
A Appendix624

A.1 Pseudo-code for Sequential Manipulation with Relational Keypoint Constraints625

Algorithm 1 Relational Keypoint Constraints for Sequential Manipulation
1: Initialize current stage i 1, and current time t 1
2: while i  N do

3: if 9f 2 C(i)
path s.t. f(kt) > 0 then

4: i i� 1
5: continue

6: end if

7: if distance(et, egi) < ✏ then

8: i i+ 1
9: continue

10: end if

11: Solve sub-goal problem for stage i to obtain egi (Eq. 2)
12: Solve path problem for stage i to obtain et:gi (Eq. 3)
13: Execute the next m actions et+1:t+m

14: t t+m+ 1
15: end while

A.2 Mobile Single-Arm Platform626

RGB-D Camera

Franka Arm

Mobile Base

Figure 6: Mobile Single-Arm Platform.

RGB-D Camera

Franka Arm

Figure 7: Stationary Dual-Arm Platform.

We use a Franka arm mounted on a mobile base built with Vention frames (shown in Figure 6). Note627

that the base does not have motors and thus cannot move autonomously, but its mobility nevertheless628

allows us to investigate the proposed method outside of lab environments.629

Since our pipeline produces a sequence of 6-DoF end-effector poses, we use position control in all630

experiments, which is running at a fixed frequency of 20 Hz. Specifically, once the robot is given a631

target end-effector pose in the world frame, we first clip the pose to the pre-defined workspace. Then632

we linearly interpolate from the current pose to the target pose with a step size of 5mm for position633

and 1 degree for rotation. To move to each interpolated pose, we first calculate inverse kinematics634

to obtain the target joint positions based on current joint positions (IK solver from PyBullet [109]).635

Then we use a joint impedance controller from Deoxys [110] to reach to the target joint positions.636

17

Two RGB-D cameras, Orbbec Femto Bolt, are mounted on each side of the robot facing the637

workspace center. The cameras capture RGB images and point clouds at a fixed frequency of 20638

Hz.639

A.3 Stationary Dual-Arm Platform640

The stationary dual-arm platform consists of two Franka arms mounted in front of a tabletop641

workspace (shown in Figure 7). We share the same controller as the mobile single-arm platform with642

the exception that the two arms are controlled simultaneously at 20 Hz. Specifically, our pipeline643

produces two 6-DoF end-effector poses at a time, which are sent to the controller together. The con-644

troller subsequently calculates IK for both arms and moves the arms using joint impedance control.645

Three RGB-D cameras, Orbbec Femto Bolt, are mounted on this platform. Two cameras are646

mounted on the left and right sides and one camera is mounted in the back. The cameras simi-647

larly capture RGB images and point clouds at a fixed frequency of 20 Hz.648

A.4 Evaluation Details649

Below we discuss the evaluation details for the experiments reported in Section 4.1 and Section 4.2.650

A.4.1 Details for In-the-Wild and Bimanual Manipulation (Section 4.1)651

For each task, 10 initial different configurations of objects are selected, which cover the full652

workspace but are manually verified to ensure they are kinematically feasible for the robot. For653

each trial, a human operator restores the scene to the corresponding configuration and initiates the654

system. Due to the challenge of developing automatic success criteria for the diverse set of objects655

and environments investigated in this work, success rates are measured by the operator with the cri-656

terion reported under each task description below. For experiments involving external disturbances,657

the set of disturbances for all trials is pre-selected, and one disturbance is applied to each trial.658

Specifically, the disturbance is introduced by a human operator using hands to change the object’s659

pose. Collision checking is disabled for all tasks involving deformable objects.660

Pour Tea: The environment consists of a teapot and a cup placed on a counter table in a kitchen661

setting. The task involves three stages: grasping the handle, aligning the teapot to the top of the cup,662

and pouring the tea into the cup. The success criterion requires that the teapot remains upright until663

the pouring stage, and at the end, the spout must be aligned and tilted on top of the cup opening.664

Recycle Can: The environment includes one of three types of cans (Coke, Zero Coke, Zero Sprite),665

a recycle bin with a narrow opening (such that the cans may only go in when they are upright), a666

landfill bin, and a compost bin, all situated inside an office building. The task involves two stages:667

grasping the can and reorienting it on top of the recycle bin before dropping it. The success criterion668

is that the can is successfully thrown into the bin.669

Stow Book: The environment consists of a target book placed on a side table and a real-size book-670

shelf with a 15cm opening among the placed books, all inside an office environment. The task671

involves two stages: grasping the target book on the side and stowing it inside the opening in the672

shelf. The success criterion is that the target book is placed steadily after the robot releases the673

gripper, and the robot must not bump into the shelf or other placed books.674

Tape Box: The environment includes a cardboard box, a packaging tape with a dispenser sitting on675

top of the box that already has one side taped, and a human user collaborating with the robot. The676

tape has already been unrolled to be enough for taping because unrolling typically requires a large677

force that exceeds the limit of the robot arm. The task involves two stages: while a human operator678

is squeezing the box, the robot needs to grasp the tape and align it to the correct side to complete679

the taping. The success criterion is that the tape must end up in the correct position such that it is680

aligned with the seam.681

18

(Bimanual) Fold Garment: The environment consists of a sweater placed flat close to the682

workspace center, with small deformations on the sleeves, neck, and bottom. The task typically683

requires four stages: grasping both sleeves, folding them to the middle, grasping the neck, and fold-684

ing it to the bottom. The success criterion does not enforce consistent stages; as long as the sweater685

is folded such that it occupies at most half of the original surface size, it is regarded as a success.686

(Bimanual) Pack Shoes: The environment includes an empty shoe box placed close to the687

workspace center, with two shoes placed on opposite sides of the box in random poses. The task688

involves two stages: grasping the shoes simultaneously and placing them in the shoe box. The suc-689

cess criterion does not enforce consistent stages; as long as the shoes are placed into the box without690

being stacked together or causing bimanual self-collision, it is considered successful.691

(Bimanual) Collaborative Folding: The environment consists of a large blanket (pre-folded to an692

appropriate size that occupies about 70% of the workspace due to its size exceeding the workspace693

limit) and a human user collaborating with the robot. The task involves two stages: the robot must694

grasp the two corners of the blanket opposite to the human user, and the second stage is aligning695

the two corners with the two corners that the human has grasped. The success criterion is that the696

robot has grasped the correct corners and can align them with the correct human arms (left-left,697

right-right).698

A.4.2 Details for Generalization in Manipulation Strategies (Section 4.2)699

The dual-arm robot is tasked with folding eight different categories of clothing. We use two metrics700

for evaluation: ”Strategy Success” and ”Execution Success,” where the former evaluates whether701

keypoints are proposed and constraints are written appropriately, and the latter evaluates the robotic702

system’s execution given successful strategies.703

To evaluate ”Strategy Success,” the garment is initialized close to the center of the workspace. A704

back-mounted RGB-D camera captures the RGB image. Then, the keypoint proposal module gen-705

erates keypoint candidates using the captured image, which are then overlaid on top of the original706

image with numerical marks {1, . . . ,K}. The overlaid image, along with the same generic prompt,707

is fed into GPT-4 [6] to generate the ReKep constraints. Since folding garments is itself an open-708

ended problem without ground-truth strategies, we manually judge if the proposed keypoints and709

the generated constraints are correct. Note that since the constraints are to be executed by a biman-710

ual robot, and the constraints are almost always connecting (folding) two keypoints such that they711

are aligned, correctness is measured by whether it is (potentially) executable by the robot without712

causing self-collision (arms crossing over to opposite sides) and whether the folding strategy can713

fold the garment to at most half of its original surface area.714

To evaluate ”Execution Success,” we take the generated strategies in the previous section that are715

marked as successful for each garment and execute the sequence on the dual-arm platform, with a716

total of 10 trials for each garment. Point tracking is disabled as we observe that our point tracker717

predicts unstable tracks when the garment is potentially folded many times. Success is measured by718

whether the garment is folded such that its surface area is at most half of its original surface area.719

A.5 Implementation Details of Keypoint Proposal720

Herein we describe how keypoint candidates in a scene are generated. For each platform, we use721

one of the mounted RGB-D cameras to capture an image of size h⇥ w ⇥ 3, depending on which722

camera has the best holistic view of the environment, as all the keypoints need to be present in the723

first frame for the proposed method. Given the captured image, we first use DINOv2 with registers724

(ViT-S14) [5, 111] to extract the patch-wise features Fpatch 2 Rh0⇥w0⇥d. Then we perform bilinear725

interpolation to upsample the features to the original image size, Finterp 2 Rh⇥w⇥d. To ensure the726

proposal covers all relevant objects in the scene, we extract all masks M = {m1,m2, . . . ,mn}727

in the scene using Segment Anything (SAM) [108]. The masks are filtered such that their center728

3D coordinate (projected with calibrated RGB-D camera) lies within the pre-defined workspace729

bounds. Within each mask mi, we apply PCA to project the features to three dimensions, FPCA =730

19

PCA(Fresized[mi], 3). We find that applying PCA improves the clustering as it often removes details731

and artifacts related to texture that are not useful for our tasks. For each mask j, we cluster the732

masked features Finterp[mj] using k-means with k = 5 with a cosine-similarity metric. The median733

centroids of the clusters are used as keypoint candidates, which are projected to a world coordinate734

R3 using a calibrated RGB-D camera. Note that we also store which keypoint candidates originate735

from the same mask, which is later used as part of the rigidity assumption in the optimization loops736

described in Sec. 3.3. Candidates outside of the workspace bounds are filtered out. To avoid many737

points cluttered in a small region, we additionally use Mean Shift [112, 113] (with a bandwidth 8cm)738

to filter out points that are close to each other. Finally, the centroids are taken as final candidates.739

Alternatively, one may develop a pipeline using only segmentation models [108, 114], but we leave740

comparisons to future work.741

A.6 Querying Vision-Language Model742

After we obtain the keypoint candidates, they are overlaid on the captured RGB image with nu-743

merical marks {1, . . . ,K}. Then the image and the task instruction are fed into a vision-language744

model with the prompt described below. The prompt contains only generic instructions with no745

image-text in-context examples, although a few text-based examples are given to concretely explain746

the proposed method and the expected output from the model.747

For the experiments conducted in this work, we use the latest (likely most capable) GPT-4o [6] at748

the time of writing. However, due to rapid advancement in this field, the pipeline can directly benefit749

from newer models that have better vision-language reasoning. Correspondingly, we observe differ-750

ent models exhibit different behaviors when given the same prompt (with the observation that newer751

models typically require less fine-grained instructions). As a result, instead of developing the best752

prompt for the suite of tasks in this work, we focus on demonstrating a full-stack pipeline consisting753

a key component that can be automated and continuously improved by rapid future development.754

755
Instructions756
Suppose you are controlling a robot to perform manipulation tasks by writing constraint functions in Python.757

The manipulation task is given as an image of the environment, overlayed with keypoints marked with758
their indices, along with a text instruction. The instruction starts with a parenthesis indicating759
whether the robot has a single arm or is bimanual. For each given task, please perform the following760
steps:761

- Determine how many stages are involved in the task. Grasping must be an independent stage. Some examples:762
- "(single-arm) pouring tea from teapot":763

- 3 stages: "grasp teapot", "align teapot with cup opening", and "pour liquid"764
- "(single-arm) put red block on top of blue block":765

- 3 stages: "grasp red block", "align red block on top of blue block", and "release red block"766
- "(bimanual) fold sleeves to the center":767

- 2 stages: "left arm grasps left sleeve and right arm grasps right sleeve" and "both arms fold sleeves to768
the center"769

- "(bimanual) fold a jacket":770
- 3 stages: "left arm grasps left sleeve and right arm grasps right sleeve", "both arms fold sleeves to771

the center", and "grasp the neck with one arm (the other arm stays in place)", and "align the neck772
with the bottom"773

- For each stage, write two kinds of constraints, "sub-goal constraints" and "path constraints". The "sub-goal774
constraints" are constraints that must be satisfied **at the end of the stage**, while the "path775

constraints" are constraints that must be satisfied **within the stage**. Some examples:776
- "(single-arm) pouring liquid from teapot":777

- "grasp teapot" stage:778
- sub-goal constraints: "align the end-effector with the teapot handle"779
- path constraints: None780

- "align teapot with cup opening" stage:781
- sub-goal constraints: "the teapot spout needs to be 10cm above the cup opening"782
- path constraints: "robot is grasping the teapot", and "the teapot must stay upright to avoid spilling"783

- "pour liquid" stage:784
- sub-goal constraints: "the teapot spout needs to be 5cm above the cup opening", "the teapot spout must785

be tilted to pour liquid"786
- path constraints: "the teapot spout is directly above the cup opening"787

- "(bimanual) fold sleeves to the center":788
- "left arm grasps left sleeve and right arm grasps right sleeve" stage:789

- sub-goal constraints: "left arm grasps left sleeve", "right arm grasps right sleeve"790
- path constraints: None791

- "both arms fold sleeves to the center" stage:792
- sub-goal constraints: "left sleeve aligns with the center", "right sleeve aligns with the center"793
- path constraints: None794

795
Note:796
- Each constraint takes a dummy end-effector point and a set of keypoints as input and returns a numerical797

cost, where the constraint is satisfied if the cost is smaller than or equal to zero.798
- For each stage, you may write 0 or more sub-goal constraints and 0 or more path constraints.799
- Avoid using "if" statements in your constraints.800
- Avoid using path constraints when manipulating deformable objects (e.g., clothing, towels).801
- You do not need to consider collision avoidance. Focus on what is necessary to complete the task.802

20

- Inputs to the constraints are as follows:803
- �end_effector�: np.array of shape �(3,)� representing the end-effector position.804
- �keypoints�: np.array of shape �(K, 3)� representing the keypoint positions.805

- Inside of each function, you may use native Python functions and NumPy functions.806
- For grasping stage, you should only write one sub-goal constraint that associates the end-effector with a807

keypoint. No path constraints are needed.808
- For non-grasping stage, you should not refer to the end-effector position.809
- In order to move a keypoint, its associated object must be grasped in one of the previous stages.810
- The robot can only grasp one object at a time.811
- Grasping must be an independent stage from other stages.812
- You may use two keypoints to form a vector, which can be used to specify a rotation (by specifying the angle813

between the vector and a fixed axis).814
- You may use multiple keypoints to specify a surface or volume.815
- You may also use the center of multiple keypoints to specify a position.816
- A single folding action should consist of two stages: one grasp and one place.817

818
Structure your output in a single python code block as follows for single-arm robot:819
���python820

821
Your explanation of how many stages are involved in the task and what each stage is about.822
...823

824
num_stages = ?825

826
stage 1 sub-goal constraints (if any)827
def stage1_subgoal_constraint1(end_effector, keypoints):828

"""Put your explanation here."""829
...830
return cost831

Add more sub-goal constraints if needed832
833

stage 1 path constraints (if any)834
def stage1_path_constraint1(end_effector, keypoints):835

"""Put your explanation here."""836
...837
return cost838

Add more path constraints if needed839
840

repeat for more stages841
...842
���843

844
Structure your output in a single python code block as follows for bimanual robot:845
���python846

847
Your explanation of how many stages are involved in the task and what each stage is about.848
...849

850
num_stages = ?851

852
left-arm stage 1 sub-goal constraints (if any)853
def left_stage1_subgoal_constraint1(end_effector, keypoints):854

"""Put your explanation here."""855
...856
return cost857

858
right-arm stage 1 sub-goal constraints (if any)859
def right_stage1_subgoal_constraint1(end_effector, keypoints):860

"""Put your explanation here."""861
...862
return cost863

Add more sub-goal constraints if needed864
865

left stage 1 path constraints (if any)866
def left_stage1_path_constraint1(end_effector, keypoints):867

"""Put your explanation here."""868
...869
return cost870

right stage 1 path constraints (if any)871
def right_stage1_path_constraint1(end_effector, keypoints):872

"""Put your explanation here."""873
...874
return cost875

Add more path constraints if needed876
877

repeat for more stages878
...879
���880

881
Query882
Query Task: "[INSTRUCTION]"883
Query Image: [IMAGE WITH KEYPOINTS]884885

21

A.7 Implementation Details of Point Tracker886

We implement a simple point tracker following [95] based on DINOv2 (ViT-S14) [5] that leverages887

the fact that multiple RGB-D cameras are present and DINOv2 is efficient to run at a real-time888

frequency.889

At initialization, an array of 3D keypoint positions k 2 R are given. We first take the RGB-D890

captures from each present camera. For each RGB image, we obtain the pixel-wise DINOv2 features891

following the same procedure in Section A.5 and record their associated 3D world coordinates using892

calibrated cameras. For each 3D keypoint positions, we aggregate all the features from points that are893

within 2cm from all the cameras. The mean of the aggregated features is recorded as the reference894

feature for each keypoint, which is kept fixed throughout the task.895

After initialization, at each time step, we similarly obtain the pixel-wise features from DINOv2 from896

all cameras with their 3D world coordinates. To track the keypoints, we calculate cosine similarity897

between features across all pixels and the reference features. The top 100 matches are selected for898

each keypoint with a cutoff similarity of 0.6. We then reject outliers for the selected matches by899

calculating median deviation (m = 2). Additionally, as the tracked keypoints may oscillate in a900

small region, we apply a uniform filter with a window size of 10 in the end. The entire procedure901

runs at a fixed frequency of 30 Hz.902

Note that the implemented point tracker is a simplification from [95] for real-time tracking. We refer903

readers to [95] for more comprehensive discussion on using self-supervised vision models, such as904

DINOv2, for point tracking. Alternatively, more specialized point trackers can be used [115–119].905

We find that our implementation is advantageous in scenarios that involve long-term occlusions as906

the reference features are kept fixed, but we expect more development from the specialized point907

trackers that likely would yield better performance in the future.908

A.8 Implementation Details of Sub-Goal Solver909

The sub-goal problems are implemented and solved using SciPy [101]. The decision variable is a910

single end-effector pose (position and Euler angles) in R6 for single-arm robots and two end-effector911

poses in R12 for bimanual robot. The bounds for the position terms are the pre-defined workspace912

bounds, and the bounds for the rotation terms are that the half hemisphere where the end-effector913

faces down (due to the joint limits of the Franka arm, it is often likely to reach joint limit when an914

end-effector pose faces up). The decision variables are normalized to [0, 1] based on the bounds. For915

the first solving iteration, the initial guess is chosen to be the center of the bounds. We use sampling-916

based global optimization Dual Annealing [102] in the first iteration to quickly search the full space,917

which is followed by a gradient-based local optimizer SLSQP [103] that refines the solution. The918

full procedure takes around 1 second for this iteration. In subsequent iterations, we use the solution919

from previous stage and only use local optimizer as it can quickly adjust to small changes. The920

optimization is cut off with a fixed time budget represented as number of objective function calls to921

keep the system running at a high frequency.922

We discuss the cost terms in the objective function below.923

Constraint Violation: We implement constraints as cost terms in the optimization problem, where924

the returned costs by the ReKep functions are multiplied with large weights.925

Scene Collision Avoidance: We use nvblox [120] with the pytorch wrapper [51] to compute the926

ESDF of the scene in a separate node that runs at 20 Hz. The ESDF calculation aggregates the927

depth maps from all available cameras and excludes robot arms using cuRobo and any grasped rigid928

objects (tracked via a masked tracker model Cutie [121]). A collision voxel grid is then calculated929

using the ESDF and used by other modules in the system. In the sub-goal solver module, we first930

downsample the gripper points and the grasped object points to have a maximum of 30 points using931

farthest point sampling. Then we calculate the collision cost using the ESDF voxel grid with linear932

interpolation with a threshold of 15cm.933

22

Reachability: Since our decision variables are end-effector poses, which may not be always reach-934

able by the robot arms, especially in confined spaces, we need to add a cost term that encourages935

finding solutions with valid joint configurations. Therefore, we solve an IK problem in each itera-936

tion of the sub-goal solver using PyBullet [109] and use its residual as a proxy for reachability. We937

find that this takes around 40% of the time of the full objective function. Future works can consider938

solving the problem in joint space, which would guarantee the solution is within the joint limits by939

enforcing the bounds. We find that this would be inefficient in our Python-based implementation as940

we need to calculate forward kinematics for a magnitude of more times in the path solver, because941

the constraints are calculated in the task space. However, future works can consider using more942

efficient implementations and solve the problems in joint space [51].943

Pose Regularization: We also add a small cost that encourages the sub-goal to be close to the944

current end-effector pose.945

Consistency: Since the solver iteratively solves the problem at a high frequency, we find it useful to946

include a consistency cost that encourages the solution to be close to the previous solution.947

(Dual-Arm only) Self-Collision Avoidance: To avoid two arms collide with each other, we compute948

the pairwise distance between the two point sets, each including the gripper points and grasped949

object points.950

A.9 Implementation Details of Path Solver951

The path problems are implemented and solved using SciPy [101]. The number of decision variables952

is calculated based on the distance between the current end-effector pose and the target end-effector953

pose. Specifically, we define a fixed step size (20cm and 45 degree) and linearly approximate the954

desired number of “intermediate poses”, which are used as decision variables. As in the sub-goal955

problem, they are similarly represented using position and Euler angles with the same bounds. For956

the first solving iteration, the initial guess is chosen to be linear interpolation between the start and957

the target. We similarly use sampling-based global optimization followed by a gradient-based local958

optimizer in the first iteration and only use local optimizer in subsequent iterations. After we obtain959

the solution, represented as a number of intermediate poses, we fit a spline using the current pose,960

the intermediate poses, and the target pose, which are then densely sampled to be executed by the961

robot.962

In the objective function, we first unnormalize the decision variables and use piecewise linear in-963

terpolation to obtain dense samples of the path. A spline interpolation would be aligned with how964

we postprocess the solution, but we find linear interpolation to be computationally more efficient.965

Below we discuss the individual cost terms in the objective function.966

Constraint Violation: Similar to that in the sub-goal problem, we check violation of the ReKep967

constraints for each dense sample along the path and penalize with large weights.968

Scene Collision Avoidance: The calculation is similar to the sub-goal problem, except that it is969

calculated for each dense sample. We ignore the collision calculation with a 5cm radius near the970

start and the target poses, as this tends to stabilize the solution when solved at a high frequency due971

to various real-world noises. We additionally add a table clearance cost that penalizes the path from972

penetrating the table (or the bottom of the workspace for the mobile single-arm robot).973

Path Length: We approximate the path length using the dense samples. Shorter paths are encour-974

aged.975

Reachability: We similarly solve an IK problem inside the objective function. See the sub-goal976

solver section for more details.977

Consistency: As in the sub-goal problem, we similarly encourage the solution to be close to the978

previous one. Specifically, we store the dense samples from the previous iteration. To calculate the979

far the two dense sample sequences are from each other, we use the pairwise distance between the980

23

two sequences (treated as two sets) as an efficient proxy. Alternatively, Hausdorff distance can be981

used.982

(Dual-Arm only) Self-Collision Avoidance: We similarly compute self-collision avoidance for the983

dual-arm platform as in the sub-goal problem. We also use pairwise distance between the two984

sequences to efficiently calculate this cost.985

24

