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A More Implementation Details1

A.1 Evaluation Benchmarks2

As stated in section 4.1 of the manuscript, we follow [11] and predict only the foreground classes3

by thresholding the similarity between the embedding of output segments and text labels for 54

benchmarks, including Pascal VOC [4], Pascal Context [8], COCO [7], ImageNet-S-50, ImageNet-S-5

300 [5]. For other 3 evaluation benchmarks [3, 12, 1], we predict both foreground and background6

classes without thresholding. The number of evaluated classes and size of eight evaluation sets are7

listed in Tab. 1,8

Table 1: Details of evalution benchmarks.

Dataset Classes Test Size

Pascal VOC [4] 20 1,449
ImageNet-S-50 [5] 50 752
Pacal Context [8] 59 5,104

COCO [7] 80 5,000
ImageNet-S-300 [5] 300 4,097

Cityscapes [3] 19 500
ADE20K [12] 150 2,000

COCO Stuff [1] 171 5,000

A.2 Comparing Methods9

The comparing methods in Table 1 of the manuscript consist of two parts. The first part includes10

a fully supervised method (DeiT [10]) that learns from pixel-level annotations and finetunes the11

segmentation head on the training set of Pascal VOC [4] and Pascal Context [8]. The second part12

includes self-supervised methods (MoCo [6], DINO [2]) that pre-train visual representations by13

self-supervised learning [6, 2] and fine-tuning a segmentation head on pre-trained representations.14

Note the performance of all comparing methods are directly copied from a prior study [11] for fair15

comparison.16

A.3 Ablation Study17

As claimed in the paper, we give the gist of modules in Table 3 of the manuscript and highlight their18

differences in Fig. 1 below. (a) Expansion: given an image as query, language-driven expansion19

directly retrieves potentially matched captions for later pre-training (please refer to section 3.2 of20

the manuscript for details) whereas vision-driven expansion retrieves image-text pairs and builds a21

concept archive; (b) Ranking: for computing relevancy of one concept cm to the query image, naïve22
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Figure 1: Illustration of modules in ablation study of the manuscript.

solution relies on sacm solely but text-to-vision-guided ranking uses both sacm and sbcm (sacm and sbcm23

are computed as in equations (6) and (7) in the manuscript); (c) Sampling: cluster-guided strategy24

partitions the archive to semantic clusters before pre-training. Tab. 2 of this appendix lists the 425

ablation models in Table 3 of the manuscript and the corresponding combinations of the 6 modules26

in Fig. 1.27

Table 2: Correspondence detail.

Model Module Combination

Baseline N.A.
#1 1⃝, 3⃝, 5⃝
#2 2⃝, 3⃝, 5⃝
#3 2⃝, 4⃝, 5⃝
#4 2⃝, 4⃝, 6⃝

B More Experiments28

B.1 Qualitative Visualization29

We provide more activation maps of GroupViT [11] and CoCu by testing different textual concepts30

(of shown images) that are not captured in the corresponding captions. As shown in Fig. 2, the31

activation maps by GroupViT do not respond well at relevant image regions while CoCu activates32

at the right image regions and discriminates the textual concepts from other visual concepts in33

the images effectively. The performance difference is largely attributed to the concept curation in34

CoCu which captures the missing visual concepts and encodes them into pre-trained representations35

successfully.36

As stated in Section 3.3 of the manuscript, the pre-trained CoCu models are more robust to changes of37

expressions of the same semantics (e.g., from “dog” to “kuvasz”, “car” to “race car”, etc.). As Fig. 338

shows, GroupViT behaves differently under the presence of expression changes while CoCu produces39

more consistent activation. The robustness to expression changes is largely attributed to two factors:40

1) CoCu captures rich textual concepts that contain different expressions of the same semantics;41

2) CoCu feeds semantics (as compared to textual concepts) into pre-training by selecting different42

expressions of the same semantics randomly.43

B.2 Parameter Learning44

We study how parameter N (i.e., the number of retrieved image-text pairs in expansion) affects45

pre-training and zero-shot transfer of pre-trained models. As described in Section 4.1, we carry46
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out pre-training on CC3M [9], evaluate over validation sets of eight benchmarks, and report the47

average mIoUs. We set N at 8, 16, and 32 during expansion and report the performance of pre-trained48

segmentation models in Tab. 3. We can see that curation with 8 retrieved image-text pairs achieves49

slightly downgraded performance. While N increases, the performance improves gradually and the50

best pre-training is obtained with 32 image-text pairs with an average mIoU of 13.1%.51

Table 3: Parameter learning. N denotes number of image-text pairs retrieved during expansion.

Method Retrieved Image-Text Pairs Average mIoU (%)

GroupViT [11] - 8.2

CoCu
8 10.5

16 12.9
32 13.1

Text Input: sea

Caption: wooden boat on the Baltic shore.

Text Input: bed

Caption: a guide on bedroom curtain ideas.

Text Input: peak

Caption: helicopter fly at high altitudes.

Text Input: sky

Caption: wind beneath their wings albatrosses.
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Figure 2: GroupViT against CoCu on activation heatmaps. Best viewed in color.
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Figure 3: CoCu is robust to changes of expressions of the same semantics. Best viewed in color.
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C Broader Impact52

Pre-training large models on massive data may have broader societal impacts. Despite zero-shot53

segmentation performance on vast range of evaluation benchmarks, the pre-trained segmentors may54

encode undiscovered biases and stereotypes. Such models learnt on large-scale datasets should be55

checked before used for specific purposes, for instance, video surveillance or autonomous driving.56
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