
Appendix

A Experimental Details

A.1 Description of Baselines

Average Thresholded Confidence (ATC). ATC first estimates a threshold t on the confidence of
softmax prediction (or on negative entropy) such that the number of source labeled points that get a
confidence greater than t match the fraction of correct examples, and then estimates the test error on
on the target domain Dtest as the expected number of target points that obtain a score less than t, i.e.,

ATCDtest(s) =

n∑
i=1

I [s(f(x′
i)) < t] ,

where t satisfies:
∑j

i=1 I [maxj∈Y(fj(xi)) < t] =
∑m

i=1 I
[
argmaxj∈Y fj(xi) ̸= yi

]
Average Confidence (AC). Error is estimated as the average value of the maximum softmax confidence
on the target data, i.e, ACDtest

=
∑n

i=1 maxj∈Y fj(x
′
i).

Difference Of Confidence (DOC). We estimate error on the target by subtracting the difference of
confidences on source and target (as a surrogate to distributional distance [24]) from the error on
source distribution, i.e., DOCDtest

=
∑n

i=1 maxj∈Y fj(x
′
i) +

∑m
i=1 I

[
argmaxj∈Y fj(xi) ̸= yi

]
−∑m

i=1 maxj∈Y fj(xi). This is referred to as DOC-Feat in [24].

Confidence Optimal Transport (COT). COT uses the empirical estimator of the Earth Mover’s
Distance between labels from the source domain and softmax outputs of samples from the target
domain to provide accuracy estimates:

COTDtest(s) =
1

2
min

π∈Π(Sn,Y m)

n,m∑
i,j=1

∣∣∣∣si − eyj

∣∣∣∣
2
πij ,

where Sn = {f(x′
i)}ni=1 are the softmax outputs on the unlabeled target data and Y m = {yj}mj=1

are the labels on holdout source examples.

For all of the methods described above, we assume that {(x′
i)}ni=1 are the unlabeled target samples

and {(xi, yi)}mi=1 are hold-out labeled source samples.

A.2 Dataset Details

In this section, we provide additional details about the datasets used in our benchmark study.

• CIFAR10 We use the original CIFAR10 dataset [36] as the source dataset. For target domains,
we consider (i) synthetic shifts (CIFAR10-C) due to common corruptions [27]; and (ii) natural
distribution shift, i.e., CIFAR10v2 [58, 68] due to differences in data collection strategy. We
randomly sample 3 set of CIFAR-10-C datasets. Overall, we obtain 5 datasets (i.e., CIFAR10v1,
CIFAR10v2, CIFAR10C-Frost (severity 4), CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate
(severity 5)).

• CIFAR100 Similar to CIFAR10, we use the original CIFAR100 set as the source dataset. For
target domains we consider synthetic shifts (CIFAR100-C) due to common corruptions. We sample
4 CIFAR100-C datasets, overall obtaining 5 domains (i.e., CIFAR100, CIFAR100C-Fog (severity
4), CIFAR100C-Motion Blur (severity 2), CIFAR100C-Contrast (severity 4), CIFAR100C-spatter
(severity 2)).

• FMoW In order to consider distribution shifts faced in the wild, we consider FMoW-WILDs [35,
11] from WILDS benchmark, which contains satellite images taken in different geographical regions
and at different times. We use the original train as source and OOD val and OOD test splits as target
domains as they are collected over different time-period. Overall, we obtain 3 different domains.

• Camelyon17 Similar to FMoW, we consider tumor identification dataset from the wilds bench-
mark [4]. We use the default train as source and OOD val and OOD test splits as target domains as
they are collected across different hospitals. Overall, we obtain 3 different domains.

15

• BREEDs We also consider BREEDs benchmark [65] in our setup to assess robustness to
subpopulation shifts. BREEDs leverage class hierarchy in ImageNet to re-purpose original classes
to be the subpopulations and defines a classification task on superclasses. We consider distribution
shift due to subpopulation shift which is induced by directly making the subpopulations present
in the training and test distributions disjoint. BREEDs benchmark contains 4 datasets Entity-
13, Entity-30, Living-17, and Non-living-26, each focusing on different subtrees and levels in
the hierarchy. We also consider natural shifts due to differences in the data collection process
of ImageNet [63], e.g, ImageNetv2 [60] and a combination of both. Overall, for each of the 4
BREEDs datasets (i.e., Entity-13, Entity-30, Living-17, and Non-living-26), we obtain four different
domains. We refer to them as follows: BREEDsv1 sub-population 1 (sampled from ImageNetv1),
BREEDsv1 sub-population 2 (sampled from ImageNetv1), BREEDsv2 sub-population 1 (sampled
from ImageNetv2), BREEDsv2 sub-population 2 (sampled from ImageNetv2). For each BREEDs
dataset, we use BREEDsv1 sub-population A as source and the other three as target domains.

• OfficeHome We use four domains (art, clipart, product and real) from OfficeHome dataset [69].
We use the product domain as source and the other domains as target.

• DomainNet We use four domains (clipart, painting, real, sketch) from the Domainnet dataset [53].
We use real domain as the source and the other domains as target.

• Visda We use three domains (train, val and test) from the Visda dataset [52]. While ‘train’ domain
contains synthetic renditions of the objects, ‘val’ and ‘test’ domains contain real world images.
To avoid confusing, the domain names with their roles as splits, we rename them as ‘synthetic’,
‘Real-1’ and ‘Real-2’. We use the synthetic (original train set) as the source domain and use the
other domains as target.

A.3 Setup and Protocols

Architecture Details For all datasets, we used the same architecture across different algorithms:

• CIFAR-10: Resnet-18 [26] pretrained on Imagenet
• CIFAR-100: Resnet-18 [26] pretrained on Imagenet
• Camelyon: Densenet-121 [28] not pretrained on Imagenet as per the suggestion made in [35]
• FMoW: Densenet-121 [28] pretrained on Imagenet
• BREEDs (Entity13, Entity30, Living17, Nonliving26): Resnet-18 [26] not pretrained on Imagenet

as per the suggestion in [65]. The main rationale is to avoid pre-training on the superset dataset
where we are simulating sub-population shift.

• Officehome: Resnet-50 [26] pretrained on Imagenet
• Domainnet: Resnet-50 [26] pretrained on Imagenet
• Visda: Resnet-50 [26] pretrained on Imagenet

Except for Resnets on CIFAR datasets, we used the standard pytorch implementation [19]. For Resnet
on cifar, we refer to the implementation here: https://github.com/kuangliu/pytorch-cifar.
For all the architectures, whenever applicable, we add antialiasing [71]. We use the official library
released with the paper.

For imagenet-pretrained models with standard architectures, we use the publicly available models
here: https://pytorch.org/vision/stable/models.html. For imagenet-pretrained models
on the reduced input size images (e.g. CIFAR-10), we train a model on Imagenet on reduced input
size from scratch. We include the model with our publicly available repository.

Hyperparameter details First, we tune learning rate and ℓ2 regularization parameter by fixing
batch size for each dataset that correspond to maximum we can fit to 15GB GPU memory. We set
the number of epochs for training as per the suggestions of the authors of respective benchmarks.
Note that we define the number of epochs as a full pass over the labeled training source data. We
summarize learning rate, batch size, number of epochs, and ℓ2 regularization parameter used in our
study in Table A.3.

For each algorithm, we use the hyperparameters reported in the initial papers. For domain-adversarial
methods (DANN and CDANN), we refer to the suggestions made in Transfer Learning Library [31].
We tabulate hyperparameters for each algorithm next:

16

https://github.com/kuangliu/pytorch-cifar
https://pytorch.org/vision/stable/models.html

Dataset Source Target

CIFAR10 CIFAR10v1
CIFAR10v1, CIFAR10v2, CIFAR10C-Frost (severity 4),

CIFAR10C-Pixelate (severity 5), CIFAR10-C Saturate (severity 5)

CIFAR100 CIFAR100

CIFAR100, CIFAR100C-Fog (severity 4),

CIFAR100C-Motion Blur (severity 2), CIFAR100C-Contrast (severity 4),

CIFAR100C-spatter (severity 2)

Camelyon
Camelyon

(Hospital 1–3)
Camelyon (Hospital 1–3), Camelyon (Hospital 4), Camelyon (Hospital 5)

FMoW FMoW (2002–’13) FMoW (2002–’13), FMoW (2013–’16), FMoW (2016–’18)

Entity13

Entity13

(ImageNetv1

sub-population 1)

Entity13 (ImageNetv1 sub-population 1),

Entity13 (ImageNetv1 sub-population 2),

Entity13 (ImageNetv2 sub-population 1),

Entity13 (ImageNetv2 sub-population 2)

Entity30

Entity30

(ImageNetv1

sub-population 1)

Entity30 (ImageNetv1 sub-population 1),

Entity30 (ImageNetv1 sub-population 2),

Entity30 (ImageNetv2 sub-population 1),

Entity30 (ImageNetv2 sub-population 2)

Living17

Living17

(ImageNetv1

sub-population 1)

Living17 (ImageNetv1 sub-population 1),

Living17 (ImageNetv1 sub-population 2),

Living17 (ImageNetv2 sub-population 1),

Living17 (ImageNetv2 sub-population 2)

Nonliving26

Nonliving26

(ImageNetv1

sub-population 1)

Nonliving26 (ImageNetv1 sub-population 1),

Nonliving26 (ImageNetv1 sub-population 2),

Nonliving26 (ImageNetv2 sub-population 1),

Nonliving26 (ImageNetv2 sub-population 2)

Officehome Product Product, Art, ClipArt, Real

DomainNet Real Real, Painiting, Sketch, ClipArt

Visda

Synthetic

(originally referred

to as train)

Synthetic, Real-1 (originally referred to as val),

Real-2 (originally referred to as test)

Table A.2: Details of the source and target datasets in our testbed.

Dataset Epoch Batch size ℓ2 regularization Learning rate

CIFAR10 50 200 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

CIFAR100 50 200 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

Camelyon 10 96 0.01 (chosen from {0.01, 0.001, 0.0001, 0.0}) 0.03 (chosen from {0.003, 0.3, 0.0003, 0.03})

FMoW 30 64 0.0 (chosen from {0.0001, 0.001,1e-5,0.0}) 0.0001 (chosen from {0.001, 0.01, 0.0001})

Entity13 40 256 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})

Entity30 40 256 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})

Living17 40 256 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})

Nonliving26 40 256 0 5e-5 (chosen from {5e-5, 5e-4, 1e-4, 1e-5}) 0.2 (chosen from {0.1, 0.5, 0.2, 0.01, 0.0})

Officehome 50 96 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

DomainNet 15 96 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

Visda 10 96 0.0001 (chosen from {0.0001, 0.001,1e-5, 0.0}) 0.01 (chosen from {0.001, 0.01, 0.0001})

Table A.3: Details of the learning rate and batch size considered in our testbed

• DANN, CDANN, As per Transfer Learning Library suggestion, we use a learning rate multiplier
of 0.1 for the featurizer when initializing with a pre-trained network and 1.0 otherwise. We default
to a penalty weight of 1.0 for all datasets with pre-trained initialization.

17

• FixMatch We use the lambda is 1.0 and use threshold τ as 0.9.

Compute Infrastructure Our experiments were performed across a combination of Nvidia T4,
A6000, and V100 GPUs.

B Comparing Disagreement Losses

We define the alternate losses for maximizing disagreement:

1. Chuang et al. [12] minimize the negative cross-entropy loss, which is concave in the model logits.
That is, they add the term log softmax(h(x)y) to the objective they are minimizing. This loss
results in substantially lower disagreement discrepancy than the other two.

2. Pagliardini et al. [50] use a loss which is not too different from ours. They define the disagreement
objective for a point (x, y) as

log

(
1 +

exp(h(x)y)∑
ŷ ̸=y exp(h(x)ŷ)

)
. (1)

For comparison, ℓdis can be rewritten as

log

1 +
exp(h(x)y)

exp
(

1
|Y|−1

∑
ŷ ̸=y h(x)ŷ

)
 , (2)

where the incorrect logits are averaged and the exponential is pushed outside the sum. This modi-
fication results in (2) being convex in the logits and an upper bound to the disagreement 0-1 loss,
whereas (1) is neither.

0.2 0.4 0.6 0.8 1.0
Disagreement Discrepancy

0

20

40

60

C
ou

nt

Train

0.0 0.2 0.4 0.6 0.8 1.0
Disagreement Discrepancy

Test

Negative Cross-Entropy
D-BAT
`dis (ours)

Loss Mean Discrepancy (Train) Mean Discrepancy (Test)

Neg. X-Ent [12] 0.3555± .0124 0.1694± .0105
D-BAT [50] 0.8145± .0177 0.3224± .0212
ℓdis (Ours) 0.8333± .0132 0.3322± .0205

Figure B.1 & Table B.3: Histogram of disagreement discrepancies for each of the three losses, and
the average values across all datasets. Bold (resp. Underline) indicates the method has higher average
discrepancy under a paired t-test at significance p = .01 (resp. p = .05).

Figure B.1 displays histograms of the achieved disagreement discrepancy across all distributions for
each of the disagreement losses (all hyperparameters and random seeds are the same for all three
losses). The table below it reports the mean disagreement discrepancy on the train and test sets. We
find that the negative cross-entropy, being a concave function, results in very low discrepancy. The
loss (1) is reasonably competitive with our loss (2) on average, seemingly because it gets very high
discrepancy on a subset of shifts. This suggests that it may be particularly suited for a specific type
of distribution shift, though it is less good overall. Though the averages are reasonably close, the
samples are not independent, so we run a paired t-test and we find that the increases to average train
and test discrepancies achieved by ℓdis are significant at levels p = 0.024 and p = 0.009, respectively.
However, with enough holdout data, a reasonable approach would be to split the data in two: one
subset to validate critics trained on either of the two losses, and another to evaluate the discrepancy
of whichever one is ultimately selected.

18

C Exploration of the Validity Score

To experiment with reducing the complexity of the class H, we evaluate DIS2 on progressively fewer
top principal components (PCs) of the features. Precisely, for features of dimension d, we evaluate
DIS2 on the same features projected onto their top d/k components, for k ∈ [1, 4, 16, 32, 64, 128]
(Figure C.2). We see that while projecting to fewer and fewer PCs does reduce the error bound value,
unlike the logits it is a rather crude way to reduce complexity of H, meaning at some point it goes
too far and results in invalid error bounds.

0.2 0.4 0.6 0.8 1.0
Target Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n

Full Features

0.2 0.4 0.6 0.8 1.0
Target Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n

Top 1/4 PCs

0.2 0.4 0.6 0.8 1.0
Target Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n

Top 1/16 PCs

0.2 0.4 0.6 0.8 1.0
Target Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n

Top 1/32 PCs

0.2 0.4 0.6 0.8 1.0
Target Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n

Top 1/64 PCs

0.2 0.4 0.6 0.8 1.0
Target Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n

Top 1/128 PCs

Figure C.2: DIS2 bound as fewer principal components are kept. Reducing the number of top
principal components crudely reduces complexity of H—this leads to lower error estimates, but at
some point the bounds become invalid for a large fraction of shifts.

However, during the optimization process we observe that around when this violation occurs, the
task of training a critic to both agree on S and disagree on T goes from “easy” to “hard”. Figure C.3
shows that on the full features, the critic rapidly ascends to maximum agreement on S, followed by
slow decay (due to both overfitting and learning to simultaneously disagree on T). As we drop more
and more components, this optimization becomes slower.

Figure C.3: Agreement on one shift between ĥ and h′ on Ŝ during optimization. We observe that
as the number of top PCs retained drops, the optimization occurs more slowly and less monotonically.
For this particular shift, the bound becomes invalid when keeping only the top 1/128 components,
depicted by the brown line.

We therefore design a “validity score” intended to capture this phenomenon which we refer to as the
cumulative ℓ1 ratio. This is defined as the maximum agreement achieved, divided by the cumulative
sum of absolute differences in agreement across all epochs up until the maximum was achieved.

19

Formally, let {ai}Ti=1 represent the agreement between h′ and ĥ after epoch i, i.e. 1 − ϵŜ(ĥ, h
′
i),

and define m := argmaxi∈[T] ai. The cumulative ℓ1 ratio is then am

a1+
∑m

i=2 |ai−ai−1| . Thus, if the
agreement rapidly ascends to its maximum without ever going down over the course of an epoch, this
ratio will be equal to 1, and if it non-monotonically ascends then the ratio will be significantly less.
This definition was simply the first metric we considered which approximately captures the behavior
we observed; we expect it could be greatly improved.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cumulative `1 Ratio

−0.2

0.0

0.2

0.4

0.6

0.8
A

cc
ur

ac
y

M
in

us
B

ou
nd

Valid Bound
Invalid Bound

Figure C.4: Cumulative ℓ1 ratio versus error prediction gap. Despite its simplicity, the ratio
captures the information encoded in the optimization trajectory, roughly linearly correlating with the
tightness and validity of a given prediction. It is thus a useful metric for identifying the ideal number
of top PCs to use.

Figure C.4 displays a scatter plot of the cumulative ℓ1 ratio versus the difference in estimated and
true error for DIS2 evaluated on the full range of top PCs. A negative value implies that we have
underestimated the error (i.e., the bound is not valid). We see that even this very simply metric roughly
linearly correlates with the tightness of the bound, which suggests that evaluating over a range of top
PC counts and only keeping predictions whose ℓ1 ratio is above a certain threshold can improve raw
predictive accuracy without reducing coverage by too much. Figure C.5 shows that this is indeed the
case: compared to DIS2 evaluated on the logits, keeping all predictions above a score threshold can
produce more accurate error estimates, without too severely underestimating error in the worst case.

0.2 0.4 0.6 0.8 1.0
Target Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
Pr

ed
ic

tio
n

Logits (0.15/0.99)

0.2 0.4 0.6 0.8 1.0
Target Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
Pr

ed
ic

tio
n

Ratio>0.95 (0.14/0.96)

0.2 0.4 0.6 0.8 1.0
Target Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
Pr

ed
ic

tio
n

Ratio>0.9 (0.13/0.88)

0.2 0.4 0.6 0.8 1.0
Target Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
Pr

ed
ic

tio
n

Ratio>0.8 (0.10/0.73)

Figure C.5: DIS2 bounds and MAE / coverage as the cumulative ℓ1 ratio threshold is lowered.
Values in parenthesis are (MAE / coverage). By only keeping predictions with ratio above a varying
threshold, we can smoothly interpolate between bound validity and raw error prediction accuracy.

20

D Making Baselines More Conservative with LOOCV

To more thoroughly compare DIS2 to prior estimation techniques, we consider a strengthening of
the baselines which may give them higher coverage without too much cost to prediction accuracy.
Specifically, for each desired coverage level α ∈ [0.9, 0.95, 0.99], we use all but one of the datasets
to learn a parameter to either scale or shift a method’s predictions enough to achieve coverage α. We
then evaluate this scaled or shifted prediction on the distribution shifts of the remaining dataset, and
we repeat this for each one.

The results, found in Table D.4, demonstrate that prior methods can indeed be made to have much
higher coverage, although as expected their MAE suffers. Furthermore, they still underestimate error
on the tail distribution shifts by quite a bit, and they rarely achieve the desired coverage on the heldout
dataset—though they usually come reasonably close. In particular, ATC [21] and COT [40] do well
with a shift parameter, e.g. at the desired coverage α = 0.95 ATC matches DIS2 in MAE and gets
94.4% coverage (compared to 98.9% by DIS2). However, its conditional average overestimation
is quite high, almost 9%. COT gets much lower overestimation (particularly for higher coverage
levels), and it also appears to suffer less on the tail distribution shifts in the sense that α = 0.99 does
not induce nearly as high MAE as it does for ATC. However, at that level it only achieves 95.6%
coverage, and it averages almost 5% accuracy overestimation on the shifts it does not correctly bound
(compared to 0.1% by DIS2). Also, its MAE is still substantially higher than DIS2, despite getting
lower coverage. Finally, we evaluate the scale/shift approach on our DIS2 bound without the lower
order term, but based on the metrics we report there appears to be little reason to prefer it over the
untransformed version, one of the baselines, or the original DIS2 bound.

Taken together, these results imply that if one’s goal is predictive accuracy and tail behavior is not
important (worst ~10%), ATC or COT will likely get reasonable coverage with a shift parameter—
though they still significantly underestimate error on a non-negligible fraction of shifts. If one cares
about the long tail of distribution shifts, or prioritizes being conservative at a slight cost to average
accuracy, DIS2 is clearly preferable. Finally, we observe that the randomness which determines which
shifts are not correctly bounded by DIS2 is “decoupled” from the distributions themselves under
Theorem 3.6, in the sense that it is an artifact of the random samples, rather than a property of the
distribution (recall Figure 4(b)). This is in contrast with the shift/scale approach which would produce
almost identical results under larger sample sizes because it does not account for finite sample effects.
This implies that some distribution shifts are simply “unsuitable” for prior methods because they do
not satisfy whatever condition these methods rely on, and observing more samples will not remedy
this problem. It is clear that working to understand these conditions is crucial for reliability and
interpretability, since we are not currently able to identify which distributions are suitable a priori.

21

MAE (↓) Coverage (↑) Overest. (↓)
α → 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

Method Adjustment

AC none 0.106 0.122 0.118
shift 0.153 0.201 0.465 0.878 0.922 0.956 0.119 0.138 0.149
scale 0.195 0.221 0.416 0.911 0.922 0.967 0.135 0.097 0.145

DoC none 0.105 0.167 0.122
shift 0.158 0.200 0.467 0.878 0.911 0.956 0.116 0.125 0.154
scale 0.195 0.223 0.417 0.900 0.944 0.967 0.123 0.139 0.139

ATC NE none 0.067 0.289 0.083
shift 0.117 0.150 0.309 0.900 0.944 0.978 0.072 0.088 0.127
scale 0.128 0.153 0.357 0.889 0.933 0.978 0.062 0.074 0.144

COT none 0.069 0.256 0.085
shift 0.115 0.140 0.232 0.878 0.944 0.956 0.049 0.065 0.048
scale 0.150 0.193 0.248 0.889 0.944 0.956 0.074 0.066 0.044

DIS2 (w/o δ) none 0.083 0.756 0.072
shift 0.159 0.169 0.197 0.889 0.933 0.989 0.021 0.010 0.017
scale 0.149 0.168 0.197 0.889 0.933 0.989 0.023 0.021 0.004

DIS2 (δ = 10−2) none 0.150 0.989 0.001
DIS2 (δ = 10−3) none 0.174 1.000 0.000

Table D.4: MAE, coverage, and conditional average overestimation for the strengthened baselines with
a shift or scale parameter on non-domain-adversarial representations. Because a desired coverage α is
only used when an adjustment is learned, “none”—representing no adjustment—does not vary with α.

22

E Proving that Assumption 3.5 Holds for Some Datasets

Here we describe how the equivalence of Assumption 3.5 and the bound in Theorem 3.6 allow us to
prove that the assumption holds with high probability. By repeating essentially the same proof as
Theorem 3.6 in the other direction, we get the following corollary:
Corollary E.1. If Assumption 3.5 does not hold, then with probability ≥ 1− δ,

ϵT̂ (ĥ) > ϵŜ(ĥ) + ∆̂(ĥ, h′)−
√

2(nS + nT) log 1/δ

nSnT
.

Note that the last term here is different from Theorem 3.6 because we are bounding the empirical
target error, rather than the true target error. The reason for this change is that now we can make
direct use of its contrapositive:
Corollary E.2. If it is the case that

ϵT̂ (ĥ) ≤ ϵŜ(ĥ) + ∆̂(ĥ, h′)−
√

2(nS + nT) log 1/δ

nSnT
,

then either Assumption 3.5 holds, or an event has occurred which had probability ≤ δ over the
randomness of the samples Ŝ, T̂ .

We evaluate this bound on non-domain-adversarial shifts with δ = 10−6. As some of the BREEDS
shifts have as few as 68 test samples, we restrict ourselves to shifts with nT ≥ 500 to ignore those
where the finite-sample term heavily dominates; this removes a little over 20% of all shifts. Among
the remainder, we find that the bound in Corollary E.2 holds 55.7% of the time when using full
features and 25.7% of the time when using logits. This means that for these shifts, we can be
essentially certain that Assumption 3.5—and therefore also Assumption 3.3—is true.

Note that the fact that the bound is not violated for a given shift does not at all imply that the
assumption is not true. In general, the only rigorous way to prove that Assumption 3.5 does not hold
would be to show that for a fixed δ, the fraction of shifts for which the bound in Theorem 3.6 does not
hold is larger than δ (in a manner that is statistically significant under the appropriate hypothesis test).
Because this never occurs in our experiments, we cannot conclude that the assumption is ever false.
At the same time, the fact that the bound does hold at least 1− δ of the time does not prove that the
assumption is true—it merely suggests that it is reasonable and that the bound should continue to
hold in the future. This is why it is important for Assumption 3.5 to be simple and intuitive, so that
we can trust that it will persist and anticipate when it will not.

However, Corollary E.2 allows us to make a substantially stronger statement. In fact, it says that for
any distribution shift, with enough samples, we can prove a posteriori whether or not Assumption 3.5
holds, because the gap between these two bounds will shrink with increasing sample size.

23

F Figure 1 Stratified by Training Method

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Target Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Ta
rg

et
A

cc
ur

ac
y

Pr
ed

ic
tio

n ERM-aug-imagenet
ERM-aug-rand
BN adapt
FixMatch
y = x

Figure F.6: Error prediction stratified by training method. Stars denote DIS2, circles are ATC NE.
We see that DIS2 maintains its validity across different training methods.

24

	Introduction
	Related Work
	Deriving an (Almost) Provable Error Bound
	How Does Dis2 Improve over H- and HH-Divergence?

	Efficiently Maximizing the Disagreement Discrepancy
	Experiments
	Conclusion
	Experimental Details
	Description of Baselines
	Dataset Details
	Setup and Protocols

	Comparing Disagreement Losses
	Exploration of the Validity Score
	Making Baselines More Conservative with LOOCV
	Proving that strengthened-assumption Holds for Some Datasets
	fig:dis2vsothers Stratified by Training Method

