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A Experiment Details1

A.1 Metrics2

As outlined in the main body of the paper, we utilize three metrics to evaluate the effectiveness of3

the learned solutions. In particular, we assess the performance of a Pareto neural model xβ(·) by4

examining the output of the model for N angles that are uniformly distributed. The output solution5

set A = {y(1), . . . , y(N)}, where A = f ◦ xβ(Θ̂). The three metrics are:6

1. The Hypervolume indicator [30], which measures both the diversity and convergence of A;7

2. The Range indicator, which measure the angular span of A;8

3. The Sparsity indicator [4], which measures the distances between adjacent points.9

A.1.1 The Hypervolume Indicator10

The hypervolume indicator [30] used to measure A is standard, which has been defined in the main11

paper,12

Hr(A) = Λ({q | ∃p ∈ A : p ⪯ q and q ⪯ r}), (11)

and r is a reference vector, r ⪰ ynadir. For bi-objective problems, the reference point r is set to [3.5,13

3.5], whereas for three-objective problems, the reference point is set to [3.5, 3.5, 3.5].14

A.1.2 The Range Indicator15

The range indicator of a Pareto front is defined in polar coordinates and determines the angular span16

of the front. Let (ρ(i), θ(i)) be the polar coordinate of objective vectors y(i) with a reference point r.17

The relationship between of the Cartesian and polar coordinate is,18 
y1 = r1 − ρ sin θ1 sin θ2... sin θm−1

y2 = r2 − ρ sin θ1 sin θ2... cos θm−1

. . .

ym = rm − ρ cos θ1.

(12)

Then, the Range indicator is defined as,19

Range(A) = min
i∈[m]

max
u∈[N],v∈[N],

u ̸=v

{
|θ(u)i − θ

(v)
i |
}
. (13)

The Range indicator can be defined as the minimum angle span across all angles.20
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A.1.3 The Sparsity Indicator21

The sparsity indicator first introduced in [4] measures how dense a set of solutions is. Small inter-22

solution distances result in a small sparsity indicator indicating a dense Pareto front can be found by23

the Pareto neural model. We make a modification for m = 2 since we find that the maximization24

operator is much more stable.25

Sparsity(A) =


max

i∈[N−1]

m∑
j=1

(ỹ
(i)
j − ỹ

(i+1)
j )

2
(m = 2)

1

N − 1

m∑
j=1

N−1∑
i=1

(ỹ
(i)
j − ỹ

(i+1)
j )

2
(m > 2).

(14)

where ỹ
(i)
j is the i-th solution, and the j-th objective values in the sorted list by the non-dominating26

sorting algorithm [9]. The unit of the Sparsity indicator is 10−3 for bi-objective problems and 10−727

for three objective problems.28

A.2 Neural Model Architecture and Feasibility Guarantees29

We use a 4-layer fully connected neural network similar to [37] for the Pareto neural model xβ(·).30

We optimize the network using Stochastic Gradient Descent (SGD) optimizer with a batch size of31

64. The first three layers are,32

xβ(·) : θ → Linear(m, 64)→ ReLU
→ Linear(64, 64)→ ReLU
→ Linear(64, 64)→ ReLU→ xmid.

(15)

For constrained problems, to satisfy the constraint that the solution xβ(λ) must fall within the lower33

bound (l) and upper bound (u), a sigmoid activation function is used to map the previous layer’s34

output to these boundaries,35

xmid → Linear(64, n)→ Sigmoid
→ ⊙(u− l) + l→ Output xβ(λ).

(16)

For unconstrained problems, the output solution is obtained through a linear combination of xmid,36

xmid → Linear(64, n)→ Output xβ(λ). (17)

A.3 Benchmark Multiobjective Problems37

Standard Multiobjective Optimization (MOO) problems. ZDT1-2 [42] and VLMOP1-2 [38]38

are widely recognized as standard multi-objective optimization (MOO) problems and are commonly39

employed in gradient-based MOO methods. ZDT1 exhibits a convex Pareto front described by40

(y2 = 1−√y1, 0 ≤ y1 ≤ 1). On the other hand, ZDT2 presents a non-convex Pareto front defined41

by (y2 = 1 − y21 , 0 ≤ y1 ≤ 1), and the LS-based PSL approach can only capture a single Pareto42

solution.43

Real world designing problem. Three real-world design problems with multi-objective optimiza-44

tion are the Four Bar Truss Design (RE21), Hatch Cover Design (RE24), and Rocket Injector Design45

(RE37). In order to simplify the optimization process, the objectives have been scaled to a range of46

zero to one.47

Multiobjective Linear Quadratic Regulator. The Multiobjective Linear Quadratic Regulator48

(MO-LQR) problem is first introduced in [44]. MO-LQR is regarded as a specialized form of49

multi-objective reinforcement learning, where the problem is defined by a set of dynamics presented50

through the following equations:51 {
st+1 = Ast +Bat
at ∼ N (KLQRst,Σ).

(18)
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Table 3: Problem information for multiobjective synthetic benchmarks, design, and LQR problems.

Problem m n

ZDT1 2 5
ZDT2 2 5
VLMOP1 2 5
VLMOP2 2 5
LQR2 2 2
Four Bar Truss Design 2 4
Hatch Cover Design 2 2
Rocket Injector Design 3 4
LQR3 3 3

In accordance with the settings discussed in the aforementioned work by Parisi et al. [44], the52

identity matrices A, B, and Σ are utilized. The initial state for the bi-objective problem is set to s0 =53

[10, 10], whereas for the three-objective problem, it is set to s0 = [10, 10, 10]. The reward function54

is defined as ri(st, at), where i represents the respective objective. The function is formulated as55

follows:56

ri(st, at) = −(1− ξ)(s2t,i +
∑
i ̸=j

a2t,i)− ξ(a2t,i +
∑
i ̸=j

s2t,i). (19)

Here, ξ is the hyperparameter value that has been set to 0.1. The ultimate objective of the MO-LQR57

problem is to optimize the total reward while simultaneously taking into account the discount factor58

of γ = 0.9. The objectives are scaled with 0.01 for better illustration purposes.59

Moreover, the control matrix KLQR is assumed to be a diagonal matrix, and the diagonal elements60

of this matrix are treated as decision variables. Table 3 highlights the number of decision variables61

and objectives.62

A.4 Results on All Problems63

The results for all the examined problems are depicted in Figures 10-18, and combined with the64

results tabulated in Table 5 of the main paper, several conclusions can be made.65

Behavior of LS-based PSL. A well-known fact of the linear scalarization method is, it can only66

learn the convex part of a Pareto front. This fact is validated by Figure 11(e), where LS-based PSL67

can only learn several solutions.68

However, it is crucial to note that the connection between a solution and its corresponding preference69

vector, λ(θ), is non-uniform, though it is rarely discussed in previous literature. Therefore, a uniform70

sampling of preferences will not result in a uniform sampling of solutions. This observation is71

supported by the results depicted in Figures 10(e), 13(e), and 15(e), where the learned solutions by72

LS-based PSL are not uniformly distributed. And as a result, the sparsity indicators are rather high,73

which indicates the learned front is sparse.74

Time Consumption of EPO-based PSL. In comparison to our approach, the Exact Pareto Op-75

timization [6] algorithm, which serves as the foundation for EPO-based PSL [14], exhibits low76

efficiency due to two factors.77

1. To execute the Exact Pareto Optimization (EPO) algorithm, it is necessary to compute78

the gradients of all objectives, ∇fi(x)’s. This prerequisite entails performing m back-79

propagations, resulting in higher computational costs. In contrast, our approach banks on80

just one back-propagation operation, rendering it a more efficient option in comparison to81

EPO.82

2. For each iteration, the Exact Pareto Optimization (EPO) algorithm entails solving a com-83

plicated optimization problem based on the specific value of fi’s, utilizing the respective84
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Table 4: Licences.

Resource Link License

EPO https://github.com/dbmptr/EPOSearch.git MIT license
pymoo https://pymoo.org/ Apache License 2.0
reproblems https://ryojitanabe.github.io/reproblems/ None

gradients of ∇fi(x)’s. In contrast, our method does not rely on solving optimization prob-85

lems for each iteration.86

Emphasis on Boundary Solutions. Based on our empirical findings, it is crucial to put emphasis87

on boundary solutions when aiming to recover a complete Pareto set. As shown in Figure 12 and 14,88

if all coordinate θ are dealt with equally important, the neural model can only recover a partial part89

of the Pareto set. PSL-HV1 and PSL-HV2 have different behaviors on the three-objective Rocket90

Injector Design problem, as shown in Figure 18. PSL-HV2 algorithm has a tendency to accurately91

identify the complete boundary of the Pareto front, but it often overlooks intermediate solutions. In92

contrast, although PSL-HV1 method may not always recover the complete boundary, it generates a93

denser Pareto front.94

A.5 Licences95

In this paper, we utilized various licenses, which are outlined in Table 4. All methods were imple-96

mented using Python and the PyTorch framework, with the SMS-EMOA algorithm being aggregated97

in pymoo.98

Table 5: Standard derivation (std) value of PSL results on all problems.

ZDT1 ZDT2 VLMOP1

Method HV↑ Range↑ Sparsity↓ Time(s)↓ HV Range Sparsity Time(s) HV Range Sparsity Time(s)

PSL-EPO 0.05 0.04 0.08 2.03 0.13 0.06 0.25 0.91 0.01 0.01 0.02 0.56
PSL-LS 0.0 0.0 0.2 0.43 0.0 0.0 0.0 0.36 0.0 0.0 0.05 0.76
PSL-Tche 0.01 0.0 0.01 0.56 0.01 0.0 0.22 0.79 0.01 0.01 0.02 0.54
PSL-HV1 0.01 0.0 0.05 0.22 0.03 0.01 0.04 0.2 0.0 0.0 0.03 0.48
PSL-HV2 0.01 0.0 0.04 0.29 0.01 0.0 0.21 0.95 0.01 0.0 0.04 1.15

VLMOP2 Four Bar Truss Design Hatch Cover Design

PSL-EPO 0.08 0.04 0.19 0.48 0.02 0.01 0.01 1.53 0.0 0.02 0.06 4.96
PSL-LS 0.03 0.01 8.69 0.06 0.0 0.0 0.08 0.12 0.0 0.0 0.31 1.21
PSL-Tche 0.01 0.0 0.04 0.49 0.02 0.01 0.02 1.71 0.0 0.01 0.02 2.99
PSL-HV1 0.0 0.0 0.19 1.32 0.01 0.0 0.03 0.38 0.02 0.02 1.41 1.18
PSL-HV2 0.01 0.0 0.13 0.15 0.0 0.0 0.01 1.79 0.0 0.0 0.11 1.42

LQR2 Rocket Injector Design LQR3

PSL-EPO 0.01 0.01 0.03 15.46 1.34 0.08 0.1 1.12 0.01 0.02 0.71 24.21
PSL-LS 0.0 0.0 0.08 3.7 0.0 0.0 0.02 0.11 0.0 0.01 0.05 5.79
PSL-Tche 0.01 0.01 0.1 4.63 0.01 0.0 0.02 1.17 0.01 0.01 0.27 8.9
PSL-HV1 0.0 0.0 0.22 1.83 0.09 0.01 0.18 0.14 0.0 0.02 0.68 1.34
PSL-HV2 0.0 0.0 0.13 9.86 0.03 0.01 1.53 1.31 0.0 0.01 0.72 11.95

B Characters of Hypervolume Maximization99

B.1 The Notation Table100

To enhance the clarity of the paper, we have included a summary of the main notations in Table 6.101
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Figure 10: ZDT1.
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Figure 11: ZDT2.
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Figure 12: VLMOP1.
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Figure 13: VLMOP2.

B.2 Hypervolume Calculation in the Polar Coordinate102

Proof. In this subsection, we provide the proof for Equation (5). Hr(F∗) can be simplified by the103

following equations,104

Hr(F∗) =

∫
Rm

IΩdy1 . . . dym

=

∫ π
2

0

. . .

∫ π
2

0︸ ︷︷ ︸
m−1

dv

=

∫ π
2

0

. . .

∫ π
2

0︸ ︷︷ ︸
m−1

cm ·
ρX (θ)m

2π · πm−2
dθ1 . . . dθm−1︸ ︷︷ ︸

dθ

=
cm

2πm−1

∫ π
2

0

. . .

∫ π
2

0︸ ︷︷ ︸
m−1

ρX (θ)mdθ

=
cm

2πm−1
· (π

2
)
m−1

· Eθ∼Unif(Θ)[ρX (θ)m]

= cmEθ∼Unif(Θ)[ρX (θ)m].

(20)
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Figure 14: RE21.

0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
f1(x)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f 2
(x

)

PSL
True
Pref.

(a) HV1

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
f1(x)

0.0

0.2

0.4

0.6

0.8

1.0

f 2
(x

)

PSL
True
Pref.

(b) HV2

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
f1(x)

0.0

0.2

0.4

0.6

0.8

1.0

f 2
(x

)

PSL
True
Pref.

(c) Tche

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
f1(x)

0.0

0.2

0.4

0.6

0.8

1.0

f 2
(x

)

PSL
True
Pref.

(d) EPO

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
f1(x)

0.0

0.2

0.4

0.6

0.8

1.0

f 2
(x

)

PSL
True
Pref.

(e) LS

Figure 15: RE24.
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Figure 16: MO-LQR2.

f 1(
x)

2.00
2.25

2.50
2.75

3.00
3.25

3.50
f2(x)

2.00
2.25

2.50
2.75

3.00
3.25

3.50

f3 (x)

2.00
2.25
2.50
2.75
3.00
3.25
3.50

(a) HV1

f 1(
x)

2.00
2.25

2.50
2.75

3.00
3.25

3.50
f2(x)

2.00
2.25

2.50
2.75

3.00
3.25

3.50

f3 (x)
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

(b) HV2

f 1(
x)

2.0
2.2

2.4
2.6

2.8
3.0

3.2
3.4

f2(x)

2.0
2.2

2.4
2.6

2.8
3.0

3.2

f3 (x)

2.0
2.2
2.4
2.6
2.8
3.0

(c) Tche

f 1(
x)

2.2
2.4

2.6
2.8

3.0
3.2

f2(x)

2.2
2.4

2.6
2.8

3.0

f3 (x)

2.0
2.2
2.4
2.6
2.8
3.0

(d) EPO

f 1(
x)

2.0
2.2

2.4
2.6

2.8
3.0

3.2

f2(x)

2.0
2.2

2.4
2.6

2.8
3.0

f3 (x)

2.0
2.2
2.4
2.6
2.8
3.0

(e) LS

Figure 17: MO-LQR3.
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Figure 18: RE37.

Here, Ω denotes the region dominated by F∗ with a reference point r, Ω = {q | ∃p ∈ F∗ :105

p ⪯ q and q ⪯ r}. IΩ is the indicator function of Ω. cm is the volume of a m-D unit sphere,106

cm = πm/2

Γ(m/2+1) . cm is a constant defined in the main paper, cm = πm/2

2mΓ(m/2+1) .107

Line 2 holds since it represents the integral of Ω expressed in polar coordinates, wherein the element108

dv corresponds to the volume associated with a segment obtained by varying dθ.109

Line 3 calculates the infinitesimal volume of dv by noticing the fact that the ratio of dv to cm is110
ρX (θ)m

2π·πm−2 . Line 4 is a simplification of Line 3. And Line 5 and 6 express the integral in its expectation111

form. □112
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Table 6: The notation table.

Variable Definition

x The decision variable.
n The number of the decision variables.
N The number of samples.
m The number of objectives.
θ The angular polar coordinate.
λ(θ) An m-dimensional preference vector.
β The model parameter.
ynadir/yideal The nadir/ideal point of a given MOO problem.
F∗ The Pareto front, which is set of all Pareto non-dominated solutions.
Hr(A) The hypervolume of set A w.r.t a reference .
Sm−1
+ The (m-1)-D positive unit sphere.

B.3 Proof of ρX (θ) as a Max-Min Problem113

We provide the proof of the following equation (Equation (6) in the main paper) in this subsection.

ρX (θ) = max
x∈X

ρ(x, θ) = max
x∈X

min
i∈[m]
{ri − fi(x)

λi(θ)
}.

Proof. Let x∗ be one of the optimal solutions of Problem maxx∈X ρ(x, θ). To begin, we define114

the attainment surface Sattain, as detailed in [31], utilizing a reference point r. The sets of Pareto115

solutions and weakly Pareto solutions are denoted as F∗ and F∗
weak, respectively. Then, Sattain is116

defined as,117

Sattain = F∗ ∪ {p | p ⪯ r, p ∈ F∗
weak}. (21)

We denote P (θ) as the intersection point of the ray from the pole r along angle θ and the attainment118

surface Sattain. ρX (θ) is the distance from the reference point r to the intersection point P (θ). There119

are two cases, x∗ is a Pareto solution or a weakly Pareto solution. Else, by contradiction, f(x∗) can120

be improved in all objectives, x∗ cannot be a solution of Problem (6).121

When x∗ is Pareto optimal. In such case, we should prove that f(x∗) = P (θ). If x∗ ̸= P (θ),122

then there exist at least one element j such that, rj−fj(θ)
λj(θ)

≤ ri−Pi(θ)
λi(θ)

, ∀i = 1, . . . ,m. This is a123

contradiction with x∗ is the optimal solution of Problem (6). So, x∗ = P (θ).124

When x∗ is weakly Pareto optimal. In such case, f(x∗) does not necessary equals to P (θ).125

In such case, since x∗ is the solution of Problem (6), we have that there exist at least one index126

j, where j = argmin
rj−fj(x

∗)
λj(θ)

such that rj−fj(x
∗)

λj(θ)
= ri−P (θ)

λi(θ)
, i = 1, . . .m. In such a case,127

dist(P (θ), r) =
rj−fj(x

∗)
λj(θ)

. □128

B.4 Proof of Proposition 2129

This subsection provides the proof for Proposition 2, which builds the relationship between a polar130

angle θ and the corresponding solution of Problem (6).131

Proof. There are two cases for x∗. x∗ is Pareto optimal or x∗ is weakly Pareto optimal. When x∗ is132

neither Pareto optimal nor weakly Pareto optimal, there exists a solution x′ which is better than x∗133

for all objectives. In such case, x∗ is not a solution for Problem (6), which is a contradiction.134

When x∗ is Pareto optimal. Since we have ρX (θ) = ri−fi(x
∗)

λi(θ)
, which indicates that for any other135

solution x′, there exist at least one index j such that, rj−fj(x
′)

λj(θ)
≤ ρX (θ), then x′ is not the optimal136

solution of Problem (6). As a result x∗ is the only solution of Problem (6), Xθ = {x∗}.137
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Figure 19: Case of a disjointed Pareto front.

When x∗ is weakly Pareto optimal. There138

can exist one solution x′ such that, x′
i ̸= x∗

i for139

some i and therefore, x′ ∈ Xθ. As a result, we140

can conclude that, x∗ ∈ Xθ. □141

B.5 Case of a Disjointed Pareto Front142

In order to gain a more thorough comprehen-143

sion of our approach to optimizing loss func-144

tions for Pareto set learning (PSL), we inves-145

tigate a scenario where the Pareto front is dis-146

jointed. In such a scenario, it is noted that the147

preference vector still has an intersection point148

with the attainment surface (defined in Equa-149

tion (21)), as illustrated by the blue curve in150

Figure 19. Equation (6) now measures the vol-151

ume within the attainment surface and the ref-152

erence point r, which is just the hypervolume of a disjointed Pareto frontHr(F∗).153

For a disjointed Pareto front, the quantity ρX (θ) denotes the distance between r and the attainment154

surface associated with angle θ. Specifically, in Figure 19, the black dot represents the solution155

for this scenario. The integral of the distance function ρX (θ) still returns the hypervolume of a156

disjointed Pareto front, which satisfies our purpose in this paper.157

However, disjointed Pareto fronts in Pareto set learning overemphasize boundary solutions which158

may result in unpredictable outcomes. For disjointed Pareto fronts, it is recommended to adaptively159

adjust the preference distribution (which is set to be uniform in our experiments).160

B.6 Pareto Front Hypervolume Calculation (Type2)161
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f1(x)

0.0
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Hypervolume

( )
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Figure 20: The hypervolume calculation (Type2).

In this subsection, we define region A as the set162

of points dominating the Pareto front,163

A = {q | ∃p ∈ F∗ : p ≤ q and q ≥ pideal}.
(22)

To ensure consistency with the notation used in164

the main paper, we use the notation Λ(·) to rep-165

resent the Lebesgue measure of a set. From a166

geometric perspective, as illustrated in Figure167

20, it can be observed that:168

Λ(A) +Hr(β) =

m∏
i=1

(ri − yideal
i ). (23)

The volume of A can be calculated in a polar169

coordinate as follows,170

Λ(A) = cm

∫
(0,π2 )m−1

ρX (θ)mdθ, (24)

where cm is a constant and ρX (θ) represents the distance from the ideal point to the Pareto front171

at angle θ. This distance function ρX (θ) is obtained by solving the optimization problem assuming172

that any radius from θ intersects with the Pareto front.173

Problem 1.

ρX (θ) = min
x∈X

ρX (θ, x) = min
x∈X

max
i∈[m]

{
fi(x)− yideal

i

λi(θ)

}
, θ ∈ (0,

π

2
)
m−1

. (25)

The relationship between preference λ and the polar angle θ is as follows:174 
λ1(θ) = sin θ1 sin θ2 . . . sin θm−1

λ2(θ) = sin θ1 sin θ2 . . . cos θm−1

...

λm(θ) = cos θ1.

(26)
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Combining Equation (24) and (25) implies thatHr(β) can be estimated as an expectation problem,175

Hr(β) =

m∏
i=1

(ri − yideal
i )− 1

m
cmEθ∼Unif(Θ)[ρX (xβ(θ), θ)

m
]. (27)

B.7 Proof of Proposition 3176

Proof. It can be observed that Equation (6) in the main paper implies the following equation,177

−ρ(x, θ) = max
i∈[m]

{
fi(x)− ri
λi(θ)

}
. (28)

When all objectives fi’s are convex, function −ρ(x, θ) is also convex yet non-smooth, and hence178

ρ(x, θ) is concave. When fi’s are differentiable, −ρ(x, θ) possesses a natural subgradient denoted179

as d that is formulated as d =
∂fj(x)
∂x

1
λi(θ)

, where j = argmaxi∈[m]{ fi(x)−ri
λi(θ)

}. The subgradient d180

can be iteratively updated to converge on the global optima of ρX (θ) in aO(1/ϵ2) rate, as described181

in [48, 49].182

When all objectives fi’s are quasi-convex, −ρ(x, θ), which is a point-wise max of quasi-convex183

functions, is quasi-convex. And, hence ρ(x, θ) is quasi-concave. □184

B.8 Proof of ρβ(θ) is Quasi-Concave w.r.t. x185

Proof. Proposition 3 rigorously demonstrates that the function −ρ(x, θ) is convex for any given186

value of θ. Furthermore, consider the function h(x) : R→ R which may be defined as follows,187

h(u) =

{
um if u ≥ 0

u otherwise
. (29)

It is clear h(x) is a non-decreasing function, and g(x) = −ρβ(x) = h◦(−ρ(x, θ)). Since (−ρ(x, θ))188

is convex, then, for any α, the set Sα(−ρ(x, θ)), as defined as follows, is convex.189

Sα(−ρ(x, θ)) = {x| − ρ(x, θ) ≤ α}. (30)

Let γ = h(α). Then for any γ, the set Sγ(h◦ (−ρ(x, θ))), which equals to Sα(−ρ(x, θ)), is convex.190

This indicates that h◦ (−ρ(x, θ)) is quasi-convex, and as a result ρβ(θ) is quasi-convex w.r.t. x.191

B.9 Proof of Theorem 1192

Definitions and preliminaries. The proof will heavily utilize the existing results on Rademacher193

complexity of MLPs. We will first provide some useful definitions and facts. We start with the194

definition of Rademacher complexity as follows:195

Definition 2 (Rademacher complexity, Definition 13.1 in [50]). Given a set of vectors V ⊆ Rn, we196

define the (unnormalized) Rademacher complexity as197

URad(V ) := E sup
u∈V
⟨ϵ, u⟩,

where each coordinate ϵi is an i.i.d. Rademacher random variable, meaning Pr [ϵi = +1] = 1
2 =198

Pr [ϵi = −1]. Furthermore, we can accordingly discuss the behavior of a function class G on S =199

{zi}Ni=1 by using the following set:200

G|S := {(g (z1) , . . . , f (zN )) : g ∈ G} ⊆ RN ,

and its Rademacher complexity is201

URad
(
G|S
)
= E

ϵ
sup

u∈G|S

⟨ϵ, u⟩ = E
ϵ
sup
g∈G

∑
i

ϵig (zi) .

Utilizing Rademacher complexity, we can conveniently bound the generalization error via the fol-202

lowing theorem:203
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Theorem 2 (Uniform Generalization Error, Theorem 13.1 and Corollary 13.1 in [50]). Let G be204

given with g(z) ∈ [a, b] a.s. ∀g ∈ G. We collect i.i.d. samples S = {zi}Ni=1 from the law of random205

variable Z. With probability ≥ 1− δ,206

sup
g∈G

Eg(Z)− 1

N

∑
i

g (zi) ≤
2

N
URad

(
G|S
)
+ 3(b− a)

√
ln(2/δ)

2N
.

Specifically, the Rademacher complexity in using MLP is provided by the following theorem:207

Theorem 3 (Rademacher complexity of MLP, Theorem 1 in [51]). Let 1-Lipschitz positive homo-208

geneous activation σi be given, and209

GMLP := {θ 7→ σL (WLσL−1 (· · ·σ1 (W1θ) · · · )) : ∥Wi∥F ≤ Bw}

Then210

URad
(
GMLP
|S

)
≤ BL

w∥Xθ∥F (1 +
√
2L ln(2)).

We can then utilize the following composition character of Rademacher complexity, to help induce211

the final Rademacher complexity of hypervolume.212

Lemma 2 (Rademacher complexity of compositional function class, adapted from Lemma 13.3 in213

[50]). Let g : Θ → Rn be a vector of n multivariate functions g(1), g(2), . . . , g(n), G denote the214

function class of g, and further G(j) be the function class of g(j),∀j. We have a “partially Lipschitz215

continuous” function ℓ(g(θ), θ) so that |ℓ(g1(θ), θ) − ℓ(g2(θ), θ)| ≤ Lℓ∥g1(θ) − g2(θ)∥ for all216

g1, g2 ∈ G and a certain Lℓ > 0; the associated function class of ℓ is denoted as Gℓ. We then have217

URad
(
Gℓ|S
)
≤
√
2Lℓ

n∑
j=1

URad
(
G(j)|S

)
.

Proof. This proof extends Lemma 13.3 in [50] for vector-valued g and “partially Lipschitz continu-218

ous” ℓ. We first similarly have219

URad
(
Gℓ|S
)
= E sup

g∈G

∑
i

ϵiℓ(g(θi), θi)

=
1

2
E

ϵ2:N
sup
f,h∈G

(
ℓ(f(θ1), θ1)− ℓ(h(θ1), θ1) +

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))

)

≤ 1

2
E

ϵ2:N
sup
f,h∈G

(
Lℓ∥f(θ1)− h(θ1)∥+

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))

)

≤ 1

2
E
ϵ

sup
f,h∈G

Lℓ

√
2|

n∑
j=1

ϵ
(j)
1 (f (j)(θ1)− h(j)(θ1))|+

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))

)
,

where ϵ(j)1 ’s are new i.i.d. Rademacher variables; the last inequality comes from Proposition 6 in [52]220

(see Equations (5)-(10) in [52] for more details). We can then get rid of the absolute value by221
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considering swapping f and h,222

sup
f,h∈G

√2Lℓ|
n∑

j=1

ϵ
(j)
1 (f (j)(θ1)− h(j)(θ1))|+

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))


=max

 sup
f,h∈G

√2Lℓ

n∑
j=1

ϵ
(j)
1 (f (j)(θ1)− h(j)(θ1)) +

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))

 ,

sup
f,h∈G

√2Lℓ

n∑
j=1

ϵ
(j)
1 (h(j)(θ1)− f (j)(θ1)) +

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))


= sup

f,h∈G

√2Lℓ

n∑
j=1

ϵ
(j)
1 (f (j)(θ1)− h(j)(θ1)) +

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))

 .

We can thus upper bounded URad
(
Gℓ|S
)

by223

1

2
E
ϵ

sup
f,h∈G

√2Lℓ

n∑
j=1

ϵ
(j)
1 (f (j)(θ1)− h(j)(θ1)) +

N∑
i=2

ϵi (ℓ(f(θi), θi) + ℓ(h(θi), θi))


=E

ϵ
sup
g∈G

√2Lℓ

n∑
j=1

ϵ
(j)
1 g(j)(θ1) +

N∑
i=2

ϵiℓ(g(θi), θi)

 ,

Repeating this procedure for the other coordinates, we can further have224

URad
(
Gℓ|S
)
≤
√
2LℓE

ϵ
sup
g∈G

 N∑
i=1

n∑
j=1

ϵ
(j)
i g(j)(θi)

 ≤ √2Lℓ

n∑
j=1

E
ϵ

sup
g(j)∈G(j)

(
N∑
i=1

ϵ
(j)
i g(j)(θi)

)
,

which leads to our claim in the lemma.225

Proof of Theorem 1. We are now geared up for the complete proof.226

Proof. We first introduce the sketch of the proof. We mainly utilize Theorem 2 to attain the227

claimed results in Theorem 1. Specifically, we set the random sample set S = {θi}Ni=1, the228

function class G as {θ 7→ cmρ(xβ(θ), θ)
m} (the assumption ri − fi(x) ∈ [b, B] indicates that229

ρ(x, θ) = mini∈[m]{ ri−fi(x)
λi(θ)

} ≥ b ≥ 0 and by the definition in Equation (7), ρβ(θ) is thus al-230

ways ρ(x(θ), θ)m; xβ(·) is an L-layer MLP to be specified later). Applying Theorem 2, we can231

obtain that with probability at least 1− δ
2 ,232

sup
g∈G

Eθg(θ)−
1

N

∑
i

g (θi) ≤
2

N
URad

(
G|S
)
+ 3cm(B

√
m)m

√
ln(4/δ)

2N
,

where the definition of URad and G|S can be found in Definition 2. Simply replacing G with233

−G := {−g : g ∈ G}, we can have the inequality of the other direction with probability at least234

1− δ
2 :235

sup
g∈−G

Eθg(θ)−
1

N

∑
i

g (θi) ≤
2

N
URad

(
−G|S

)
+ 3cm(B

√
m)m

√
ln(4/δ)

2N

⇒ sup
g∈G

Eθ − g(θ)− 1

N

∑
i

−g (θi) ≤
2

N
URad

(
−G|S

)
+ 3cm(B

√
m)m

√
ln(4/δ)

2N

⇒ sup
g∈G

1

N

∑
i

g (θi)− Eθg(θ) ≤
2

N
URad

(
G|S
)
+ 3cm(B

√
m)m

√
ln(4/δ)

2N
,
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where we apply the property URad
(
−G|S

)
= URad

(
G|S
)
. We thus, with probability at least 1− δ236

(as a result of union bound), can upper bound supg∈G |Eθg(θ)− 1
N

∑
i g (θi) | by237

max

{
sup
g∈G

Eθg(θ)−
1

N

∑
i

g (θi) , sup
g∈G

1

N

∑
i

g (θi)− Eθg(θ)

}

≤ 2

N
URad

(
G|S
)
+ 3cm(B

√
m)m

√
ln(4/δ)

2N
.

For the next step, we will upper bound URad
(
G|S
)

by analyzing the structure of cmρ(xβ(θ), θ)
m238

and utilizing the existing bound (see Theorem 3) for Rademacher complexity of MLP xβ .239

The main idea of controlling URad
(
G|S
)

is to obtain the “partially Lipschitz continuity” that240

|ρ(xβ(θ), θ) − ρ(xβ′(θ), θ)| ≤ Lρ∥xβ(θ) − xβ′(θ)∥ for a certain Lρ > 0; with the “partially241

Lipschitz continuity” we can apply Lemma 2 and obtain the desired bound. For simplicity, we de-242

note xβ(θ), xβ′(θ) respectively as x, x′, and use λj’s as shorthand for λj(θ)’s. We now expand the243

difference |ρ(xβ(θ), θ)− ρ(xβ′(θ), θ)| as:244 ∣∣∣∣min
j∈[m]

rj − fj(x)

λj
− min

k∈[m]

rk − fk(x
′)

λk

∣∣∣∣
=max

{
min
j∈[m]

rj − fj(x)

λj
− min

k∈[m]

rk − fk(x
′)

λk
, min
k∈[m]

rk − fk(x
′)

λk
− min

j∈[m]

rj − fj(x)

λj

}
.

If we respectively denote the minima index of the two finite-term minimization as j∗ and k∗, we can245

then upper bound |ρ(xβ(θ), θ)− ρ(xβ′(θ), θ)| by246

max

{
rk∗ − fk∗(x)

λk∗
− rk∗ − fk∗(x′)

λk∗
,
rj∗ − fj∗(x

′)

λj∗
− rj∗ − fj∗(x)

λj∗

}
=max

{
fk∗(x′)− fk∗(x)

λk∗
,
fj∗(x)− fj∗(x

′)

λj∗

}
≤ max

j∈{j∗,k∗}

|fj(x)− fj(x
′)|

λj

≤ max
j∈{j∗,k∗}

Lf |x− x′|
λj

.

We note there is a special property for λj when j is the minima index: as ∥λ∥ = 1, there must be a247

certain λj ≥ 1/
√
m, and since b ≤ rj − fj(x) ≤ B, ∀j, we have248

b

λj∗
≤ rj∗ − fj∗(x

′)

λj∗
≤ B

1/
√
m
⇒ λj∗ ≥

b√
mB

.

With this special property, we obtain249

|ρ(xβ(θ), θ)− ρ(xβ′(θ), θ)| ≤
√
mB

b
Lf |x− x′|.

We further have250

|cmρ(xβ(θ), θ)
m − cmρ(xβ′(θ), θ)m|

=cm |ρ(xβ(θ), θ)− ρ(xβ′(θ), θ)|

(
m∑

k=1

ρ(xβ(θ), θ)
m−kρ(xβ′(θ), θ)k−1

)

≤cm
√
mB

b
Lf |x− x′|m(B

√
m)m−1 = cm

m

b
(B
√
m)mLf |x− x′|,

which establishes the “partially Lipschitz continuity”. We can then apply Lemma 2 and have251

URad
(
G|S
)
≤
√
2cm

m

b
(B
√
m)mLfnURad

(
GMLP
|S

)
≤
√
2cm

m

b
(B
√
m)mLfn ·BL

w∥Xθ∥F (1 +
√

2L ln(2)).
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Combining the pieces above, we finally have252

sup
g∈G
|Eθg(θ)−

1

N

∑
i

g (θi) |

≤ 2

N
URad

(
G|S
)
+ 3cm(B

√
m)m

√
ln(4/δ)

2N

≤cm(B
√
m)m

(
2
√
2mn

Nb
Lf ·BL

w∥Xθ∥F (1 +
√

2L ln(2)) + 3

√
ln(4/δ)

2N

)
,

which is the generalization error bound we claim.253

B.10 Upper Bound of ρX (θ)254

In this subsection, we prove that the distance function ρX (θ) is bounded by the following inequality,255

ρX (θ) ≤ Bm1/2, (31)
when ri − fi(x) ≤ B, ∀x ∈ X ,∀i ∈ [m] and ||λ(θ)|| = 1.256

Proof. We show that the following inequalities hold,257

ρX (θ) ≤ max
x∈X ,||λ(θ)||=1

(
min
i∈[m]
{ri − fi(x)

λi(θ)
}
)

≤ max
||λ(θ)||=1

(
min
i∈[m]
{ B

λi(θ)
}
)

≤ B

m−1/2
= Bm1/2.

(32)

The transition from line one to line two is due to the fact that the inequality ri − fi(x) ≤ B258

holds for all x ∈ X and for all i ∈ [m]. The transition from line two to line three is259

max||λ(θ)||=1

(
mini∈[m]{ B

λi(θ)
}
)

is an optimization problem under the constraint ||λ(θ)|| = 1.260

The upper bound for this optimization is when λi = . . . = λm = m−1/2. □261

Let Z(θ) = cmρX (θ)m, as a corollary, Z(θ) ≤ cmBmmm/2.262

B.11 Gradients of HV-PSL263

In this subsection, we present the analytical expression for ∇βHr(β) to ensure completeness. The264

gradient for PSL-HV1 can be computed using the chain rule, which yields:265

∇βHr(β) =



mcmEθ∼Unif(Θ)[ρ(xβ(θ), θ)
m−1 ∂ρ(xβ(θ), θ)

∂xβ(θ)︸ ︷︷ ︸
1×n

∂xβ(θ)

∂β︸ ︷︷ ︸
n×d

], ρ(xβ(θ), θ) ≥ 0.

cmEθ∼Unif(Θ)[
∂ρ(xβ(θ), θ)

∂xβ(θ)︸ ︷︷ ︸
1×n

∂xβ(θ)

∂β︸ ︷︷ ︸
n×d

], Otherwise.
(33)

The gradient of PSL-HV2 can be calculated by,266

∇βHr(β) = −mcmEθ∼Unif(Θ)[ρX (xβ(θ), θ)
m−1

]
∂ρX (xβ(θ), θ)

∂xβ(θ)︸ ︷︷ ︸
1×n

∂xβ(θ)

∂β︸ ︷︷ ︸
n×d

]. (34)

B.12 Relationship between Hypervolume and Decomposition based Multiobjective267

Optimization268

In this subsection, we will explore the fundamental relationship between hypervolume-based269

and decomposition-based multiobjective optimization. Prior to our study, it was commonly ac-270

knowledged that there were three primary multiobjective optimization methods: Pareto-based [9],271

hypervolume-based [30], and decomposition-based methods [8].272
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The present paper yields a result by establishing a correlation between hypervolume and273

decomposition-based approach in scenarios where the number of preference λ(θ) is considerably274

high. Previous methods mainly consider two decomposition functions, namely linear scalarization275

and Tchebycheff. Actually, we only need to make two modifications for the classical decomposition-276

based method in [8],277

1. Sampling the polar angles θ(i) from Sm−1
+ .278

2. For each sampled angle θ(i), maximizing the scalarization function ρX (θ(i)) =279

maxi∈[m]{ ri−fi(x)
λi(θ(i))

}.280

Subsequently, upon optimizing each scalarization function, it becomes feasible to constrain the de-281

viation between the empirical mean of cmρX (θ(i))m and the hypervolume of the Pareto front to a282

small value with a high level of certainty. This is elaborated by Equation (9) in the main manuscript.283
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