equal to the intersection of this ball with an
(n0 − r)-dimensional affine subspace of Rn0 .

Corollary 17 (r-partial activation regions are relatively open convex polyhedra). Recall that an an
r-partial activation sub-pattern Ĵ ∈ Sr is a list Ĵ = (Jz)z∈Z of sets Jz ⊆ [K], z ∈ Z ⊆ [N ] with
|Jz| > 1 and

∑
z∈Z(|Jz| − 1) = r. For almost all choices of the parameter (i.e., except for a null set

with respect to the Lebesgue measure),

voln0−r (XN ,r(θ)) =
∑
Ĵ∈Sr

voln0−r(H(Ĵ ; θ)).
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Proof of Corollary 17. Given Ĵ ∈ Sr, we denote Z ⊆ [N ] the corresponding list of neurons. Using
the notion of indecision loci from Definition 15, we can re-write XN ,r(θ) as

XN ,r(θ) =
⋃
J∈Pr

R(J ; θ) =
⋃
J∈Pr

H(J ; θ) =
⋃
J∈Pr

⋂
z∈[N ]

H(Jz; θ)

=
⋃
J∈Pr

⋂
z∈Z
H(Jz; θ) ∩

⋂
z∈[N ]\Z

H(Jz; θ)


=
⋃
Ĵ∈Sr

⋂
z∈Z
H(Jz; θ) ∩

⋃
Jz∈[K],z∈[N ]\Z

⋂
z∈[N ]\Z

H(Jz; θ)


=
⋃
Ĵ∈Sr

⋂
z∈Z
H(Jz; θ) ∩

⋂
z/∈Z

⋃
k∈[K]

H(Jz = {k}; θ)

 .
Therefore,

voln0−r (XN ,r(θ)) =
∑
Ĵ∈Sr

voln0−r

⋂
z∈Z
H(Jz; θ) ∩

⋂
z/∈Z

⋃
k∈[K]

H(Jz = {k}; θ)

 .

Notice that
(⋂

z/∈Z
⋃
k∈[K]H(Jz = {k}; θ)

)c
is a zero measure set in XN ,r(θ), because over that

set, by Lemma 16 the co-dimension of the corresponding activation regions is larger than r. Therefore,
for any given Ĵ = (Jz)z∈Z ∈ Sr,

voln0−r

⋂
z∈Z
H(Jz; θ) ∩

⋂
z/∈Z

⋃
k∈[K]

H(Jz = {k}; θ)

 = voln0−r

(⋂
z∈Z
H(Jz; θ)

)
.

This completes the proof.

B Proofs related to the generic numbers of regions

B.1 Number of regions and Newton polytopes

We start with the observation that the linear regions of a maxout unit correspond to the upper vertices
of a polytope constructed from its parameters.
Definition 18. Consider a function of the form f : Rn → R; f(x) = max{wj · x + bj}, where
wj ∈ Rn and bj ∈ R, j = 1, . . . ,M . The lifted Newton polytope of f is defined as Pf :=
conv{(wj , bj) ∈ Rn+1 : j = 1, . . . ,M}.
Definition 19. Let P be a polytope in Rn+1 and let F be a face of P . An outer normal vector of F is
a vector v ∈ Rn+1 with 〈v, p− q〉 > 0 for all p ∈ F , q ∈ P \ F and 〈v, p− q〉 = 0 for all p, q ∈ F .
The face F is an upper face of P if it has an outer normal vector v whose last coordinate is positive,
vn+1 > 0. It is a strict upper face if each of its outer normal vectors has a positive last coordinate.

The Newton polytope is a fundamental object in the study of polynomials. The naming in the context
of piecewise linear functions stems from the fact that piecewise linear functions can be regarded as
differences of so-called tropical polynomials. The connections between such polynomials and neural
networks with piecewise linear activation functions have been discussed in several recent works
(Zhang et al., 2018; Charisopoulos and Maragos, 2018; Alfarra et al., 2020). For details on tropical
geometry, see (Maclagan and Sturmfels, 2015; Joswig, 2022). Although in the context of (tropical)
polynomials the coefficients are integers, such a restriction is not needed in our discussion.

A convex analysis interpretation of the Newton polytope can be given as follows. Consider a piecewise
linear convex function f : Rn → R; x 7→ maxj{wj · x + bj}. Then the upper faces of its lifted
Newton polytope Pf correspond to the graph {(x∗,−f∗(x∗)) : x∗ ∈ Rn ∩ dom(f∗)} of the negated

18



(w1,−b1)

(w2,−b2)

(w3,−b3)

P ′f

NP ′f

Rn0 × {−1}

Figure 7: The linear regions of a function f(x) = maxj{〈wj , x〉 + bj} correspond to the lower
vertices of the polytope P ′f = convj{(wj ,−bj)} ⊆ Rn0+1, or, equivalently, the upper vertices of
the lifted Newton polytope Pf = convj{(wj , bj)} ⊆ Rn0+1. The linear regions of f can also be
described as the intersection of the normal fan NP ′f , consisting of outer normal cones of faces of P ′f ,
with the affine space Rn0 × {−1}.

convex conjugate f∗ : Rn → R; x∗ 7→ supx∈Rn〈x, x∗〉 − f(x), which is a convex piecewise linear
function. This implies that the upper vertices of Pf are the points (wj , bj) ∈ Rn+1 for which
f(x) = wj · x+ bj over a neighborhood of inputs. Hence the upper vertices of the Newton polytope
correspond to the linear regions of f . This relationship holds more generally for boundaries between
linear regions and other lower dimensional linear features of the graph of the function. We will use
the following result, which is well known in tropical geometry (see Joswig, 2022).

Proposition 20 (Regions correspond to upper faces). The r-partial activation regions of a function
f(x) = maxj{wj ·x+ bj} correspond to the r-dimensional upper faces of its lifted Newton polytope
Pf . Moreover, the bounded activation regions correspond to the strict upper faces of Pf .

The situation is illustrated in Figure 7.

B.2 Bounds on the maximum number of linear regions

For reference, we briefly recall results providing upper bounds on the maximum number of linear
regions of maxout networks. The maximum number of regions of maxout networks was studied by
Pascanu et al. (2013); Montúfar et al. (2014), showing that deep networks can represent functions
with many more linear regions than any of the functions that can be represented by a shallow network
with the same number of units or parameters. Serra et al. (2018) obtained an upper bound for deep
maxout networks based on multiplying upper bounds for individual layers. These bounds were
recently improved by Montúfar et al. (2021), who obtained the following result, here stated in a
simplified form.

Theorem 21 (Maximum number of linear regions, Montúfar et al. 2021).

• For a network with n0 inputs and a single layer of n1 rank-K maxout units, the maximum number
of linear regions is

∑n0

j=0

(
n1

j

)
(K − 1)j .

• For a network with n0 inputs and L layers of n1, . . . , nL rank-K maxout units, if n ≤ n0, nl

n
even, and el = min{n0, . . . , nl−1}, the maximum number of linear regions is lower bounded by∏L
l=1(nl

n (K − 1) + 1)n and upper bounded by
∏L
l=1

∑el
j=0

(
nl

j

)
(K − 1)j .

B.3 Numbers of regions attained over positive measure subsets of parameters

A layer of maxout units can attain several different numbers of linear regions with positive probability
over the parameters. This is illustrated in Figure 8. We obtain the following result, describing
numbers of linear regions that can be attained by maxout units, layers, and deep maxout networks
with positive probability over the parameters.

Theorem 7 (Numbers of linear regions).
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Rn0

Figure 8: A layer of maxout units of rank K ≥ 3 attains several different numbers of linear
regions with positive probability over the parameters. For a layer with two rank-3 maxout units,
some neighborhoods of parameters give 6 linear regions and others 9, with nonlinear loci given by
perturbations of the red-pink and red-darkred lines.

• Consider a rank-K maxout unit with n0 inputs. For each 1 ≤ k ≤ K, there is a set of parameter
values for which the number of linear regions is k. For min{K,n0 + 1} ≤ k ≤ K, the correspond-
ing set has positive measure, and else it is a null set. This corresponds to a network with an input
layer of size n0 and single maxout layer with a single maxout unit.

• For each choice of 1 ≤ k1, . . . , kn1
≤ K, there are parameters for which the number of linear

regions is
∑n0

j=0

∑
S∈([n1]

j )
∏
i∈S(ki − 1). For min{K,n0 + 1} ≤ k1, . . . , kn1

≤ K, the corre-

sponding set has positive measure. Here S ∈
(

[n1]
j

)
means that S is a subset of [n1] := {1, . . . , n1}

of cardinality |S| = j, and since the network has a single maxout layer, L = 1 and nL = n1.

• Consider a network with n0 inputs and L layers of n1, . . . , nL rank-K maxout units, K ≥ 2, nl

n0

even. Then, for each choice of 1 ≤ kli ≤ K, i = 1, . . . , n0, l = 1, . . . , L, there are parameters for
which the number of linear regions is

∏L
l=1

∏n0

i=1( nl

n0
(kli − 1) + 1). There is a positive measure

subset of parameters for which the latter is the number of linear regions over (0, 1)n0 .

The strategy of the proof is as follows. We first show that there are parameters such that individual
rank-K maxout units behave as rank-k maxout units, for any 1 ≤ k ≤ K, and there are positive
measure subsets of the parameters for which they behave as rank-k maxout units, for any n+1 ≤ k ≤
K. Further, there are positive measure subsets of the parameters of individual rank-K maxout units
for which, over the positive orthant Rn≥0, they behave as rank-k maxout units, for any 1 ≤ k ≤ K.
Then we use a similar strategy as Montúfar et al. (2021) to construct parameters of a network with
units of pre-specified ranks which attain a particular number of linear regions.
Proposition 22. Consider a rank-K maxout unit with n inputs restricted to Rn≥0. For any 1 ≤ k ≤ K,
there is a positive measure subset of parameters for which the behaves as a rank-k maxout unit.
Moreover, this set can be made to contain parameters representing any desired function that can be
computed by a rank-k maxout unit.

Proof. We need to show that for any choices of (wi, bi), i ∈ [k], there are generic choices of (wj , bj),
j ∈ [K] \ [k], so that for each J ⊆ [K] with J 6⊆ [k], the corresponding activation region R(J, θ)
does not intersect Rn≥0. Notice that, if j ∈ J \ [k], then the corresponding activation regionR(J, θ)

is contained in the arrangement consisting of hyperplanes Hji = {x : (wj −wi) ·x+ (bj − bi) = 0},
i ∈ J \ {j}. For each j ∈ [K] \ [k], we choose wj = jc(−1, . . . ,−1) + εj , bj = −jc′+ ε′j for some
c > 2 max{‖wi‖∞ : i ∈ [k]}, c′ > 2 max{bi : i ∈ [k]} and small εj ∈ Rn, ε′j ∈ R. Then, for each
j ∈ [K] \ [k] and i ∈ [K], j < j, the hyperplane Hji has a normal vector (wj − wi) ∈ R<0 and an
intercept bj − bi < 0, and hence it does not intersect Rn≥0.

We are now ready to prove the theorem.

Proof of Theorem 7. Single unit. Consider a maxout unit maxj∈[K]{wj ·x+bj}. To have this behave
as a rank-k maxout unit, 1 ≤ k ≤ K, we simply set (wj , bj) = (w1, b1 − 1), j ∈ [K] \ [k]. This
is a non-generic choice of parameters. Consider now a rank-k maxout unit with n + 1 ≤ k and
generic parameters (wi, bi), i ∈ [k]. We want to show that there are generic choices of (wj , bj),
j ∈ [K] \ [k] so that maxj∈[K]{wj · x + bj} = maxi∈[k]{wi · x + bi} for all x ∈ Rn. In view of
Proposition 20, this is equivalent to (wj , bj), j ∈ [K] \ [k] not being upper vertices of the lifted
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Newton polytope P = conv{(wj , bj) : j ∈ [K]}. Since any generic n+ 1 points in Rn are affinely
independent, we have that the convex hull conv{wi ∈ Rn : i ∈ [k]} has full dimension n. Hence, any
wj = 1

k

∑
i∈[k] wi + εj and bj = mini∈[k]{bi} − 1 + ε′j with sufficiently small εj ∈ Rn, ε′j ∈ R,

j ∈ [K] \ [k] are strictly below conv{(wi, bi) : i ∈ [k]} and are not upper vertices of P .

Single layer. We use the previous item to obtain n1 maxout units of ranks k1, . . . , kn1
, either in the

non-generic or in the generic cases. Then we apply the construction of parameters and the region
counting argument from Montúfar et al. (2021, Proposition 3.4) to this layer, to obtain a function with∑n0

j=0

∑
S⊆([n1]

j )
∏
i∈S(ki−1) linear regions. For each of the units i = 1, . . . , n1, one may choose a

generic vector vi ∈ Rn and define the weights and biases of the pre-activation features as wij = j
ki
vi

and bij = −g( jki + εi), j = 1, . . . , ki, where g : R → R is any strictly convex function and εi is
chosen generically. Then the non-linear locus of each unit consists of ki−1 parallel hyperplanes with
a generic shift εi, and the normal vectors vi of different units are in general position. The number of
regions defined by such an arrangement of hyperplanes in Rn can be computed using Zaslavsky’s
theorem, giving the indicated result. It remains to show that, for n0 + 1 ≤ k1, . . . , kn1 , there are
positive measure perturbations of these parameters that do change the number of regions. By the
lower semi-continuity discussed in Section 3, the number of regions does not decrease for sufficiently
small generic perturbations of the parameters. To show that it does not increase, we note that, by
Theorem 21 this number of regions is the maximum that can be attained by a layer of n1 maxout
units of ranks k1, . . . , kn.

Deep network. For the first statement, we use the first item to obtain maxout units of any desired
ranks 1 ≤ kli ≤ K, l = 1, . . . , L, i = 1, . . . , nl, and then apply the construction of parameters from
Montúfar et al. (2021, Proposition 3.11) to this network, to obtain the indicated number of regions.

For the second statement, we use Proposition 22 to have the units behave as maxout units of
any desired ranks over [0, 1]n0 . For the l-th layer, we divide the nl units into n0 blocks x(l)

ij ,
i = 1, . . . , n0, j = 1, . . . , nl

n0
. For i = 1, . . . , n0, the i-th block consists of nl

n0
maxout units of rank

kli. We can choose the weights and biases so that over [0, 1]n0 , the nonlinear locus of the i-th block
(x

(1)
i,1 , . . . , x

(1)

i,
n1
n0

) consists of nl

n0
(kli− 1) parallel hyperplanes with normal ei, and the alternating sum∑nl/n0

j=1 (−1)jx
(l)
ij is a zig-zag function along the direction ei which maps (0, 1)n0 to (0, 1), and maps

any point in Rn0 \ [0, 1]n0 to a point in R \ [0, 1]. In this way, the l-th layer, followed by a linear layer
Rnl → Rn0 , maps (0, 1)n0 onto (0, 1)n0 in a

∏n0

i=1( nl

n0
(kli − 1) + 1) to one manner. Sufficiently

small perturbations of the parameters do not affect this general behavior. The composition of L such
layers gives the desired number of regions over (0, 1)n0 .

B.4 Minimum number of activation regions

One can easily construct parameters so that the represented function is identically zero. However,
these are very special parameters. Moreover, it can be shown that the number of linear regions of a
maxout network is a lower semi-continuous function of the parameters, in the sense that sufficiently
small generic perturbations of the parameters do not decrease the number of linear regions (Montúfar
et al., 2021, Proposition 3.2). Hence, the question arises: What is the smallest number of linear
regions that will occur with positive probability over the parameter space (i.e. for all parameters
except for a null set). For example, in the case of shallow ReLU networks, it is known that the
number of regions for generic parameters is equal to the maximum. For maxout networks we saw in
Theorem 7 that several numbers of linear regions can happen with positive probability. We prove the
following lower bound on the number of regions for maxout networks with generic parameters.

Theorem 8 (Generic lower bound on the number of linear regions). Consider a rank-K maxout
network, K ≥ 2, with n0 inputs, n1 units in the first layer, and any number of additional nonzero
width layers. Then, for almost every choice of the parameters, the number of linear regions is at least∑n0

j=0

(
n1

j

)
and the number of bounded linear regions is at least

(
n1−1
n0

)
.

First we observe that for generic parameters, the number of linear regions of the function represented
by a network is bounded below by the number of linear regions of the network restricted to the first
layer. This is not trivial, since the deeper layers could in principle map the values from the first layer
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to a constant value, resulting in a function with a single linear region. However, for maxout networks
this only happens for a null set of parameters.

Proposition 23. The number of activation regions of a maxout network is at least as large as the
number of regions of the first layer. Moreover, for generic parameters the number of linear regions is
equal to the number of activation regions.

Proof. The number of regions never reduces as we pass through the network. The region is either
kept as it is or split into parts by a neuron. The fact that for generic parameters activation regions
correspond to linear regions is Lemma 5.

In order to lower bound the number of regions of a single layer, we use the correspondence between
linear regions and the upper vertices of the corresponding lifted Newton polytope, Proposition 20.
We first observe that the Newton polytope of a shallow maxout units is the Minkowski sum of the
Newton polytopes of the individual units. Recall that the Minkowski sum of two sets A and B is the
set A+B = {a+ b : a ∈ A, b ∈ B}.
Proposition 24. Consider a layer of maxout units, f : Rn → Rm; fi(x) = max{wir · x+ bir : r =
1, . . . , k}. Let f(x) =

∑m
i=1 fi(x). Then the lifted Newton polytope of f is the Minkowski sum of the

lifted Newton polytopes of f1, . . . , fm, Pf =
∑m
i=1 Pfi .

Proof. This follows from direct calculation. Details can be found in the works of Zhang et al. (2018)
and Montúfar et al. (2021).

Next, a family of polytopes Pi = conv{(wi,r, bi,r) ∈ Rn0+1 : r = 1, . . . ,K} with generic
(wi,r, bi,r), r = 1, . . . ,K, i = 1, . . . , n1, is in general orientation. For such a family, the Minkowski
sum P = P1 + · · ·+ Pn1

has at least as many vertices as a Minkowski sum of n1 line segments in
general orientation:

Proposition 25 (Adiprasito 2017, Corollary 8.2). The number of vertices of a Minkowski sum of
m polytopes in general orientation is lower bounded by the number of vertices of a sum of m line
segments in general orientations.

From this, we derive a lower bound on the number of upper vertices of a Minkowski sum of polytopes
in general orientations.

Proposition 26. The number of upper vertices of a Minkowski sum of n1 polytopes in Rn0+1 in
general orientation is at least

∑n0

j=0

(
n1

j

)
, and the number of strict upper vertices is at least

(
n1−1
n0

)
.

Proof. Consider the sum P = P1 + · · · + Pn1
of polytopes Pi = {(wi,r, bi,r) : r = 1, . . . , k},

i = 1, . . . , n1. The set of upper vertices consists of 1) strict upper vertices and 2) vertices which
are both upper and lower. The number of strict upper vertices of a Minkowski sum of n1 positive
dimensional polytopes in general orientations in Rn0+1 is at least

(
n1−1
n0

)
(Montúfar et al., 2021,

Corollary 3.8).

Now note that the vertices which are upper and lower are precisely the vertices of the Minkowski
sum Q = Q1 + · · ·+Qn1 of the poltyopes Qi = conv{wi,r ∈ Rn0 : r = 1, . . . , k}, i = 1, . . . , n1.
By Proposition 25 the total number of vertices of a Minkowski sum is at least equal to the number of
vertices of a Minkowski sum of line segments. The latter is the same as the number of regions of a
central hyperplane arrangement in n0 dimensions, which is

(
n1−1
n0−1

)
+
∑n0−1
j=0

(
n1

j

)
.

Hence for any generic Minkowski sum of n1 positive-dimensional polytopes in n0 + 1 dimensions,
the number of upper vertices is at least(

n1 − 1

n0

)
+

(
n1 − 1

n0 − 1

)
+

n0−1∑
j=0

(
n1

j

)
=

(
n1

n0

)
+

n0−1∑
j=0

(
n1

j

)
=

n0∑
j=0

(
n1

j

)
.

This concludes the proof.

Now we have all tools we need to prove the theorem.
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Proof of Theorem 8. By Proposition 23, the number of regions is lower bounded by the number of
regions of the first layer. We now derive a lower bound for the number of regions of a single layer
with n0 inputs and n1 maxout units. In view of Propositions 20 and 24, we need to lower bound the
number of upper vertices of a generic Minkowksi sum. The bounded regions correspond to the strict
upper vertices. The result follows from Proposition 26.

Remark 27. The statement of Theorem 8 does not apply to ReLU networks unless they have a single
layer of ReLUs. Indeed, for a network with 2 layers of ReLUs there exists a positive measure subset
of parameters for which the represented functions have only 1 linear region. To see this, consider a
ReLU network with pre-activation features of the units in the second layer always being non-positive.
A subset of parameters required to achieve this is defined as a solution to a set of inequalities (for
instance, when the input weights and biases of the second layer are non-positive) and has a positive
measure. For such pre-activation features, the ReLUs in the second layer always output 0 and there is
a single linear region for the network.

C Expected number of activation regions of a single maxout unit

We discuss a single maxout unit with n inputs. In this case, the r-partial activation patterns correspond
to the r-dimensional upper faces of a polytope given as the convex hull of the points (wk, bk) ∈ Rn+1,
k = 1, . . . ,K. The statistics of faces of random polytopes have been studied in the literature (Hug
et al., 2004; Hug and Reitzner, 2005; Bárány and Vu, 2007). We will use the following result.
Theorem 28 (Hug et al. 2004, Theorem 1.1). If v1, . . . , vK are sampled iid according to the standard
normal distribution in Rd, then, the number of s-faces of the convex hull PK = conv{v1, . . . , vK},
denoted fs(PK), has expected value

Efs(PK) ∼ c̄(s, d)(logK)
d−1
2 , (2)

and the union s-faces of PK , denoted skels(PK), has expected volume

E vols(skels(PK)) ∼ c(s, d)(logK)
d−1
2 , (3)

where c̄(s, d) and c(s, d) are constants depending only on s and d.

Based on this, we obtain the following upper bound for the expected number of linear regions of a
maxout unit with iid Gaussian weights and biases.
Proposition 29 (Expected number of regions of a large-rank Gaussian maxout unit). Consider a
rank-K maxout unit with n0 inputs. If the weights and biases are sampled iid from a standard normal
distribution, then for large K the expected number of non-empty r-partial activation regions satisfies

E[# r-partial activation regions] ≤ c̄(r, n0)(logK)
n0
2 .

where c̄(r, n0) is a constants depending solely on r and n0.

Proof of Proposition 29. We use the correspondence between r-partial activation regions and the
upper r-dimensional faces of the lifted Newton polytope (Proposition 20). The total number of
s-dimensional faces of a polytope is an upper bound on the number of upper s-dimensional faces.
Now we just apply Theorem 28.

We can use the above result to upper bound the expectation value of the number of regions of a
maxout network with iid Gaussian weights and biases. In particular, for a shallow maxout network
we have the following.
Proposition 30 (Expected number of linear regions of a large-rank Gaussian maxout layer). Consider
network N with n0 inputs and a single layer of n1 rank-K maxout units. Suppose the weights and
biases are sampled iid from a standard normal distribution. Then, for sufficiently large K, the
expected number of linear regions is bounded as

E[# linear regions] ≤
n0∑
j=0

(
n1

j

)
(c̄(n0)(logK)

n0
2 − 1)j ,

where c̄(n0) is a constant depending solely on n0. This upper bound behaves as O(nn0
1 (logK)

1
2n

2
0)

in n1 and K.
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Proof. By Montúfar et al. (2021, Theorem 3.6), the maximum number of regions of a layer with n0

inputs and n1 maxout units of ranks k1, . . . , kn1 is

max[# linear regions] =

n0∑
j=0

∑
S∈([n1]

j )

∏
i∈S

(ki − 1).

Consider now our network with n1 maxout units of rank K. For a given probability distribution
over the parameter space, denote Pr(k1, . . . , kn1

) the probability of the event that the i-th unit has ki
linear regions, i = 1, . . . , n1. If the parameters of the different units are independent, we have

E[# linear regions] ≤
∑

1≤k1,...,kn1≤K

Pr(k1, . . . , kn1
)

n0∑
j=0

∑
S∈([n1]

j )

∏
i∈S

(ki − 1)

=

n0∑
j=0

∑
S∈([n1]

j )

∏
i∈S

(E[ki]− 1).

If the weights and biases of each unit are iid normal, Proposition 29 allows us to upper bound the
latter expression by

≤
n0∑
j=0

(
n1

j

)
(c̄(n0)(logK)

n0
2 − 1)j .

This concludes the proof.

D Proofs related to the expected volume

The following is a maxout version of a result obtained by Hanin and Rolnick (2019a, Theorem 6) for
the case of networks with single-argument piecewise linear activation functions.

Lemma 31 (Upper bound on the expected volume of XN ,r). Consider a rank-K maxout network N
with input dimension n0, output dimension 1, and random weights and biases satisfying:

1. The distribution of all weights has a density with respect to the Lebesgue measure.

2. Every collection of biases has a conditional density with respect to Lebesgue measure given the
values of all weights and other biases.

Then, for any bounded measurable set S ⊂ Rn0 and any r ∈ {1, . . . , n0}, the expectation value of
the (n0 − r)-dimensional volume of XN ,r inside S is upper bounded as

E[voln0−r(XN ,r ∩ S)]

≤
∑
J∈Sr

∫
S

E
[
ρbr ((wm −wr) · xm−1 + bm) ‖J((wm −wr) · xm−1 + bm)‖

]
dx,

where, for any given r-partial activation sub-pattern J = (Jz)z∈Z ∈ Sr, for any given Jz we denote
its smallest element by j0, we let ρbr denote the joint conditional density of the biases of pre-activation
features j ∈ Jz\{j0} of the neurons z ∈ Z , given all other network parameters, we let g : Rn0 → Rr;
x 7→ (wm −wr) · xm−1 + bm := ((wz,j0 − wz,j) · xl(z)−1 + bz,j0)z∈Z,j∈Jz\{j0} ∈ Rr, denote Jg

the r × n0 Jacobian of g, and ‖Jg(x)‖ = det
(
(Jg(x))(Jg(x))>

) 1
2 , and the inner expectation is

with respect to all parameters aside these biases.

Proof of Lemma 31. The proof follows the arguments of Hanin and Rolnick (2019a, Theorem 6).
The main difference is that maxout units are generically active and the activation regions of maxout
units may involve several pre-activation features and additional inequalities. To obtain the upper
bound, we will discard certain inequalities, and separate one distinguished pre-activation feature j0
for each neuron participating in a sub-pattern, which allows us to relate inputs in the corresponding
activation regions to bias values and apply the co-area formula.
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Recall that an r-partial activation sub-pattern J ∈ Sr is a list of patterns Jz ⊆ [K] of cardinality at
least 2 for a collection of participating neurons z ∈ Z , with

∑
z∈Z(|Jz| − 1) = r. Further, for any

given Jz we denote j0 its smallest element. When discussing a particular sub-pattern, we will write
m = |Z| for the number of participating neurons. Finally, recall thatH(J, θ) =

⋂
z∈Z H(Jz, θ).

By Corollary 17, with probability 1 with respect to θ,

voln0−r(XN ,r(θ)) =
∑
J∈Sr

voln0−r(H(J, θ)).

Fix J ∈ Sr. In the following we prove that

E[voln0−r(H(J, θ) ∩ S)] ≤
∫
S

E
[
ρbr ((wm −wr) · xm−1 + bm) ‖J((wm −wr) · xm−1 + bm)‖

]
dx.

We first note that

voln0−r(H(J, θ) ∩ S) =

∫
H(J,θ)∩S

d voln0−r(x). (4)

For each z ∈ Z and Jz we can pick an element j0 ∈ Jz and expressH(Jz, θ) in terms of (|Jz| − 1)
equations and (K − |Jz|) inequalities (not necessarily linear),

H(Jz, θ) = {x ∈ Rn0 | wz,j0 · xl(z)−1 + bz,j0 = wz,j · xl(z)−1 + bz,j , ∀j ∈ Jz \ {j0};
wz,j0 · xl(z)−1 + bz,j0 > wz,i · xl(z)−1 + bz,i, ∀i ∈ [K] \ Jz}.

(5)

Here, xl(z)−1 are the activation values of the units in the layer preceding unit z, depending on the
input x. Since

∑
z(|Jz|−1) = r, the setH(J, θ) is defined by r equations (in addition to inequalities).

We will denote with br ∈ Rr the vector of biases bz,j that are involved in these r equations, with
subscripts (z, j) with j ∈ Jz \ {j0} and z ∈ Z .

We take the expectation of (4) with respect to the conditional distribution of br given the values of
all the other network parameters. We have assumed that this has a density. Denoting the conditional
density of br by ρbr , this is given by∫

Rr

∫
H(J,θ)∩S

d voln0−r(x)ρbr (br)dbr. (6)

The equations in (5) imply that bz,j = (wz,j0 −wz,j) ·xl(z)−1 + bz,j0 for any x ∈ H(J, θ). We write
all these equations concisely as br = (wm −wr) · xm−1 + bm. Then (6) becomes∫

Rr

∫
H(J,θ)∩S

ρbr ((wm −wr) · xm−1 + bm) d voln0−r(x)dbr. (7)

We will upper bound the volume of H(J, θ) by the volume of the corresponding set without the
inequalities,

H′(J, θ) :=
⋂
z∈Z

{
x ∈ Rn0 | wz,j0 · xl(z)−1 + bz,j0 = wz,j · xl(z)−1 + bz,j , ∀j ∈ Jz \ {j0}

}
.

SinceH(J, θ) ⊆ H′(J, θ), we can upper bound (7) by∫
Rr

∫
H′(J,θ)∩S

ρbr ((wm −wr) · xm−1 + bm) d voln0−r(x)dbr. (8)

Now we will use the co-area formula to express (8) as an integral over S alone. Recall that the co-area
formula says that if ψ ∈ L1(Rn) and g : Rn → Rr with r ≤ n is Lipschitz, then∫

Rr

∫
g−1(t)

ψ(x)d voln−r(x)dt =

∫
Rn

ψ(x)‖Jg(x)‖d voln(x),
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where Jg is the r × n Jacobian of g and ‖Jg(x)‖ = det((Jg(x))(Jg(x))>)
1
2 .

In our case r = r, n = n0, which satisfy r ≤ n0. Further, br ∈ Rr plays the role of t ∈ Rr, and
Rn0 → Rr; x 7→ ρbr ((wm −wr) · xm−1 + bm) plays the role of ψ. Since (wm −wr) · xm−1 + bm

is continuous and S is bounded, assuming ρbr is continuous, this is in L1(S). Finally, we set
g : S → Rr; x 7→ ((wm −wr) · xm−1 + bm), which is Lipschitz.

Hence (8) can be expressed as∫
S

ρbr ((wm −wr) · xm−1 + bm) ‖J((wm −wr) · xm−1 + bm)‖ dx.

Taking expectation with respect to all other weights and biases, and interchanging the integral over S
with the expectation (according to Fubini’s theorem, since the integral is non-negative),∫

S

E
[
ρbr ((wm −wr) · xm−1 + bm) ‖J((wm −wr) · xm−1 + bm)‖

]
dx.

Summing over all r-partial activation sub-patterns J ∈ Sr gives the desired result.

Based on the preceding Lemma 31, now we derive a more explicit upper bound expressed in terms of
properties of the probability distribution of the network parameters.
Theorem 10 (Upper bound on the expected volume of the non-linear locus). Consider a bounded
measurable set S ⊂ Rn0 and the settings of Theorem 9 with constants Cgrad and Cbias evaluated over
S. Then, for any r ∈ {1, . . . , n0},

E[voln0−r(XN ,r ∩ S)]

voln0
(S)

≤ (2CgradCbias)
r

(
rK

2r

)(
N

r

)
.

Proof of Theorem 10. By Lemma 31, E [voln0−r(XN ,r ∩ S)] is upper bounded by∑
J∈Sr

∫
S

E
[
ρbr ((wm −wr) · xm−1 + bm) ‖J((wm −wr) · xm−1 + bm)‖

]
dx.

Since we have assumed that for any collection of t biases the conditional density given all weights
and the other biases can be upper-bounded with Ctbias, we have ρbr ((wm−wr) ·xm−1 +bm) ≤ Crbias.

As for the term E[‖J((wm −wr) · xm−1 + bm)‖], note that

‖J((wm −wr) · xm−1 + bm)‖

= det
(
J((wm −wr) · xm−1 + bm)TJ((wm −wr) · xm−1 + bm)

)1/2
= det

(
Gram

(
∇((wz1,j0 − wz1,j1) · xl(z1)−1 + bz1,j0), . . . ,

∇((wzm,j0 − wzm,jrm ) · xl(zm)−1 + bzm,j0)
))1/2

, (9)

where for any v1, . . . , vr ∈ Rn, (Gram(v1, . . . , vr))i,j = 〈vi, vj〉 is the associated Gram matrix.

It is known that the Gram determinant can also be expressed in terms of the exterior product of
vectors, meaning that (9) can be written as

‖∇((wz1,j0 − wz1,j1) · xl(z1)−1 + bz1,j0) ∧ · · · ∧ ∇((wzm,j0 − wzm,jrm ) · xl(zm)−1 + bzm,j0)‖,
which is the the r-dimensional volume of the parallelepiped in Rn0 spanned by r elements. Therefore,
for J ∈ Sr with participating neurons Z, we can upper bound this expression by (see Gover and
Krikorian, 2010)∏

z∈Z

∏
j∈Jz\{j0}

‖∇((wz,j0 − wzi,j) · xl(z)−1 + bz,j0)‖

≤
∏
z∈Z

∏
j∈Jz\{j0}

2 max
{
‖∇(wz,j0 · xl(z)−1)‖, ‖∇(wz,j · xl(z)−1)‖

}
≤ 2r max

z∈Z,j∈Jz

{
‖∇(wz,j · xl(z)−1)‖

}r
.
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In the second line we use the triangle inequality. Considering the assumption that we have made on
the gradients, for the expectation we obtain the upper bound (2Cgrad)r.

By Lemma 6, we can upper-bound the number of entries of the sum
∑
J∈Sr with

(
rK
2r

)(
N
r

)
. Combin-

ing everything, we get the final upper bound

(2CgradCbias)
r

(
rK

2r

)(
N

r

)
voln0(S).

This concludes the proof.

E Proofs related to the expected number of regions

Theorem 9 (Upper bound on the expected number of partial activation regions). Let N be a fully-
connected feed-forward maxout network, with n0 inputs, a total of N rank K maxout units. Suppose
we have a probability distribution over the parameters so that:

1. The distribution of all weights has a density with respect to Lebesgue measure on R#weights.

2. Every collection of biases has a conditional density with respect to Lebesgue measure given the
values of all other weights and biases.

3. There exists Cgrad > 0 so that for any t ∈ N and any pre-activation feature ζz,k,

sup
x∈Rn0

E[‖∇ζz,k(x)‖t] ≤ Ctgrad.

4. There exists Cbias > 0 so that for any pre-activation features ζ1, . . . , ζt from any neurons, the
conditional density of their biases ρb1,...,bt given all the other weights and biases satisfies

sup
b1,...,bt∈R

ρb1,...,bt(b1, . . . , bt) ≤ Ctbias.

Fix r ∈ {0, . . . , n0} and let T = 25CgradCbias. Then, there exists δ0 ≤ 1/(2CgradCbias) such that for
all cubes C ⊆ Rn0 with side length δ > δ0, we have

E[# r-partial activation regions of N in C]

vol(C)
≤


(
rK
2r

)(
N
r

)
KN−r, N ≤ n0

(TKN)n0(n0K
2n0

)
(2K)rn0! , N ≥ n0

.

Here the expectation is taken with respect to the distribution of weights and biases inN . Of particular
interest is the case r = 0, which corresponds to the number of linear regions.

Proof of Theorem 9. The proof follows closely the arguments of Hanin and Rolnick (2019b, Proof
of Theorem 10), whereby we use appropriate supporting results for maxout networks and need to
accommodate the combinatorics depending on K. Fix a network N with rank-K maxout units, input
dimension n0 and output dimension 1. Let 0 ≤ r ≤ n0. For N ≤ n0, the statement follows direction
from the simple upper bound on the number of distinct r-partial activation patterns given in Lemma 6.

Consider now the case N ≥ n0. Fix a closed cube C ⊆ Rn0 of sidelength δ > 0. For any
t ∈ {0, . . . , n0} let

Ct := t-skeleton of C

denote the union of t-dimensional faces of C. For example, C0 is the set of 2n0 vertices of C, Cn0−1

is the set of 2n0 facets of C, and Cn0
is C. In general, Ct consists of

(
n0

t

)
2n0−t faces of dimension

t, each with t-volume δt. Hence,

volt(Ct) =

(
n0

t

)
2n0−tδt. (10)

For any choice of θ let

Vt(θ) := XN ,t(θ) ∩ Ct.

27



By Lemma 33 below, for any t and almost every choice of θ, the set Vt(θ) is a finite set of points. For
each t ∈ {0, . . . , n0}, we also define

Ct,ε := {x ∈ Rn0 | dist(x,Ct) ≤ ε},

the ε-thickening of Ct. For almost every θ, Lemma 34 ensures the existence of an ε > 0 such that for
all v ∈ Vt(θ), the radius-ε balls Bε(v) are contained in Ct,ε and are disjoint. Hence, writing ωn0−t
for the (n0 − t)-volume of the (n0 − t)-dimensional ball with unit radius,

voln0−t(XN ,t ∩ Ct,ε) ≥
∑
v∈Vt

εn0−tωn0−t = #Vt · εn0−tωn0−t.

Therefore, for all but a measure 0 set of θ ∈ R#params, there exists ε > 0 so that

voln0−t(XN ,t ∩ Ct,ε)
εn0−tωn0−t

≥ #Vt.

Thus taking the limit ε → 0 and taking expectation with respect to the parameter θ, and applying
Fatou’s lemma to upper bound the result by the expression with exchanged limit and expectation,

E [#Vt] ≤ E

[
lim
ε→0

voln0−t(XN ,t ∩ Ct,ε)
εn0−tωn0−t

]
≤ lim
ε→0

E

[
voln0−t(XN ,t ∩ Ct,ε)

εn0−tωn0−t

]
.

Then,

E [#Vt] ≤ lim
ε→0

E

[
voln0−t(XN ,t ∩ Ct,ε)

voln0(Ct,ε)
· voln0

(Ct,ε)

εn0−tωn0−t

]
= lim
ε→0

E

[
voln0−t(XN ,t ∩ Ct,ε)

voln0(Ct,ε)

]
· lim
ε→0

voln0
(Ct,ε)

εn0−tωn0−t

≤(2CgradCbias)
t

(
tK

2t

)(
N

t

)
volt(Ct).

To obtain the last line, the first term is upper bounded using Theorem 10, and the second term is
evaluated using

lim
ε→0

voln0(Ct,ε)

εn0−tωn0−t
= volt(Ct).

Combining this with Lemma 33 and the formula (10) for volt(Ct), we find

E [#{r-partial activation regions withR(Jr; θ) ∩ C 6= ∅}]

≤
n0∑
t=r

(
t

r

)
Kt−r(2CgradCbias)

t

(
tK

2t

)(
N

t

)(
n0

t

)
2n0−tδt

δ≥1/(2CgradCbias)

≤ (2δCgradCbias)
n0

(
n0K

2n0

)
(2K)n0−r

n0∑
t=r

(
t

r

)(
N

t

)(
n0

t

)
. (11)

The last line uses the assumption that δ ≥ 1/(2CgradCbias) and Lemma 32, which states that
(
tK
2t

)
≤(

nK
2n

)
for t ≤ n.

In the following we simplify (11). Note that
(
t
r

)
≤
∑t
r=0

(
t
r

)
= 2t ≤ 2n0 . Hence (11) can be upper

bounded by

(4δCgradCbias)
n0

(
n0K

2n0

)
(2K)n0−r

n0∑
t=r

(
N

t

)(
n0

t

)

= (4δCgradCbias)
n0

(
n0K

2n0

)
(2K)n0−r

n0∑
t=r

(
n0

t

)2 (N
t

)(
n0

t

) .
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Using n0 ≤ N , observe that(
N
t

)(
n0

t

) =
N ! · (n0 − t)!
(N − t)! · n0!

≤ N t · (n0 − t)!
n0!

=
Nn0

Nn0−t
· (n0 − t)!

n0!
=
Nn0

n0!
· (n0 − t)!
Nn0−t

≤N
n0

n0!
· (n0 − t)n0−t

Nn0−t
≤ Nn0

n0!
.

Also, using Vandermonde’s identity, observe that
n0∑
t=0

(
n0

t

)2

=

(
2n0

n0

)
≤ 4n0 .

Combing everything, (11) is upper bounded by

(16δCgradCbias)
n0

(
n0K

2n0

)
(2K)n0−rN

n0

n0!
= (32KCgradCbias)

n0

(
n0K

2n0

)
Nn0

(2K)rn0!
vol(C).

Setting T = 25CgradCbias, we get

(TKN)n0
(
n0K
2n0

)
(2K)rn0!

vol(C).

This concludes the proof.

We state and prove lemmas used in the proof of Theorem 9.

Lemma 32. For any t ≤ n,
(
tK
2t

)
≤
(
nK
2n

)
.

Proof. To see this, note that
(
tK
2t

)
≤
(
nK
2n

)
is equivalent to the following:

(Kr)!

(2r)!(Kr − 2r)!
≤ (Kn)!

(2n)!(Kn− 2n)!

(2n)!

(2r)!

(Kn− 2n)!

(Kr − 2r)!
≤ (Kn)!

(Kr)!

2n−2r∏
i=1

(2r + i)

(K−2)n−(K−2)r∏
j=1

(Kr − 2r + j) ≤
Kn−Kr∏
k=1

(Kr + k).

Since
∏2n−2r
i=1 (2r + i) ≤

∏2n−2r
k=1 (Kr + k) and

∏(K−2)n−(K−2)r
j=1 (Kr − 2r + j) ≤∏Kn−Kr

k=2n−2r+1(Kr + k) the inequality holds.

Lemma 33. For almost every θ, for each t ∈ {0, . . . , n0}, the set Vt(θ) = XN ,t(θ) ∩ Ct consists of
finitely many points and

#{r-partial activation regionsR(Jr, θ) withR(Jr, θ) ∩ C 6= ∅} ≤
n0∑
t=r

(
t

r

)
Kt−r#Vt(θ), (12)

where #Vt(θ) is the number of points in Vt(θ).

Proof. The proof is similar to the proof of (Hanin and Rolnick, 2019b, Lemma 12). The difference
lies in the types of equations that appear in the partial activation regions of maxout networks. The
dimension of Vt(θ) is 0 with probability 1, because the set Ct has dimension t and, by Lemma 16,
with probability 1 the set XN ,t coincides locally with a subspace of codimension t. The intersection
of two generic affine spaces of complementary dimension has dimension 0.

Now we prove (12). If Jr is an r-partial activation pattern andR(Jr, θ) ∩ C 6= ∅, then the closure
clR(Jr, θ)∩C is a non-empty polytope. The intersection is bounded because C is bounded, and, by
Lemma 4, the closure ofR(Jr, θ) is a polyhedron. As a non-empty polytope, this set has at least one
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vertex. Generically, if a vertex is in an (n0 − t)-face of clR(Jr, θ), then it is in a t-face of C. Hence,
with probability 1,

R(Jr, θ) ∩ C 6= ∅ ⇒ ∃ t ∈ {r, . . . , n0} s.t. clR(Jr, θ) ∩ Vt 6= ∅.

Thus, with probability 1,

#{r-partial activation regions withR(Jr, θ) ∩ C 6= ∅} ≤
n0∑
t=r

Tt#Vt,

where Tt is the maximum over all v ∈ Vt of the number of r-partial activation regions whose closure
contains v.

To complete the proof, it remains to check that, with probability 1,

Tt ≤
(
t

r

)
Kt−r.

By the definition of XN ,t, each v ∈ Vt is an element of exactly one t-partial activation region defined
by t equations. To upper bound the number of r-partial activation regions that contain v, we upper
bound the number of ways in which one can get an r-partial region from this t-partial region. We
have

(
t
r

)
options to pick r equations that will remain satisfied. In each case, there are at most t− r

neurons for which we need to specify a pre-activation feature attaining the maximum, for a total of at
most Kt−r options. This concludes the proof.

Lemma 34. Fix t ∈ {0, . . . n0}. For almost every choice of θ, there exists ε > 0 (depending on θ) so
that the balls Bε(v) of radius ε centered at v ∈ Vt are disjoint and

voln0−t(XN ,t ∩ Bε(v)) = εn0−tωn0−t,

where ωt is the volume of a unit ball in Rt.

Proof. The proof is similar to the proof of Hanin and Rolnick (2019b, Lemma 13), whereby we use
Lemma 33 and the results for maxout networks obtained in Section A. By Lemma 33, with probability
1 over θ, each Vt is a finite set of points. Hence, we may choose ε > 0 sufficiently small so that the
balls Bε(v) are disjoint. Moreover, by Lemma 16, in a sufficiently small neighborhood of v ∈ Vt, the
set XN ,t coincides with a (n0 − t)-dimensional subspace. The (n0 − t)-dimensional volume of this
subspace in Bε(v) is the volume of (n0 − t)-dimensional ball of radius ε, which equals εn0−tωn0−t,
completing the proof.

To conclude this section, we compare the results on the numbers of activation regions of maxout and
ReLU networks in Table 2.

Table 2: Comparison of the activation region results for maxout and ReLU networks.
ReLU network Maxout network

Generic lower bound on the num-
ber of linear regions for a deep
network

1, Remark 27
∑n0

j=0

(
n1
j

)
, Theorem 8

Trivial upper-bound on the num-
ber of r-partial activation re-
gions

(
N
r

)
2N−r , (Hanin and Rolnick,

2019b, Theorem 10)

(
rK
2r

)(
N
r

)
KN−r , Lemma 6, see

also Proposition 14

Upper-bound on the expected
number of r-partial activation re-
gions, N ≥ n0

(TN)n0

2rn0!
, T = 25CgradCbias,

(Hanin and Rolnick, 2019b,
Theorem 10)

(TKN)n0(n0K
2n0

)
(2K)rn0!

,
T = 25CgradCbias, Theorem 9

Upper bound on the expected
(n0 − r)-dimensional volume of
the non-linear locus

(2CgradCbias)
r
(
N
r

)
, (Hanin and

Rolnick, 2019a, Corollary 7)
(2CgradCbias)

r
(
rK
2r

)(
N
r

)
,

Theorem 10
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F Upper bounding the constants

We briefly discuss the constants Cbias and Cbias in the hypothesis of Theorem 9. The constant Cbias
can be evaluated at initialization using the definition, since we know the distribution of biases. Recall
that we defined Cbias as an upper bound on(

sup
b1,...,bt∈R

ρb1,...,bt(b1, . . . , bt)

)1/t

,

where ρb1,...,bt is the conditional distribution of any collection of biases given all the other weights
and biases inN and t ∈ N. If the biases are sampled independently, independently of the weights, this
equals supb∈R ρb(b). Then, for instance, for a normal distribution with standard deviation

√
C/nl,

the constant Cbias can be chosen as

max
l∈{0,...,L−1}

√
nl

2πC
.

The constant Cgrad was defined as an upper bound on(
sup
x∈Rn0

E[‖∇ζz,k(x)‖t]
)1/t

.

Therefore we need to upper-bound E [‖∇ζz,k(x)‖t]. This expression stands for the t-th moment of
the L2 norm of the gradient of a pre-activation feature ζz,k in a network, with respect to the input to
the network.

One possible calculation is as follows. We consider Jx = [∇xN1(x; θ), . . . ,∇xNnL
(x; θ)]> the

Jacobian of the output vector with respect to the input, for a given parameter θ and input x. Note
that the gradient ∇ζz,k(x) for a pre-activation feature of a unit in the l-th layer of a network is a
row in the Jacobian matrix of an l-layer network. Therefore, ‖∇ζz,k(x)‖ can be upper-bounded by
the spectral norm ‖Jx‖ of the Jacobian, and the moments of the Jacobian norm can be used as an
upper-bound on the t-th moments of the gradient norm, t ≥ 1.
Proposition 35 (Upper bound on the moments of the Jacobian matrix norm). Let N be a fully-
connected feed-forward network with maxout units of rank K and a linear last layer. Let the network
have L layers of widths n1, . . . , nL and n0 inputs. Assume that the weights and biases of the units
in the l-th layer are sampled iid from a Gaussian distribution with mean 0 and variance c/nl−1,
l = 1, . . . , L and c is some constant c ∈ R, c > 0. Then

E[‖Jx‖t] ≤ ct/2n−t/20 E[χtnL
]

L−1∏
l=1

E

( c

nl

nl∑
i=1

m
(K)
nl−1,i

)t/2 ,
where Jx is the Jacobian as defined above, x ∈ Rn0; t ≥ 1, t ∈ N; m(K)

nl−1,i
is the largest order

statistic in a sample of size K of χ2
nl−1

variables. Recall that the largest order statistic is a random
variable defined as the maximum of a random sample, and that a sum of squares of n independent
Gaussian variables has a chi-squared distribution χ2

n.

Proof. Our first goal will be to upper-bound ‖Jx‖ = sup‖u‖=1 ‖Jxu‖. The Jacobian Jx of

N (x) : Rn0 → RnL can be written as a product of matrices W
(l)

, l = 1, . . . , L depending on

the activation region of the input x. The matrix W
(l)

consists of rows W
(l)

i = W
(l)
i,ki
∈ Rnl−1 , where

ki = argmaxk∈[K]{W
(l)
i,kx

(l−1) + b
(l)
i,k} for i = 1, . . . , nl, and x(l−1) is the l-th layer’s input. For the

last layer, which is linear, we have W
(L)

= W (L). Thus for any given u ∈ Rn0 we have

‖Jxu‖ = ‖W (L)W
(L−1) · · ·W (1)

u‖.

Consider some u(0) with ‖u(0)‖ = 1 and assume ‖W (1)
u(0)‖ 6= 0. Note that for fixed u(0), the

probability of W
(1)

being such that ‖W (1)
u(0)‖ = 0 is 0. Multiplying and dividing by ‖W (1)

u(0)‖
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we get

‖W (L)W
(L−1) · · ·W (1)

u(0)‖‖W
(1)
u(0)‖

‖W (1)
u(0)‖

=

∥∥∥∥∥W (L)W
(L−1) · · ·W (2) W

(1)
u(0)

‖W (1)
u(0)‖

∥∥∥∥∥ ‖W (1)
u(0)‖

=
∥∥∥W (L)W

(L−1) · · ·W (2)
u(1)

∥∥∥ ‖W (1)
u(0)‖,

where u(1) = W
(1)
u(0)

‖W (1)
u(0)‖

. Notice, ‖u(1)‖ = 1. Repeating this procedure layer-by-layer, we get

‖W (L)u(L−1)‖‖W (L−1)
u(L−2)‖ · · · ‖W (2)

u(1)‖‖W (1)
u(0)‖.

Now consider one of the factors, ‖W (l)
u(l−1)‖. We have

‖W (l)
u(l−1)‖2 =

nl∑
i=1

〈W (l)

i , u
(l−1)〉2

Cauchy–Schwarz
‖u(l−1)‖=1

≤
nl∑
i=1

‖W (l)

i ‖2 ≤
nl∑
i=1

max
k∈[K]

{
‖W (l)

i,k‖
2
}
.

Notice that this upper bound only depends on W (l) and is independent of all other weight matrices
and of the input vector.

According to our assumptions, W (l)
i,k

d
=
√

c
nl−1

v, where v is a standard Gaussian random vector in

Rnl−1 . Therefore, ‖W (l)
i,k‖2

d
= c

nl−1
χ2
nl−1

has the distribution of a chi-squared random variable scaled

by c/nl−1. Moreover, since the vectors W (l)
i,1 , . . . ,W

(l)
i,K consist of the same number of separate iid

entries, the variables ‖W (l)
i,1 ‖2, . . . , ‖W

(l)
i,K‖2 are iid. In turn, maxk∈[K]

{
‖W (l)

i,k‖2
}

d
= c

nl−1
m

(K)
nl−1,i

,

where m(K)
nl−1,i

is the largest order statistic in a sample of size K of χ2
nl−1

variables.

Notice that ‖W (L)u(L−1)‖2 d
= c

nL−1
χ2
nL

. To see this, recall that if u is a fixed vector and w

is a Gaussian random vector with mean µ and covariance matrix Σ, then the product u>w is
Gaussian with mean u>µ and variance u>Σu. Hence, since W (L)

i is a Gaussian vector with mean
zero and covariance matrix Σ = c

nL−1
I , W (L)

i u(L−1) is Gaussian with mean zero and variance
c

nL−1
‖u(L−1)‖2 = c

nL−1
.

Combining everything, we get

‖Jx‖ = sup
‖u‖=1

‖Jxu‖ ≤
(

c

nL−1
χ2
nL

)1/2
(

c

nL−2

nL−1∑
i=1

m(K)
nL−2

)1/2

· · ·

(
c

n0

n1∑
i=1

m(K)
n0

)1/2

=cL/2χnL

(
L−1∏
l=0

n
−1/2
l

)
L−1∏
l=1

(
nl∑
i=1

m
(K)
nl−1,i

)1/2

.

Now using the monotonicity of the expectation, the moments of the right hand side upper-bound those
of the left hand side. Moreover, using the independence of the individual factors, the expectation
factorizes. For the t-th moment we get

E[‖Jx‖t] ≤ E

ctL/2χnL

(
L−1∏
l=0

n
−1/2
l

)
L−1∏
l=1

(
nl∑
i=1

m
(K)
nl−1,i

)t/2
= ct/2n

−t/2
0 E[χtnL

]

L−1∏
l=1

E

( c

nl

nl∑
i=1

m
(K)
nl−1,i

)t/2 .
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Corollary 36 (Upper bound on Cgrad). Under the same assumptions as in Proposition 35, assuming
that c is set according to He initialization, meaning c = 2, or maxout-He initialization (see Table 1
for specific values of c for various K), the following expression can be used as the value for Cgrad:

(
c

n0

)1/2 (
nL(nL + t)

t
2−1
)1/t L−1∏

l=1

E

( c

nl

nl∑
i=1

m
(K)
nl−1,i

)t/21/t

,

where m(K)
nl−1,i

is the largest order statistic in a sample of size K of χ2
nl−1

variables.

Proof. The constant Cgrad was defined as an upper bound on(
sup
x∈Rn0

E[‖∇ζz,k(x)‖t]
)1/t

.

Therefore, using the upper-bound on the moments of the Jacobian norm from Proposition 35, an
upper-bound on the following expression can be used as a value for Cgrad:

c1/2n
−1/2
0

(
E[χtnL

]
)1/t L−1∏

l=1

E

( c

nl

nl∑
i=1

m
(K)
nl−1,i

)t/21/t

.

The moments of the chi distribution are

E
[
χtnL

]
= 2t/2

Γ((nL + t)/2)

Γ(nL/2)
.

Using an upper-bound on a Gamma function ratio (see Jameson, 2013, Equation 12), this can be
upper-bounded with

nL(nL + t)
t
2−1.

The factor involving m(K)
nl−1 can be upper-bounded by considering the explicit expression for the

moments of the largest order statistic of chi-squared variables. The closed form for these moments is
available (see Nadarajah, 2008), but they have complicated form and we will keep the factor involving
m

(K)
nl−1 as it is. Then the total upper bound is

(
c

n0

)1/2 (
nL(nL + t)

t
2−1
)1/t L−1∏

l=1

E

( c

nl

nl∑
i=1

m
(K)
nl−1,i

)t/21/t

.

Estimating the moments of the gradient of maxout networks is a challenging topic, as can be seen
from the above discussion, and is worthy of a separate investigation. It might be possible to obtain
tighter upper-bounds on it and on Cgrad, a question that we leave for future work.

G Expected number of regions for networks without bias

Zero biases of ReLU networks were discussed in Hanin and Rolnick (2019b) and studied in detail in
Steinwart (2019). There is no distribution on the biases in the zero bias case, meaning that conditions
on the biases from Theorem 9 are not satisfied. We closely follow the proofs in Hanin and Rolnick
(2019b) and show that the arguments similar to those regarding the zero bias case in the ReLU
networks also apply to the maxout networks. According to Lemma 37, activation regions of zero-bias
maxout networks are convex cones, see Figure 9 for the illustration. In Corollary 39 we come to a
conclusion that the number of activation regions in expectation in a network with zero biases grows
as O(n0(KN)n0−1

(
K(n0−1)
2(n0−1)

)
).

Lemma 37. Let N be a maxout network with biases set to zero. Then,
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Zero bias Small bias Non-zero bias

Figure 9: Linear regions of a 3 layer network with 100 units and the maxout rank K = 2. The
network was initialized with the maxout-He distribution. Activation regions of a maxout network with
zero biases are convex cones. Small biases are initialized as the biases sampled from the maxout-He
distribution multiplied by 0.1. Majority of linear regions of a network with small biases are cones
and the ones that are not are small and concentrated around zero.

(a) N is nonnegative homogeneous : N (cx) = cN (x) for each c ≥ 0.

(b) For every activation regionR of N , and every point x inR, all points cx are also inR for
c > 0 andR is a convex polyhedral cone.

Proof of Lemma 37. Each neuron of the network computes a function of the form z(x1, . . . , xn) =
maxk∈[K] {

∑n
i=1 wi,k · xi}. Note that for any c ≥ 0:

z(cx1, . . . , cxn) = max
k∈[K]

{
c

n∑
i=1

wi,k · xi

}
= c · max

k∈[K]

{
n∑
i=1

wi,k · xi

}
= c · z(x1, . . . , xn).

Therefore, each neuron is equivariant under multiplication by a nonnegative constant c, and thus the
overall network as well, proving (a). If c > 0, the activation patterns for x and cx are also identical,
since for any inequality in the activation region definition we have

n∑
i=1

wi,j · cxi >
n∑
i=1

wi,j′ · cxi ⇐⇒
n∑
i=1

wi,j · xi >
n∑
i=1

wi,j′ · xi, j, j′ ∈ [K].

This implies that x and cx lie in the same activation region, and thatR is a convex polyhedral cone,
see e.g. Chandru and Hooker (2011). This proves (b).

Proposition 38 (Networks without biases do not have more regions). Suppose that N is a maxout
network with biases and conditions from Theorem 9 are satisfied. Let N0 be the same network with
all biases set to 0. Then, the total number of activation regions (in all the input space) for N0 is no
more than that for N .

Proof of Proposition 38. We define an injective mapping from activation regions of N0 to regions
of N . For each region R of N0, pick a point xR ∈ R. By Lemma 37, cxR ∈ R for each
c > 0. Let N1/c be the network obtained from N by dividing all biases by c, and observe that
N (cxR) = cN1/c(xR), with the same activation pattern between the two networks.

By picking c sufficiently large,N1/c becomes arbitrarily close toN0. Therefore, for some sufficiently
large c,N0(cxR) andN (cxR) have the same pattern of activations. Regions ofN in which cxR lies
are distinct for all distinctR. Thus, the number of regions of N is at least as large as the number of
regions of N0.

We obtain following corollary of Theorem 9 for the zero-bias case.
Corollary 39 (Expected number of activation regions of zero-bias networks). Suppose that N0 is
a fully-connected feed-forward maxout network with zero biases, n0 inputs, a total of N rank K
maxout units. Also, suppose that all conditions from Theorem 9, except for the conditions on the
biases, are satisfied. Then there exists a constant T ′ depending on Cgrad so that

E[#activation regions of N0] ≤


KN , N ≤ n0

2n0

(T ′KN)n0−1(K(n0−1)

2(n0−1) )
(n0−1)! , N ≥ n0

.

The expectation is taken with respect to the distribution of weights in N0.
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Proof of Corollary 39. Based on Proposition 38 we can use the same upper bound as for the networks
with biases, thus for the case N ≤ n0, the expectation is upper bounded with KN .

Now consider the case N ≥ n0. We will add biases to N0 in such a way that the bias conditions
of Theorem 9 are satisfied with some C ′bias. Denote the resulting network with N . Then, by
Proposition 38, N has a region corresponding to each region of N0. All the corresponding regions in
N are unbounded because according to Proposition 38 for any xR from a region of N0 there exists
a constant c > 0 so that cxR belongs to a region in N . Since all regions in N0 are unbounded, all
corresponding regions in N are unbounded under such a mapping.

Therefore, to obtain the result, it is enough to upper-bound the number of unbounded activation
regions of N . Similarly to the proof of Theorem 9, consider a hypercube with a side length δ > δ0,
large enough to interest all the unbounded regions. Then the total number of unbounded activation
regions of N is upper bounded by the sum of the numbers of activation regions intersecting each of
the hypercube 2n0 facets, each of dimension (n0 − 1). By Theorem 9, the expected number of acti-
vation regions of N in Rn0−1 is upper bounded with (δ25CgradC

′
biasKN)n0−1

(
K(n0−1)
2(n0−1)

)
/(n0 − 1)!.

Denoting δ25CgradC
′
bias with T ′ and combining everything we get the desired result.

H Proofs related to the decision boundary

H.1 Simple upper bound on the number of pieces of the decision boundary

A network used for multi-class classification into M ∈ N,M ≥ 2 classes can be seen as a network
with a rank M maxout unit on top. Therefore, to discuss the decision boundary, we consider r-partial
activation regions, r ≥ 1, with at least one equation in the last unit. With JrDB, we denote the r-partial
activation patterns corresponding to such regions and with XDB,r :=

⋃
Jr

DB∈PDB,r
R(JrDB; θ) their

union. All decision boundary is then written as XDB .

Lemma 40 (Simple upper bound on the number of r-partial activation patterns of the deci-
sion boundary). Let r ∈ N+. The number of r-partial activation patterns in the decision
boundary of a network with a total of N rank-K maxout units is upper bounded by |PDB,r| ≤∑min{M−1,r}
i=1

(
M
i+1

)(
K(r−i)
2(r−i)

)(
N
r−i
)
KN−r+i. The number of r-partial activation sub-patterns is up-

per bounded by |SDB,r| ≤
∑min{M−1,r}
i=1

(
M
i+1

)(
K(r−i)
2(r−i)

)(
N
r−i
)
.

Proof of Lemma 40. Activation patterns for the decision boundary regions should have at least one
equality in the upper unit. At the same time, the maximum possible number of equations in the last
unit is min{M − 1, r}. To get all suitable activation patterns we need to sum over all these options.

Now consider a fixed number of equations i ∈ {1, . . . ,min{M − 1, r}}. The number of ways to
choose them is

(
M
i+1

)
and the number of options for the all other units in the network is given by

Lemma 6 for r − i. Combining everything, we get the claimed statement.

H.2 Lower bound on the maximum number of pieces of the decision boundary

The lower bound in the second item of Theorem 21 is based on a construction of parameters for
which the network maps an n-cube in the input space to an n-cube in the output space in many-to-one
fashion. This means that any feature implemented over the last layer will replicate multiple times
over the input layer. We infer the following lower bound on the maximum number of pieces of the
decision boundary of a maxout network.

Proposition 41 (Lower bound on the maximum number of pieces of the decision boundary). Consider
a network N with n0 inputs and L layers of n1, . . . , nL rank-K maxout units followed by an M -
class classifier. Suppose n ≤ n0, nl

n even, and el = min{n0, . . . , nl−1}. Denote by N(M,n)
the maximum number of boundary pieces implemented by an M -class classifier over an n-cube.
Then the maximum number of linear pieces of the decision boundary of N is lower bounded by
N(M,n)

∏L
l=1(nl

n (K − 1) + 1)n. If n ≥M or n ≥ 4, N(M,n) =
(
M
2

)
.

The asymptotic order of this bound is Ω(M2
∏L
l=1(nlK)n0).

35



Proof. We use the construction of parameters from Montúfar et al. (2021, Proposition 3.11) refining
a previous construction for ReLU networks (Montúfar et al., 2014) to have the network represent a
many-to-one map. There are

∏L
l=1(nl

n (K−1)+1)n distinct linear regions whose image in the output
space of the last layer contains an n-cube. The linear pieces of the decision boundary of an M -class
classifier over an n-cube at the L-th layer will have a corresponding multiplicity over the input space.
An M -class classifier is implemented as RM → [M ]; y = (y1, . . . , yM ) 7→ argmaxr∈[M ] yr. This
has
(
M
2

)
boundaries, one between any two classes. If n ≥M , then the image of the preceding layers

intersects all of these boundaries. More generally, the number of boundary pieces of an M -class
classifier over n-dimensional space can be seen to correspond to the number of edges of a polytope
with M vertices in n-dimensional space. The trivial upper bound N(M,n) ≤

(
M
2

)
is attained if

1 < bn2 c. This follows form the celebrated Upper Bound Theorem for the maximum number of faces
of convex polytopes (McMullen, 1970).

H.3 Upper bound on the expected volume of the decision boundary

Theorem 12 (Upper bound on the volume of the (n0 − r)-skeleton of the decision boundary).
Consider a bounded measurable set S ⊂ Rn0 . Consider the notation and assumptions of Theorem 9,
whereby the constants Cgrad and Cbias are over S. Then, for any r ∈ {1, . . . , n0} we have

E[voln0−r(XDB,r ∩ S)]

voln0(S)
≤ (2CgradCbias)

r

min{M−1,r}∑
i=1

(
M

i+ 1

)(
K(r − i)
2(r − i)

)(
N

r − i

)
.

Proof of Theorem 12. Using Lemma 31, but considering only r-partial activation patterns that belong
to the decision boundary, volume of the (n0 − r)-skeleton of the decision boundary can be upper-
bounded with∑

Ĵr
DB

∫
S

E
[
ρbr ((wm −wr) · xm−1 + bm) ‖J((wm −wr) · xm−1 + bm)‖

]
dx.

Upper-bounding the integral as in Theorem 10, but using Lemma 40 to count the number of entries in
the sum, we get the final upper-bound

(2CgradCbias)
r

min{M−1,r}∑
i=1

(
N

r − i

)(
K(r − i)
2(r − i)

)(
M

i+ 1

)
voln0(S).

H.4 Upper bound on the expected number of pieces of the decision boundary

Lemma 42 (Upper bound on the expected number of r-partial activation regions of the decision
boundary). Let N be a fully-connected feed-forward maxout network, with n0 inputs, a total of N
rank K maxout units, and M linear output units used for multi-classification. Fix r ∈ {1, . . . , n0}.
Then, under the assumptions of Theorem 9, there exists δ0 ≤ 1/(2CgradCbias) such that for all cubes
C ⊆ Rn0 with side length δ > δ0,

E
[

# r-partial activation regions in
the decision boundary ofN in C

]
vol(C)

≤


∑min{M−1,r}
i=1

(
M
i+1

)(
K(r−i)
2(r−i)

)(
N
r−i
)
KN−r+i, N ≤ n0

(24CgradCbiasN)n0 (2K)n0−1

n0!

×
∑min{M−1,n0}
i=1

(
M
i+1

)(
K(n0−i)
2(n0−i)

)∏i
j=1(n0−j+1)∏i
j=1(N−1+j)

, N ≥ n0

.

Here the expectation is taken with respect to the distribution of weights and biases in N .

Proof of Lemma 42. Result for the case N ≤ n0 arises from Lemma 40. Consider N ≥ n0. The
proof closely follows the proof of Theorem 10, and we only highlight the differences. Based on
Lemma 12,

E [#Vt] ≤ (2CgradCbias)
t

min{M−1,t}∑
i=1

(
N

t− i

)(
K(t− i)
2(t− i)

)(
M

i+ 1

)
volt(Ct).
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Therefore, the upper bound on the expected number of r-partial activation regions in the decision
boundary is

n0∑
t=r

(
t

r

)
Kt−r(2CgradCbias)

t

min{M−1,t}∑
i=1

(
N

t− i

)(
K(t− i)
2(t− i)

)(
M

i+ 1

)(
n0

t

)
2n0−tδt

≤ (4δCgradCbias)
n0(2K)n0−r

min{M−1,n0}∑
i=1

(
M

i+ 1

)(
K(n0 − i)
2(n0 − i)

) n0∑
t=r

(
N

t− i

)(
n0

t

)

Re-writing
(
N
t−i
)(
n0

t

)
as
(
n0

t

)2 ( N
t−i)
(n0

t )
we can upper-bound it with

4n0

∏i
j=1(t− j + 1)∏i
j=1(N − t+ j)

Nn0

n0!
≤ 4n0

∏i
j=1(n0 − j + 1)∏i
j=1(N − r + j)

Nn0

n0!
.

The final upper bound is then

(25CgradCbiasKN)n0

(2K)rn0!

min{M−1,n0}∑
i=1

(
M

i+ 1

)(
K(n0 − i)
2(n0 − i)

)∏i
j=1(n0 − j + 1)∏i
j=1(N − r + j)

vol(C).

Dividing this expression by vol(C) we get the desired result.

The next theorem follows immediately from Lemma 42 if r is set to 1.
Theorem 11 (Upper bound on the expected number of linear pieces of the decision boundary). LetN
be a fully-connected feedforward maxout network, with n0 inputs, a total of N rank-K maxout units,
and M linear output units used for multi-class classification. Under the assumptions of Theorem 9,
there exists δ0 ≤ 1/(2CgradCbias) such that for all cubes C ⊆ Rn0 with side length δ > δ0,

E
[

# linear pieces in the
decision boundary ofN in C

]
vol(C)

≤


(
M
2

)
KN , N ≤ n0

(24CgradCbias)
n0 (2KN)n0−1

(n0−1)!

(
M
2

)(
K(n0−1)
2(n0−1)

)
, N ≥ n0

.

Here the expectation is taken with respect to the distribution of weights and biases in N .

H.5 Lower bound on the expected distance to the decision boundary

Now, using an approach similar to Hanin and Rolnick (2019a, Corollary 5), who provided a lower
bound on the expected distance to the boundary of linear regions, we discuss a lower bound on the
distance to the decision boundary. We will use the following result from that work.
Lemma 43 (Hanin and Rolnick 2019a, Lemma 12). Fix a positive integer n ≥ 1, and letQ ⊆ Rn be a
compact continuous piecewise linear submanifold with finitely many pieces. DefineQ0 = ∅ and letQt
be the union of the interiors of all k-dimensional pieces ofQ\(Q0∪· · ·∪Qt−1). Denote by Tε(X) the
ε-tubular neighborhood of any X ⊂ Rn. We have voln(Tε(Q)) ≤

∑n
t=0 ωn−tε

n−t volk(Qt),where
ωd := volume of ball of radius 1 in Rd.

We will prove the following.
Corollary 13 (Distance to the decision boundary). Suppose N is as in Theorem 9. For any compact
set S ⊂ Rn0 let x be a uniform point in S. There exists c > 0 independent of S so that

E[distance(x,XDB)] ≥ c

2CgradCbiasMm+1m
,

where m := min{M − 1, n0}.

Proof of Corollary 13. Let x ∈ K be uniformly chosen. Then, for any ε > 0, using Markov’s
inequality and Lemma 43, we have
E[distance(x,XDB)] ≥εP (distance(x,XDB) > ε) = ε(1− P (distance(x,XDB) ≤ ε))

=ε (1− E [voln0(Tε(XDB)]) ≥ ε

(
1−

n0∑
t=1

ωn0−tε
n0−tE [voln0−t(XDB)]

)
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The upper bound from Theorem 12 can be upper bounded further with

E[voln0−t(XDB,t ∩ S)] ≤(2CgradCbias)
t

min{M−1,t}∑
i=1

(
M

i+ 1

)(
K(t− i)
2(t− i)

)(
N

t− i

)
voln0(S)

≤(2CgradCbias)
t(4K2N)t−1Mm∗+1m∗ voln0

(S),

where m∗ := min{M − 1, t}. Then expectation of the distance can be lower bounded with

ε

(
1−

n0∑
t=1

(2CgradCbiasε)
t(4εK2N)t−1Mm∗+1m∗

)
≥ ε

(
1− 2CgradCbiasM

m+1mε
)
,

where m := min{M − 1, n0}. Taking ε to be a small constant c times 1/(2CgradCbiasM
m+1m)

completes the proof.

Remark 44 (Decision boundary of ReLU networks). All proofs consider the indecision locus of
the last unit on top of the network and reuse results on the volume of the boundary and the number
of activation regions. If one sets K to 2, these results differ only in 2−r from those for the ReLU
networks. Therefore, the decision boundary analysis should also apply to the ReLU networks if one
sets K to 2 with a difference only in the constant.

I Counting algorithms

I.1 Approximate counting of the activation regions

First, we describe an approximate method for counting linear regions that is useful for quickly
estimating the number of linear regions or plotting them.

We generate a grid of inputs in an n0-dimensional cube, compute the gradients with respect to the
input, which is simply a product of weights on the path that corresponds to a given input, and then
sum the gradient values for each input dimension of one input. Then, we compute the number of
unique sums and use it as the number of linear regions.

The method is not exact because it works by computing network gradients on a grid, so it is possible
to miss a small region. Also, it does not distinguish between regions with the same gradient value,
which is one more reason it might miss some linear regions and why it counts linear regions, not
activation regions. However, from what we have seen, if the grid has many points, the difference
between the exact and approximate method is not that big.

I.2 Exact counting of the activation regions

The algorithm starts with a cube in which we want to count the activation regions defined with a set of
linear inequalities in Rn0 . We go through the network layer by layer, unit by unit, and for each unit, we
determine if its pre-activation features attain a maximum on the regions obtained so far by checking
the feasibility of the corresponding linear inequalities systems. For this, we use linear programming.
More specifically, an interior-point method implementation from scipy.optimize.linprog. The
use of linear programming is justified since, according to Lemma 4, the activation regions are convex.

The input to the simplex method becomes the combined system of inequalities for the region and
the pre-activation feature. We set the objective to zero, meaning that any x can satisfy it. One has
to use non-strict inequalities in linear programming methods, implying the boundary of activation
regions is also included. We also add a small ε = 1e−6 to avoid zero solutions in a zero bias case.
The inequalities for a pre-activation feature of some neuron z have the form

{x ∈ Rn0 | az,j0(x; θ) + bz,j0 ≥ az,i(x; θ) + bz,i + ε, ∀i ∈ [K]\[j0]}.
As a result, we get a new list of activation regions and pass it to the next unit.

To correctly estimate inequalities corresponding to a pre-activation feature on a specific region, one
has to keep track of the function computed on this region, which has the form: w(l)

J . . . (w
(0)
J · x+

b
(0)
J ) + · · ·+ b

(l)
J , where J is an activation pattern of the region.

The pseudocode for the algorithm is in Algorithm 1, and the pseudocode for a check for one pre-
activation feature is in Algorithm 2.
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Algorithm 1 Exactly Count the Number of Activation Regions in a Maxout Network

1: function COUNTACTIVATIONREGIONS
2: activation_regions = [starting_cube]
3: for layer in {1, . . . , L} do
4: for unit in layer do
5: new_activation_regions = []
6: for region in activation_regions do
7: for feature in unit do
8: . See Algorithm 2
9: if NewRegionCheck(unit.features, feature, region) then

10: new_activation_regions.append(new_region)
11: activation_regions = new_activation_regions
12: for region in activation_regions do
13: region.function = region.next_layer_function
14: region.next_layer_function = []
15: return length(activation_regions)

I.3 Exact counting of linear pieces in the decision boundary

We define an algorithm for exactly counting linear pieces in the decision boundary based on the
algorithm from Section I.2. Consider a classification problem with M classes, and to describe the
decision boundary, add a maxout unit of rank M on top of the network. To count the number of linear
pieces in the decision boundary, for each pair of classes, go through all the activation regions of the
network. Construct a linear program for which the set of inequalities is given by a union of the region
inequalities and inequalities which determine if the given classes attain maximum. Also, add the
equality between these two classes. If the problem is feasible, there is a piece in the decision boundary.
At the end of this process, one gets the total number of linear pieces in the decision boundary.

I.4 Algorithm discussion

There are two useful modifications to the method. First, to count the number of regions in a ReLU
network instead of systems of (K − 1) linear inequalities, one can use inequalities of the form
w · x+ b ≥ 0 and w · x+ b ≤ 0.

Second, to compute the number of activation regions in a slice, one can define a parametrization of the
input space. We consider as the slice of a cube C the 2-space through three points x1, x2, x3 ∈ Rn0 ,
meaning the slice has the form V = {x = v0 + v1y1 + v2y2 ∈ Rn0 : (y1, y2) ∈ R2 ∩ C}, where
v0 = (x1 +x2 +x3)/3 ∈ Rn0 , and v1, v2 ∈ Rn0 are an orthogonal basis of span{x2−x1, x3−x1},
and v1, v2 are orthonormal. We can evaluate the network function over such a slice by augmenting
the network by a linear layer φ : R2 → Rn0 with weights v1, v2 and biases v0. We used images from
3 different classes as the points that define the slice.

We usually performed the computation in a 2D slice, which is reasonably fast because the number of
regions is not large if the input dimension is not high, as suggested by Theorem 9. Additionally, note
that the check for a given unit is embarrassingly parallel, meaning the computation can be accelerated.
To demonstrate that the computation can be carried out in a reasonable time, we also analyse the
algorithm’s space-time complexity.

Space-time complexity of the algorithm

To start, we estimate complexities for some number of activation regions R. Firstly, consider the
space complexity. Since we store all activation regions, the space requirement grows as R multiplied
by an activation region size. We store a region as a constant size function computed on it and as
a system of linear inequalities. The maximum number of inequalities is attained when each of N
neurons adds a new system of inequalities to the region, while K − 1 inequalities determine that
one pre-activation feature attains a maximum. Therefore, the space complexity of the algorithm is
O(RKN).
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Algorithm 2 Auxiliary Function That Checks if a Pre-Activation Feature Creates a New Region

1: function NEWREGIONCHECK(unit_features, feature, region)
2: objective = zeros
3: inequalites = region.inequalities
4: unit_features.weights = unit_features.weights × region.weights
5: unit_features.biases = unit_features.weights × region.biases
6: + unit_features.biases
7: for another_feature in unit_features \ feature do
8: inequalities.append(another_feature.weights - feature.weights × x
9: ≤ feature.bias - another_feature.bias)

10: if LinearProgramming.Solve(objective, inequalities) then
11: next_layer_function = region.next_layer_function
12: + [feature.weights, feature.bias]
13: return Region(inequalites, region.function, next_layer_function)
14: return None

Now consider the time complexity. Since we traverse the network unit by unit, and for each pre-
activation feature of a unit and each available activation region, we solve a linear programming
problem, the time complexity is O of RKN times the time complexity of a linear programming
method. We have used an interior point method that has a polynomial-time complexity of O( n3

lognL),
see Anstreicher (1999), where n is the dimension of the variables, which is the dimension of the
network input n0, and L is the number of bits used to represent the method input. The input is the set
of inequalities, and as we have just discussed, its size is O(KN). Combining everything, and using
O(n3L) instead of O( n3

lognL) for simplicity, we get that the time complexity of the whole algorithm
is O(RK2N2n3

0).

To get complexities for the average case, assume N ≥ n0. Then, based on Theorem 9, R grows
as O((K3N)n0). Therefore, the space complexity is O(KN(K3N)n0) and the time complexity
is O(K2N2n3

0(K3N)n0). Both space and time complexities grow exponentially with the input
dimension but polynomially with the number of neurons and a maxout unit’s rank.

J Parameter initialization

J.1 He initialization

We briefly recall the parameter initialization procedure for ReLU networks which is commonly
referred to as “He initialization” (He et al., 2015). This follows the motivation of the work by Xavier
and co-authors (Glorot and Bengio, 2010). To train deep networks, one would like to avoid vanishing
or exploding gradients. The approach formulates a sufficient condition for the norms of the activations
across layers to not blow up or vanish. For ReLU networks this leads to sampling the weights from a
distribution with standard deviation

√
2/nl.

J.2 He-like initialization for maxout (Maxout-He)

We follow the derivation from Glorot and Bengio (2010) and He et al. (2015) but for the case of
maxout units. We note that a He-like initialization for maxouts was considered by Sun et al. (2018)
but only for K = 2. We focus on the forward pass and consider fully-connected layers. The idea is to
investigate the variance of the responses in each layer. We use the following notations. For a given
layer l with d units and nl inputs, a (pre-activation) response is yl = Wlxl + bl, where xl ∈ Rnl

is an input vector to the layer, Wl ∈ Rd×nl is a matrix, bl ∈ Rd is a vector of biases. We have
xl = φ(yl−1), where φ is the activation function.

We assume the elements in Wl are independent and identically distributed (iid). We assume that the
elements in xl are also iid. We assume that xl and Wl are independent of each other. Denote yl,
wl, and xl the random variables of each element in yl, Wl, and xl respectively. In the following we
assume that biases are zero. Then we have:

Var[yl] = nlVar[wl · xl].
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If we assume further that wl has zero mean, then the variance of the product of independent variables
gives us:

Var[yl] = nlVar[wl]E[x2
l ]. (13)

We need to estimate E[x2
l ]. For ReLU, E[x2

l ] = 1
2Var[yl−1]. For maxout we get a different result. Let

K be the rank of a maxout unit. Then xl = φ(yl−1) = maxk∈[K]{yl−1,k}. The yl−1,1, . . . , yl−1,K

are independent and have the same distribution. We denote f(t) and F (t) the pdf and cdf of this
distribution. The cdf for xl = maxk∈[K]{yl−1,k} is, dropping the subscript l − 1 of yl−1,k for
simplicity of notation,

Pr

(
max
k∈[K]

{yk} < t

)
= Pr (y1, . . . , yK < t) =

K∏
k=1

Pr (yk < t) = (F (t))K .

In turn, the expectation of the square is

E

[
max
k∈[K]

{yk}2
]

=

∫
R

t2
d

dt

[
(F (t))

K
]
dt = K

∫
R

t2 (F (t))
K−1

f(t)dt.

Now we can apply this formula to discuss the cases of a uniform distribution on an interval and a
normal distribution. If we assume that wl−1 has a symmetric distribution around zero, then yl−1 has
zero mean and has a symmetric distribution around zero.

Uniform Distribution Assuming yl−1 has a uniform distribution on the interval [−a, a], we get
Var[yl−1] = a2/3, and

K = 2 : E[x2
l ] =

a2

3
= Var[yl−1],

K = 3 : E[x2
l ] =

2a2

5
=

6

5
Var[yl−1],

K = 4 : E[x2
l ] =

7a2

15
=

7

5
Var[yl−1],

K = 5 : E[x2
l ] =

11a2

21
=

11

7
Var[yl−1].

More generally, E[x2
l ] = 4a2( K

K+2 −
K
K+1 + K

4K ).

Normal Distribution Assuming yl−1 has a normal distribution N (0, σ2), the closed form solution
is available for up to K = 4. We have:

K = 2 : E[x2
l ] = Var[yl−1],

K = 3 : E[x2
l ] =

√
3 + 2π

2π
Var[yl−1],

K = 4 : E[x2
l ] =

√
3 + π

π
Var[yl−1],

K = 5 : E[x2
l ] ≈ 1.80002Var[yl−1].

Inserting the expressions for E[x2
l ] into (13),

Var[yl] = nlVar[wl]cVar[yl−1],

where c depends on the distribution and on K. Putting the results together for all layers,

Var[yL] = Var[y1]

L∏
l=2

cnlVar[wl].

A sufficient condition for this product not to increase or decrease exponentially in L is that, for each
layer, cnlVar[wl] = 1. This is achieved by setting the standard deviation (std) of wl as

√
1/cnl. For
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Normal

Var[y]:0.99927
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ReLU normal

E[x2]:0.50526

-5 0 5

Maxout K=2 normal

E[x2]:1.0077

-5 0 5

Maxout K=5 normal

E[x2]:1.7902

-2 0 2

Uniform

Var[y]:1.0038

0 1 2

ReLU uniform

E[x2]:0.49901

-2 0 2

Maxout K=2 uniform

E[x2]:1.0029

-2 0 2

Maxout K=5 uniform

E[x2]:1.5736

Figure 10: Shown are normal (top) and uniform (bottom) input distributions, as well as the corre-
sponding response distributions for ReLU, maxout of rank K = 2, and maxout of rank K = 5. The
expectation of the square response for maxouts of rank K > 2 depends not only on the variance but
also on the particular shape of the input distribution.

K = 2 this is
√

1/nl for both uniform and normal distribution. For a uniform distribution, we obtain
the condition Var[wl] = 1

nl(
1
4−

K
(K+2)(K+1)

)
.

We notice that for ReLU, the particular shape of the distribution of the (pre-activation) response
yl−1 does not impact the expected square of the activation xl. Indeed, as soon as wl is assumed to
be symmetric around zero, one obtains E[x2

l ] = 1
2Var[yl−1]. In contrast, for maxout units of rank

K > 2, the particular shape of the distribution of yl−1 does affect the value of E[x2
l ]. This is why

we obtain different conditions on the standard deviation of the weight distributions depending on
the assumed response distribution. The situation is illustrated in Figure 10. Among the possible
distributions that one might assume for yl−1, a normal distribution appears most natural. Therefore,
we take the standard deviations obtained under this assumption as the ones defining the maxout-He
initialization procedure. The values of the std of wl for K up to 5 for normal distributions are shown
in Table 1.

J.3 Sphere initialization

If we initialize the pre-activation features of a maxout unit independently, then we expect the number
of regions of the unit will be significantly smaller than K, as discussed in Appendix C. In view
of Proposition 20, the number of regions of a maxout unit with weights w1, . . . , wK ∈ Rn and
biases b1, . . . , bK ∈ R is equal to the number of upper vertices of the polytope conv{(wr, br) : r ∈
[K]}. Hence one way to have each rank-K maxout unit have K linear regions over its input at
initialization is to initialize the pre-activation feature parameters as points in the upper half-sphere
{(w, b) ∈ Rn+1 : ‖(w, b)‖ = 1, b > 0}. This can be done as follows. For each pre-activation feature
i = 1, . . . ,K:

1. Sample (wi, bi) from a Gaussian on Rn+1.

2. Normalize (wi, bi)/‖(wi, bi)‖.
3. Replace bi with |bi|.

If desired, subtract a constant c from each of the biases b1, . . . , bK . For instance one may choose c so
that the mean output of the maxout unit is approximately 0 for inputs from a Gaussian distribution.
We have used c = 1/

√
Knl in our implementation, and Gaussian had zero mean and unit covariance.

J.4 Many regions initialization

We can initialize the parameters of a maxout layer so that the layer has the largest possible number
of linear regions over its input space. A description of parameter choices maximizing the number
of regions for a layer of maxout units has been given by Montúfar et al. (2021, Proposition 3.4).
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The number of regions of a layer of maxout units corresponds to the number of upper vertices of
a Minkowski sum of polytopes. A construction maximizing the number of vertices of Minkowski
sums was presented earlier by Weibel (2012). The procedure is as follows. Let the layer have input
dimension n. For each unit j = 1, . . . ,m:

1. Sample a vector vj ∈ Rn from a distribution which has a density.
2. For each pre-activation feature i = 1, . . . ,K set the weights and bias as wj,i = vj cos(πi/K) and
bj,i = sin(πi/K).

This construction ensures that each unit has K linear regions separated by K−1 parallel hyperplanes,
and the hyperplanes of different units are in general position. Then the number of regions of the layer
is the one indicated in the first item of Theorem 21.

If desired, one can add some noise to each of the above parameters (e.g. standard normal times a
small constant) in order to have a parameter distribution which has a density. If desired, one can
also normalize the initialization by subtracting an appropriate constant (e.g. to achieve a zero mean
activation) and dividing by an appropriate standard deviation (e.g. to achieve that the activations have
a unit mean norm). We were sampling vj from a Gaussian distribution with mean zero and std chosen
according to maxout-He.

J.5 Steinwart-like initialization for maxout

Steinwart (2019) investigated initialization in ReLU networks. He suggested that having the nonlinear
locus of different units evenly spaced over the input space at initialization could lead to faster
convergence of training, which he also supported with experiments on the datasets from the UCI
repository. We can formulate a version of this general idea for the case of maxout networks as
follows.

1. Assume we have some generic initialization procedure for individual units, which gives us
weights w1, . . . , wK ∈ Rn and biases b1, . . . , bK ∈ R. The initialization procedure could be for
instance “Sphere”. Upon initialization, our unit is computing a function x 7→ max{〈w1, x〉 +
b1, . . . , 〈wK , x〉+ bK} with non-linear locus that we denote L.

2. For each unit, sample a vector c uniformly from the cube [−1, 1]n. Alternatively, sample c as a
random convex combination of a random subset of the training data, so that c =

∑m
i=1 pixi, where

(p1, . . . , pm) is a random probability vector and x1, . . . , xm are m randomly selected training
input examples.

3. Now set the weights as w1, . . . , wK and the biases as b1 + 〈w1, c〉, . . . , bK + 〈wK , c〉. Now our
unit is computing a function x 7→ max{〈wk, x〉+bk+〈wk, c〉} = max{〈wk, x+c〉+bk}. Hence
the nonlinear becomes L− c.

K Experiments

In this section, we provide details on the implementation and additional experimental results. All the
experiments were implemented in Python using PyTorch (Paszke et al., 2019), numpy (Harris et al.,
2020), scipy (Jones et al., 2001) and mpi4py (Dalcin et al., 2011), with plots created using matplotlib
(Hunter, 2007). In the experiments concerning the network training, we used the MNIST dataset
(LeCun et al., 2010). PyTorch, numpy, scipy and mpi4py are made available under the BSD license,
matplotlib under the PSF license and MNIST dataset under the Creative Commons Attribution-Share
Alike 3.0 license. We conducted all experiments on a CPU cluster that uses Intel Xeon IceLake-
SP processors (Platinum 8360Y) with 72 cores per node and 256 GB RAM. The most extensive
experiments were usually running for 2-3 days on 32 nodes. The computer implementation of the key
functions is available on GitHub at https://github.com/hanna-tseran/maxout_complexity.

For the MNIST experiments we use the Adam optimizer with mini-batches of size 128 with learning
rate 0.001 and the standard Adam hyperparameters from PyTorch (betas are 0.9 and 0.999). Counting
at initialization was performed in the window [−50, 50]2, in the training experiments in the window
[−400, 400]2 defined on the slice, and images of the regions and the decision boundary were obtained
in the window [−50, 50]2 also defined on the slice. All results are averaged over 30 instances
where applicable. The network architectures are specified in the individual experiments. The
parameter initialization procedures are implemented following the descriptions in Appendix J. For the
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Figure 11: A few functions represented by a maxout network for different parameter values in a 2D
slice of parameter space. For each function we plot regions of the input space with different gradient
values using different colors.

experiments counting the number of activation regions and pieces in the decision boundary we use
home made implementations of the algorithms described in Appendix I. Further below we present
the details and additional results of the individual experiments.

Details on Figure 1 We consider a network with 2 input units, three layers of rank-3 maxout units of
width 3, and a single linear output unit. We fix three parameter vectors θ0, θ1, θ2 drawn from a normal
distribution over the parameter space and define a grid of parameter values θ(ξ1, ξ2) = θ0+ξ1θ1+ξ2θ2

with (ξ1, ξ2) taking 102400 uniformly spaced values in [−1, 1]2. For each of these parameter values,
we estimate the number of linear regions that the represented function has over the square [−1, 1]2 in
the input space. To this end, we evaluate the gradient of the function over 102400 uniformly spaced
input points and take the number of distinct values an estimate for the number of linear regions. Then
we plot the estimated number of linear regions as a function of (ξ1, ξ2). A subset of 25 out of the
evaluated functions is shown in Figure 11.

Comparison to the upper bound Figures 12 and 13 complement Figure 2. Figure 12 compares the
number of activation regions and linear pieces in the decision boundary to the formulas both with and
without the constants, while Figure 13 demonstrates the results for different values of K.

Effects of the depth and the number of units on the number of linear regions Results adding
more information to Figure 3 are in Figure 14. It shows that ReLU networks and maxout networks
with K = 2 have a similar number of activation regions that does not depend on the network depth
but rather on the total number of units. This figure also shows that maxout networks with ranks
K > 2 tend to have fewer regions as the depth increases, but the number of units remains constant
and that the difference in the number of regions becomes more apparent for larger ranks.

Effects of different initializations on training Figure 16 is a more detailed version of Figure 6. It
shows how convergence speed changes for different network depths and different maxout ranks given
different initializations. The improvement from maxout-He, sphere, and many regions initializations
compared to ReLU-He initialization becomes more noticeable with larger network depth and larger
maxout rank. We have also checked how the Steinwart initialization affects the convergence speed,
but found no significant difference in this particular experiment. We used the approach where c is
taken as a convex combination of all training data points (weights p uniformly at random from the
probability simplex). The results are shown in Figure 15.

Effects of different initializations on the number of activation regions and pieces in the decision
boundary during training Figure 18 adds more information to Figure 5 and demonstrates how
the number of activation regions and linear pieces in the decision boundary changes for different
initializations during training on the MNIST dataset. We observe that the number of activation
regions and pieces of the decision boundary increase for all tested initialization procedures as training
progresses. Nonetheless, the number remains much lower than the theoretical maximum. Figure 17
illustrates how linear regions and the decision boundary evolve during training.
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Formula without K and constants Formula with K without constants Full formula

(a) Number of activation regions for a network with ReLU-He normal initialization.

Formula without K and constants Formula with K without constants Full formula

(b) Number of linear pieces in the decision boundary for a network with maxout-He normal initialization.

Figure 12: Comparison to the formulas with and without the constants for the number of activation
regions and linear pieces in the decision boundary from Theorem 9 and Theorem 11 respectively.
Networks had 100 units and maxout rank K = 2. The settings are similar to those in Figure 2.

Formula without K and constants Formula with K without constants Full formula

(a) K = 3.

Formula without K and constants Formula with K without constants Full formula

(b) K = 5.

Figure 13: Comparison to the formula from Theorem 9 for maxout ranks K = 3 and K = 5. The
networks were initialized with maxout-He normal initialization. We observe the increase in the
number of activation regions as the maxout rank increases, and for networks with higher maxout rank
deeper networks tend to have less regions than less deep networks with the same rank.
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(a) ReLU network with ReLU-He normal initializa-
tion.

(b) Maxout network with maxout rank K = 2 and
ReLU-He normal initialization.

(c) Maxout network with K = 3. Maxout-He nor-
mal initialization.

(d) Maxout network with K = 5. Maxout-He nor-
mal initialization.

Figure 14: Difference between the effects of depth and number of neurons on the number of activation
regions. These plots are additional to Figure 3 and have similar settings. ReLU and maxout networks
with K = 2 have a similar number of linear regions. For maxout rank K > 2 deeper networks tend to
have less regions than less deep networks with the same rank. For K = 3 the gaps between different
depths are smaller than for K = 5.

Loss Accuracy

Figure 15: Effect of the Steinwart initialization approach on the convergence speed during training
on the MNIST dataset for a network with 200 units and 5 layers. Maxout rank was K = 5. In this
experiment, for various initialization procedures, the addition or omission of a random shift of the
non-linear regions of different units led to similar training curves.
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Figure 16: Effect of the initialization on the convergence speed during training on the MNIST dataset
of networks with 200 units depending on the network depth and the maxout rank. Maxout-He, sphere,
and many regions initializations behave similarly, and the improvement in the convergence speed
becomes more noticeable for larger network depth and maxout rank.

Before training 20 epochs 40 epochs 60 epochs 80 epochs 100 epochs

(a) Linear regions.

Before training 20 epochs 40 epochs 60 epochs 80 epochs 100 epochs

(b) Decision boundary.

Figure 17: Evolution of the linear regions and the decision boundary during training on MNIST in a
2D slice determined by three random input points from the dataset. The network had 3 layers, a total
of 100 maxout units of rank K = 2, and was initialized with the maxout-He initialization.
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Linear regions Decision boundary Loss

(a) ReLU network with the ReLU-He normal initialization.

(b) Maxout network with the ReLU-He normal initialization.

(c) Maxout network with the maxout-He normal initialization.

(d) Maxout network with the sphere initialization.

(e) Maxout network with the many regions initialization.

Figure 18: Change in the number of linear regions and the decision boundary pieces during 100
training epochs given different initializations. Networks had 100 neurons and for maxout networks
K = 2. Both the number of linear regions and linear pieces of the decision boundary increases during
training for all initializations but remain much smaller than the theoretical maximum. The settings
were the same as in Figure 5.
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