
A Appendix509

Code Availability: We will make our code available upon acceptance.510

The organization of the appendix is as follows:511

1. Subsection A.1 describes the details of the submodular maximization function we have512

used in our experiments.513

2. Subsection A.2 presents the environment setups and exact parameters we have used for our514

simulations.515

3. Subsection A.3 provides the exact details for the network configurations used in our exper-516

iments.517

4. Subsection A.4 presents all the simulation results for all tasks and network configurations518

along with our methods’ performance superiority.519

5. Subsection A.5 provides ablation studies over the hyperparameters and simulation param-520

eters.521

6. Subsection A.6 presents the complexity analysis and optimality bounds of our allocation522

policies.523

7. Subsection A.7 presents our 5G network data collection setup.524

A.1 Submodular Maximization Parameters525

This section provides the exact parameters and functions used in the submodular maximization526

method given in Section 4.527

A.1.1 Informativeness Function528

The informativeness function U measures the informativeness of each robot i in the fleet. To mea-529

sure the informativeness of the robots, we use a weighted combination of two functions. The first530

function measures the uncertainty of the robot policy ⇡R in the environment, and the second function531

measures the risk of the robot i violating the constraints C. Then, the informativeness function can532

be defined as follows:533

U(i) = ↵UUunc(i) + (1� ↵U )Urisk(i). (7)

Here, ↵U is a hyperparameter that controls the weight of the uncertainty in the overall informa-534

tiveness measure, and Uunc(i) and Urisk(i) are the uncertainty and risk functions of the robot i,535

respectively. When the robot is taking discrete actions, the uncertainty function Uunc(i) is defined536

as the entropy of the robot policy ⇡R, and when the robot is taking continuous actions, the uncer-537

tainty function is defined as the ensemble variance of the robot policy ⇡R [40]. The risk function538

Urisk(i) is defined as the likelihood of the robot i exiting the constraint space C [15].539

For both uncertainty and risk functions, if the value of the function for the robot i is below a certain540

threshold, we set it to zero. We define this threshold parameter as U thres
unc and U thres

risk for uncertainty541

and risk functions, respectively. We present specific U thres
unc and U thres

risk parameters for the experiments542

in Table 2.543

A.1.2 Similarity Function544

The similarity function S measures the similarity between two robots i and j in the fleet. In our545

experiments, we utilize both the similarity between the robots and the similarity between the actions546

taken by the robots. More formally, the similarity function is defined as follows:547

S(i, j) = ↵S
si · sj

ksikksjk
+ (1� ↵S)

ai · aj
kaikkajk

(8)

where si and sj are the states of the robots i and j, respectively; ai and aj are the actions taken548

by the robots i and j, respectively. ↵S is a hyperparameter that controls the weight of the state549

similarity in the overall similarity measure.550
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A.1.3 Constraint Violation Function551

The constraint violation function C measures the violation of the constraints by the robots. In our552

experiments, we used the constraint violation as an indicator function that returns ↵C if the constraint553

is violated and 0 otherwise. The ↵C is a parameter that controls the relative importance of the554

constraint violation in the overall objective function. In our experiments, we set ↵C = 10000555

to prioritize the robots with constraint violations. The constraint violation function is defined as556

follows:557

C(i) =
⇢
↵C if si /2 C
0 otherwise

(9)

Here, the C refers to the safe states that the robot can operate without any human intervention. As558

the constraint function causes the system to prioritize the robots violating the constraints, in initial559

time steps, we set the ↵C = �10000 to ensure that the robots violating the constraints are not560

prioritized. This is because, in the initial steps, the robots explore the environment, and collecting561

more informative data is more critical than the constraint violations. We control the lenght of this562

period in which the constraint violating robots are not prioritized by the tW parameter.563

A.2 Experimental Setups and Parameters564

As stated previously, we run simulations using four different environments: ANYmal, Allegro Hand,565

Humanoid, and Ball Balance. Each environment has its own defined tasks, success criteria, and566

constraint violations. For the ANYmal robot, a constraint violation occurs when there is excessive567

force on the robot’s knees, indicating that the robot has fallen on its knees, or when no force is568

exerted on the bottom of its toes, indicating that the robot has fallen on its torso. For the Ball569

Balance environment, a constraint violation occurs when the ball is no longer on the plate. In the570

Allegro Hand environment, a constraint violation happens when the cube is no longer in the robot’s571

hand. For the Humanoid environment, a constraint violation occurs when the robot’s position is572

below the termination height, indicating that the Humanoid has fallen down.573

The definition of success is specific to each task. For instance, in locomotion tasks, success is574

achieved if the robot does not violate constraints and reaches a reward amount that exceeds a pre-575

defined reward threshold. For goal-specific tasks such as Ball Balance and Allegro Hand, success576

corresponds to reaching the goal state without violating constraints. For Ball Balance, a goal state577

may be one where the ball on the plate is moving within a radius smaller than the plate’s radius,578

indicating that the robot successfully managed to control and balance the ball. For Allegro Hand,579

the goal state may be defined as holding the cube stable after rotating it so that the red surface faces580

up. That is how a single success corresponds to different achievements depending on the specific581

tasks assigned to each robot.582

For all experiments, the key parameters are fixed and do not depend on the allocation policies:583

Nhuman = 5, Nrobot = 100, T = 10, 000 time steps, tR = 5 time steps and tT = 5 time steps.584

The hyperparameters that vary depending on the task, along with the values that yielded the best585

performances, are provided below in Table 2. |S| and |A| are the dimensionalities of the state586

and action spaces, respectively, U thres
unc and U thres

risk are the uncertainty and risk threshold values below587

which the uncertainty and risk are treated as zero, tW is the period during which constraints are588

not prioritized, allowing the robot policies to be improved by selecting informative robots rather589

than resetting failing robots in the first tW time steps, threshold is the marginal increase threshold590

below which the robots are not prioritized, ↵S is the parameter which controls the weight of the state591

similarity in the overall similarity measure, and ↵U is the parameter that controls the weight of the592

uncertainty in the overall informativeness measure.593

A.3 Network Configurations594

Here, we explain the details of the network configurations used in our experiments. We have used595

four different network configurations to evaluate the adaptability of the allocation algorithms in596

different network conditions. Additionally, we show the connection probabilities in each network597

configuration in Figure 5. The network configurations are as follows:598
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Task |S| |A| U thres
unc U thres

risk tW threshold ↵S ↵U

AllegroHand 88 21 0.53 0.12 1250 0.04 0.37 0.53

AnyMAL 48 12 0.19 0.49 1000 0.69 0.72 0.05

BallBalance 24 3 0.47 0.21 1750 0.51 0.98 0.46

Humanoid 108 21 0.18 0.20 2500 0.23 0.50 0.10

Table 2: Simulation environment hyperparameters for each task.

Always: Always is a simple network configuration where the probability of connection to all the599

robots is set to 1. In this network configuration, our supervisor allocation problem is equivalent to600

the Interactive Fleet Learning (IFL) problem presented in [15], where the supervisor can connect to601

all the robots at all times.602

Mixed-Scarce: Mixed-Scarce is a network configuration where the probability of connection to603

robots can be set to two different values. In this network configuration, we first divided the robots604

into two groups with ratios of 0.7 and 0.3. We then set the probability of connection to the robots605

in the first group to 0.9 and the probability of connection to the robots in the second group to 0.1.606

This network configuration is used to evaluate the adaptability of allocation algorithms when the607

connectivity to the robots is heterogeneous. Ideally, the supervisor should allocate more resources608

to the robots with higher connectivity to maximize the performance of the fleet.609

Ookla: Ookla is a network configuration where the probability of connection to the robots is set610

based on the Ookla cellular network performance data [51]. This dataset includes the download611

speed, upload speed, and latency of the cellular network in different locations. We use the download612

speed as the metric to determine the probability of connection to the robots. We first divided the613

data collection points into a grid of 10⇥10 cells. We then calculated the average download speed of614

the data collection points in each cell. After that, we log-normalize the average download speed of615

each cell to be in the range of [0.5, 1]. We have set the lower bound to 0.5 to ensure that the robots616

in the cell with the lowest download speed have a non-zero probability of connection. We then set617

the probability of connection to the robots in each cell to be the normalized average download speed618

of the cell. This network configuration is used to evaluate the adaptability of allocation algorithms619

when the connectivity to the robots is based on real-world cellular network performance data, which620

is heterogeneous and has a more complex structure than the Mixed-Scarce network configuration.621

5G Network: 5G Network is a network configuration where the probability of connection to the622

robots is set based on the real-world 5G network performance data. Please refer to Section A.7 for623

more details on the data collection process. The collected data was divided into 100 groups, with624

average latency and throughput calculated for each group and normalized to a value between 0.015625

and 1. A lower bound of 0.015 ensures a non-zero connection probability for robots with the lowest626

throughput and highest latency. Robots in groups with throughput below 0.4 and latency above 0.6627

were assigned a normalized value of 0.015. The connection probability for each group corresponds628

to the normalized average throughput and latency. This configuration evaluates the adaptability629

of allocation algorithms to realistic, heterogeneous connectivity based on real-world 5G network630

performance, which is more complex than other network configurations.631

A.4 Numerical Results632

In this section, we present the numerical values for all allocation policies and for all tasks under633

each network configuration to demonstrate that our method outperforms the baseline algorithms in634

all simulated scenarios, providing a novel approach to the supervisor allocation problem. We also635

present the percentage performance differences between our methods (ASA and n-ASA) and other636

methods. For better comparability, we exclude the random method from the comparison since it637

does not include any prioritization and randomly selects the robots. We present all numerical results638

recorded in the final timestep (t = 10, 000) in Table 3 and the percentage differences in Figure 6.639
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Figure 5: Connection Probabilities for each Network Configuration. This figure shows the connection
probabilities of the robots in the fleet for each network configuration. For easier visualization, we have grouped
100 robots into 10 groups of 10 robots each and presented the average connection probability for each group.
We can see that from the Always network to the 5G network, the connection probabilities of the robots get more
heterogeneous. This heterogeneity in the connection probabilities is crucial for evaluating the adaptability of
the allocation algorithms in different network configurations.

NETWORK
ALLOCATION

POLICY
ALLEGROHAND ANYMAL BALLBALANCE HUMANOID

ROHE CUMULATIVE
SUCCESS

ROHE CUMULATIVE
SUCCESS

ROHE CUMULATIVE
SUCCESS

ROHE CUMULATIVE
SUCCESS

ALWAYS

RANDOM 10.48 649.7 2.18 160.0 3.61 1796.0 0.01 1.67
FT 11.10 2751.0 - - 2.87 1437.0 - -
FE 10.03 2021.67 2.81 127.33 6.82 1185.0 1.04 296.67
FD 13.48 3352.33 3.12 189.0 7.92 1499.67 1.93 424.67
N-ASA (OURS) 16.30 5094.67 3.76 246.33 10.67 1802.67 2.22 503.33
ASA (OURS) 14.87 5064.33 3.41 241.0 10.87 1785.67 2.28 530.0

MIXED-SCARCE

RANDOM 3.39 302.0 0.65 79.33 2.64 1319.0 0.00 0.67
FT 4.05 1713.0 - - 1.98 988.0 - -
FE 3.69 1616.33 0.89 110.33 3.54 1327.67 0.09 45.0
FD 4.94 2031.0 2.75 1209.0 3.32 1253.33 0.33 159.33
N-ASA (OURS) 8.15 3850.67 2.46 244.33 5.85 1580.67 1.95 499.67
ASA (OURS) 8.16 3817.33 2.29 235.33 7.27 1621.0 1.85 491.0

OOKLA

RANDOM 8.45 576.33 1.97 164.67 3.57 1782.33 0.01 1.67
FT 9.37 2583.33 - - 2.77 1383.33 - -
FE 8.34 2072.33 2.22 126.0 7.46 1301.33 0.70 235.33
FD 10.65 2986.33 2.76 186.67 6.45 1443.33 1.47 392.33
N-ASA(OURS) 13.99 4694.33 3.20 240.0 10.96 1791.67 2.25 506.67
ASA (OURS) 13.75 4936.0 3.11 225.67 11.41 1741.33 2.15 510.33

5G NETWORK

RANDOM 2.47 228.67 0.36 47.33 2.81 1401.33 0.00 0.00
FT 4.75 2131.67 - - 0.69 344.67 - -
FE 3.98 1789.67 1.07 137.0 3.01 1315.0 0.37 169.33
FD 5.40 2213.0 1.40 200 2.75 1209.0 0.79 319.33
N-ASA (OURS) 7.66 3705.33 1.61 246.33 7.45 1758.33 1.44 444.33
ASA (OURS) 7.43 3658.0 1.63 239.33 6.39 1703.33 1.51 470.0

Table 3: Numerical results for all network and task simulations: We present RoHE and cumula-
tive success values in the final timestep (t = 10, 000) for 4 different environments under 4 different
network configurations.

A.5 Ablation Studies640

In this section, we conduct further experiments using our adaptive submodular allocation, ASA,641

policy to explore the following: (1) the sensitivity of the system to the ratio of the number of robots642

Nrobot to the number of humans Nhuman (Figure 7), (2) the impact of varying the minimum inter-643

vention time tT (Figure 8), and (3) the impact of changing the hard reset time tR (Figure 9). Each644

experiment is averaged over three different random seeds, and the shaded regions correspond to one645

standard deviation. We plotted four different metrics: (1) cumulative success, (2) RoHE, (3) cumu-646

lative hard resets, and (4) cumulative idle time. Cumulative hard resets represent the total number647

of hard resets performed by human supervisors when the robots violate constraints. Cumulative idle648

time is the total time, in time steps, that robots remain idle while waiting for a hard reset.649

Number of Humans: We tested the ASA policy to evaluate its sensitivity to different numbers of650

human supervisors (Fig. 7). Keeping the number of robots constant, we simulated scenarios with 1,651

5, 10, 25, and 50 human supervisors. In all simulated tasks, fleet performance was the worst when652

there was a single human supervisor due to insufficient human resources. Interestingly, the RoHE653

value was higher for the BallBalance task with a single human supervisor. This is because, with654

only one supervisor, most of their time is allocated to robots violating constraints. These constraint-655
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Figure 6: Our ASA and n-ASA policies outperform other benchmarks across all environments and
network combinations. Here, the first set of bar plots represent the percentage difference in RoHE and the
second set of bar plots represent the percentage difference in cumulative successes between our best method
and the best baseline method.

violating robots, which would otherwise be idle if not teleoperated and reset, contribute more when656

they are actively managed by the supervisor. As the number of human supervisors increases, idle657

time decreases because more human resources are available, resulting in shorter idle periods before658

robots are teleoperated and reset. However, despite the cumulative success values rising with more659

supervisors, the RoHE values tend to decrease. This happens because allocating more humans660

doesn’t always lead to a higher return on human effort. The most informative and important robots661

are already being selected, so adding more supervisors doesn’t necessarily result in a significant662

marginal gain. Therefore, a low number of human supervisors is insufficient as robots remain idle663

for long periods and violate constraints more frequently, while a large number of supervisors creates664

a surplus and decreases efficiency.665

Minimum Intervention Time: While keeping the number of robots fixed, we varied the minimum666

intervention time and ran our policy. We observed that when the minimum intervention time is very667

long, such as 100 or 500 time steps, the robot fleet performance significantly decreases. This is668

because human supervisors spend a lot of time teleoperating a single robot, which results in lower669

RoHE and cumulative success values, and a substantial increase in idle time. Conversely, when the670

minimum intervention time is very short, such as 1 time step, performance improves in terms of671

both RoHE and cumulative success for most tasks. This is because each human supervisor spends672

less time on a single robot and can attend to more robots within 10,000 time steps, thus enhancing673

overall fleet performance as the minimum intervention time decreases.674

Hard Reset Time: Finally, we ran the ASA policy with different hard reset times. We observed675

that as the hard reset time increases, the fleet performance decreases. This is because it takes longer676

for human supervisors to reset the robots, resulting in fewer hard resets within 10,000 time steps.677

Consequently, the idle time increases, reducing the overall performance of the robot fleet.678
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Figure 7: Simulation results with different numbers of human supervisors: ASA policy simula-
tion results for each task under Always network configuration where Nrobot = 100 but the number of
human supervisors Nhuman vary.

A.6 Complexity Analysis and Optimality Bounds for Allocation Algorithms679

Here we present the complexity analysis and optimality bounds for our allocation algorithms.680

A.6.1 Complexity Analysis681

We now explain the complexity of our allocation algorithms in terms of the number of robots Nrobot,682

and the number of humans Nhuman in the system and function evaluations. As we have discussed683

in Section 4, our allocation algorithm is based on a greedy algorithm that selects the robots based684

on the stochastic submodular maximization objective. It is a well-known result that the number of685

function evaluations for the greedy algorithm is O(NrobotNhuman). As both of our algorithms are686

based on the greedy algorithm, the computational and time complexities of our algorithms, ASA687

and n-ASA, are both O(NrobotNhuman).688

A.6.2 Optimality Bounds689

To establish the optimality bounds for our allocation algorithms, ASA and n-ASA, we utilize the690

theoretical results from the stochastic submodular maximization and adaptive submodular maxi-691

mization literature. Specifically, the greedy algorithm used in stochastic submodular maximization692
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Figure 8: Simulation results with different minimum intervention times: ASA policy simulation
results for each task under Always network configuration for T = 10, 000 time steps where Nrobot =
100, Nhuman = 5 and the minimum intervention time tT varies.

is shown to approximate the optimal solution for the problem given in Equation 6. We now present693

the optimality bounds for each of our algorithms.694

Optimality Bound for ASA: When the threshold threshold is set to 0 in Algorithm 1, the ASA695

algorithm is equivalent to the adaptive greedy algorithm for stochastic submodular maximization696

problem [47]. Golovin and Krause [47] show that the adaptive greedy algorithm achieves a (1�1/e)-697

approximation to the adaptive optimal solution. Therefore, the ASA algorithm achieves a (1�1/e)-698

approximation to the optimal solution for the problem given in Equation 6.699

Optimality Bound for n-ASA: When the threshold threshold is set to 0 in Algorithm 1, the n-700

ASA algorithm is equivalent to the non-adaptive greedy algorithm for the stochastic submodular701

maximization problem [46]. Asadpour et al. [46] show that the non-adaptive greedy algorithm702

achieves a (1� 1/e) approximation to the optimal non-adaptive solution. Additionally, the optimal703

non-adaptive solution is a (1�1/e)-approximation to the optimal adaptive solution [47]. Therefore,704

the n-ASA algorithm achieves a (1� 1/e)-approximation to the optimal non-adaptive solution and705

a (1� 1/e)2-approximation to the optimal adaptive solution for the problem given in Equation 6.706

A.7 Real World 5G Network Data707

In addition to the simulated network connectivity data, we also evaluate our allocation policies using708

real-world 5G network connectivity data. We collected this data using two hardware components: a709
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Figure 9: Simulation results with different hard reset times: ASA policy simulation results for
each task under Always network configuration where Nrobot = 100, Nhuman = 5 and the hard reset
time tR varies.

mobile edge device and a local server. The edge device, which can be a robot, a mobile phone, or710

a computer, acts as the connection client. The local server functions as the cloud. In our scenario,711

we consider the edge device to be the robot and the local server to be the cloud or the server from712

which human supervisors connect to the robots. The local server sends packets to the edge device,713

and the edge device responds with packets to confirm receipt. During this process, the local server714

calculates latency and throughput, saving this data to a local file. This continues for a predetermined715

data collection period of 24 hours. Two key aspects of this setup are: (1) the edge device is connected716

to a 5G cellular network, specifically 5G cellular provided by AT&T, and (2) it is mobile. This allows717

us to collect data anywhere, whether moving or stationary, for any desired period. To obtain data that718

realistically simulates human teleoperation connectivity, we collected data in a building where actual719

teleoperation and robotic tasks are conducted. After collecting the data, we divided and clustered it720

into 100 different groups. This division helps correlate the data with our fleet learning simulation721

environment, which has 100 robots in different locations. For each group, we calculated the average722

latency and throughput. We normalized the average values between 0 and 1, such that groups with723

high latency and low throughput values have a normalized value closer to 0, and groups with low724

latency and high throughput values have a normalized value closer to 1. Now that we have 100725

different normalized values, we randomly assigned them to 100 simulated robots. We illustrate the726

data collection setup in Figure 10. Additionally, we present the average throughput and latency for727

each group as well as the connection probability for each grid cell in Figure 11.728
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Data Collection Field Connection Setup

5G Network

Human
Supervisor Robot

Figure 10: Data Collection Setup for 5G Network. We collected 5G network connectivity data from the
real-world robotics laboratory floor, where the example floor plan is shown in the left figure. In the floor plan,
the red devices represent the locations of the robots on the laboratory floor. We have collected the 5G network
data from these locations using a 5G-enabled smartphone. Our data collection setup is shown in the right
figure. For each location, we have established a connection between a human supervisor using a 5G-enabled
smartphone and a robot server through a 5G base station and a 5G modem. We have collected various network
parameters including throughput, latency, and signal strength for each location. We then processed this data to
obtain the network connectivity information for the robots in our experiments.

Figure 11: 5G Network Performance Metrics. This figure shows the key performance metrics of the 5G
network data collected from the real world. Here on the left, we show the average throughput for each group
of robots. The throughput is normalized between 0 and 1, where 0 represents low throughput, and 1 represents
high throughput. On the right, we show the average latency for each group of robots, where the latency is
normalized between 0 and 1, where 0 represents high latency, and 1 represents low latency. We then use these
metrics to determine the probability of connection to the robots in our experiments.
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