Published as a conference paper at ICLR 2024

BAYESIAN OPTIMIZATION THROUGH GAUSSIAN COX
PROCESS MODELS FOR SPATIO-TEMPORAL DATA

Yongsheng Mei', Mahdi Imani?, Tian Lan'

!The George Washington University

2Northeastern Univeristy

{ysmei, tlan}@gwu.edu, m.imani@northeastern.edu

ABSTRACT

Bayesian optimization (BO) has established itself as a leading strategy for effi-
ciently optimizing expensive-to-evaluate functions. Existing BO methods mostly
rely on Gaussian process (GP) surrogate models and are not applicable to (doubly-
stochastic) Gaussian Cox processes, where the observation process is modulated
by a latent intensity function modeled as a GP. In this paper, we propose a novel
maximum a posteriori inference of Gaussian Cox processes. It leverages the
Laplace approximation and change of kernel technique to transform the prob-
lem into a new reproducing kernel Hilbert space, where it becomes more tractable
computationally. It enables us to obtain both a functional posterior of the latent in-
tensity function and the covariance of the posterior, thus extending existing works
that often focus on specific link functions or estimating the posterior mean. Using
the result, we propose a BO framework based on the Gaussian Cox process model
and further develop a Nystrom approximation for efficient computation. Exten-
sive evaluations on various synthetic and real-world datasets demonstrate signifi-
cant improvement over state-of-the-art inference solutions for Gaussian Cox pro-
cesses, as well as effective BO with a wide range of acquisition functions designed
through the underlying Gaussian Cox process model.

1 INTRODUCTION

Bayesian optimization (BO) has emerged as a prevalent sample-efficient scheme for global opti-
mization of expensive multimodal functions. It sequentially samples the space by maximizing an
acquisition function defined according to past samples and evaluations. The BO has shown suc-
cess in various domains, including device tuning (Dalibard et al., 2017), drug design (Griffiths
& Hernandez-Lobatol [2020), and simulation optimization (Acerbi & Ji, 2017). Existing BO ap-
proaches are often built on the Gaussian process (GP) regression model to account for correlation
across the continuous samples/search space and provide the prediction of the unknown functions in
terms of the mean and covariance. Such models become insufficient when the observation process
—e.g., consisting of point events in a Poisson process — is generated from a latent intensity function,
which itself is established by a GP through a non-negative link function.

To this end, doubly-stochastic point process models such as Gaussian Cox processes are commonly
adopted in analyzing spatio-temporal data in a Bayesian manner and have been successfully ap-
plied to many problems in engineering, neuroscience, and finance (Cunningham et al.l 2008 Basu
& Dassios| 2002). The problem is typically formulated as a maximum a posteriori (MAP) infer-
ence of the latent intensity function over a compact domain. Its dependence on a functional form
of the latent intensity function makes an exact solution intractable due to integrals over infinite-
dimensional distributions. Existing works often focus on the inference problem for specific link
functions, e.g., sigmoidal link function (Adams et al., |2009; \Gunter et al., 2014)) and quadratic link
function (Lloyd et al., 2015} |Walder & Bishopl [2017), or leverage approximation techniques, e.g.,
variational Bayesian approximation (Aglietti et al.,|2019), mean-field approximation (Donner & Op-
per} 2018) and path integral approximations of GP (Kim), [2021). However, MAP estimation of the
latent intensity function alone is not enough to support BO since optimization strategies in BO must
be constructed through acquisition functions that quantify the underlying uncertainty of inference
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through both posterior mean and covariance. This requires building a stochastic model of the latent
intensity function to enable BO with such doubly-stochastic models.

In this paper, we consider Gaussian Cox process models with general smooth link functions and
formulate a MAP inference of the functional posterior of the latent intensity function and the co-
variance of the posterior. We show that by leveraging Laplace approximation and utilizing a change
of kernel technique, the problem can be transformed into a new reproducing kernel Hilbert space
(RKHS) (Flaxman et al.| [2017), where a unique solution exists following the representer theorem
and becomes more tractable computationally regarding a new set of eigenfunctions in the RKHS.
The proposed approach does not rely on variational Bayesian or path integral approximations in
previous work (Aglietti et al.| 2019; Kiml 2021)).

We apply the inference model (of both posterior mean and covariance of the latent intensity function)
to propose a novel BO framework and further develop a Nystrom approximation when a closed-form
kernel expansion is unavailable. The computation is highly efficient since it leverages approxima-
tions in previous BO steps to obtain new ones incrementally. To the best of our knowledge, this is
the first work on BO using Gaussian Cox process models with kernel transformation in RKHS. It
enables us to consider a wide range of acquisition functions, such as detecting peak intensity, idle
time, change point, and cumulative arrivals, through the underlying Gaussian Cox process model.
Extensive evaluations are conducted using both synthetic functions in the literature (Adams et al.,
2009) and real-world spatio-temporal datasets, including DC crime incidents (DC.gov, 2022), 2D
neuronal data (Sargolini et al., 2006)), and taxi data of Porto (O’Connell et al.,[2015)). The proposed
method shows significant improvement over existing baselines.

The rest of the paper is organized as follows: Section [2|discusses related work and their differences
with our approach. Section[3|develops our solution for both posterior mean and covariance, followed
by the proposed BO framework with different acquisition function designs using the Gaussian Cox
process model. Section [] presents extensive evaluations on multiple datasets. Finally, Section [3]
states our conclusions and underlines potential future work.

2 RELATED WORK

Gaussian Cox Process Models Doubly stochastic Gaussian Cox processes connecting the Poisson
process with an underlying GP through a link function have been the golden standards in analyzing
and modeling spatio-temporal data in many domains (Cunningham et al.| 2008 |Basu & Dassios,
2002). The MAP intensity estimation problem is much more challenging than estimating a deter-
ministic intensity function (Flaxman et al., [2017), and discretization (Mgller et al., 1998} Diggle
et al.,[2013) is often needed to ensure tractability. Recent works have exploited specific link func-
tion structures and considered Markov chain Monte Carlo methods (Adams et al., 2009; |Gunter
et al., 2014; Nava et al.| [2022), mean-field approximations (Donner & Opper, 2018)), Langevin dy-
namics (Mutny & Krause| [2022), sparse variational Bayesian algorithms with link functions like
sigmoidal functions (Aglietti et al.| [2019) and quadratic functions (Lloyd et al) 2015)), as well as
transformations into permanental processes (Flaxman et al., 2017} [Walder & Bishop, 2017). Re-
cently, path integral formulation (Kiml 2021} has been proposed as a method for effective posterior
mean predicative covariance estimations without being constrained by particular link functions. In
this work, we proposed a new method for quantifying both posterior mean and covariance of the
latent intensity function, which is required to support BO and various acquisition function designs.

Bayesian Optimization through Acquisition Functions Bayesian optimization (BO) can op-
timize objective functions that are expensive to evaluate, e.g., neural network hyperparameter
tuning (Mei et al.| 2023} Masum et al., |2021) and drug discovery (Stanton et al.| [2022). BO
is a sequential approach to finding a global optimum of an unknown objective function f(-):
x* = argmaxgcy f(x), where X C R? is a compact set. It at each iteration k& obtains a new
sample @11 to evaluate f(xgy1), update the model of f (often using a posterior GP), and se-
lects the next sample using an acquisition function a : X — R from the new model, until reach-
ing the optimum x*. Various BO strategies have been proposed, including expected improvement
(EI) (Mockus| [1975), knowledge gradient (KG) (Frazier et al., 2009), probability of improvement
(PD) (Kushner, [1964)), upper-confidence bounds (UCB) (Lai & Robbins|, [1985)), and entropy search
(ES) (Hernandez-Lobato et al., 2014). Despite the success of BO in many practical problems, most
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Table 1: Common link functions () and their derivatives and inverses.

k() f(x) k() K1 (x)

Exponential exp(x) exp(z) exp(z) log(x)
Quadratic z? 2x 2 Nz
Sigmoidal (1 +exp(—z))™" Gt (opap et —log(z™' — 1)
Softplus log(1 +exp(z)) (1 +exp(—z))™* % log(exp(x) — 1)

existing work have not considered BO with Gaussian Cox process models, where point events in
Poisson processes are modulated by latent GP intensity functions.

3 METHODOLOGY

3.1 GAUSSIAN COX PROCESS MODEL

We consider a Lebesgue measurable compact observation space S C R? and a latent random func-
tion g(-) : S — R following Gaussian Process (GP), denoted by GP(g(t)|p, X) with mean and
covariance 0, = £ (u,X), respectively. Observations are generated from a point process modu-
lated by the latent random function ¢(t) (through a deterministic, non-negative link function that
connects g(t) with latent intensity A(t) = x(g(t))). Given a set of n observed point events {¢; }?"_;
in the observation space S, we consider the likelihood function (in terms of GP parameters 6,, 5)
that is formulated as an expectation over the space of latent random functions, i.e.,

N um) = [ DB 10(0) o0 0) ) 0
g(t

where p(g(t)|0,.,) is the Gaussian prior. Within equation (1), the log-probability conditioned on a

specific random function ¢(t) takes the following form:

logp({t: e la(t) = Y- log(t) — [ At @

where latent intensity function A(t) = x(g(t)) is obtained using the deterministic non-negative link
function (+) : R — R For simplicity of notations, we will use a short form g to represent g(t) in
the rest of the paper. Table[T|shows some common link functions. Existing works on Gaussian Cox
process estimation often focus on specific link functions.

To develop a BO framework using Gaussian Cox process models, we consider the problem of es-
timating both the mean and covariance of the Gaussian Process (GP) posterior. Equation (I)) and
equation (2)) outline the probabilistic surrogate model aligning with this purpose. In the following,
we first propose a solution to the posterior mean and covariance estimation problem using Laplace
approximation and change of kernel into a new RKHS. Following existing work (Mgller et al.| | 1998;
Diggle et alJ, 2013)), we consider a discretization of the observation space to ensure tractability of
numerical computation and further propose a Nystrom approximation. Then, we will present our
BO framework built upon these results, along with new acquisition function designs based on the
Gaussian Cox process model.

3.2 ESTIMATING POSTERIOR MEAN AND COVARIANCE

Let f(g) = p({t:}"_1|9)p(g|0,..5) denote the multiplication term inside the integral of equation .
We apply the Laplace approximation (Illian et al [2012) to estimate the mean and variance of the
Gaussian posterior p(g|{t;}"_;), which requires maximizing log f(g) . The result using Laplace
approximation is provided in the following lemma (proof in Appendix [A]).

Lemma 1 (Laplace approximation). For the d-dimensional multivariate distribution regarding t €
R?, given a mode § such that § = arg max, log f(g), the likelihood (1) can be approximated as:
(2m)%

s 3)
Al

/ f(g)dg ~ £(g)
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where A £ —ngg log f(g) is the Hessian matrix.

Lemma [1] provides the Laplace approximation to the model posterior p(g|{¢;}!,) centered on the
MAP estimate problem:

PO = [0 = o7 P |30~ 9)" Al 9] ~ Niglg AT @

where g and A~! are the mean p and covariance X of the GP posterior, respectively.

Before we start solving the posterior mean and covariance, we utilize Lemma 1 to rewrite the Gaus-
sian Cox process log-likelihood in equation (1) to obtain:

. R d 1
logp({ti}i1|0u.s) = logp({ti}i1]g) +logp(g|0u =) + 5 log2m — S log |A] )

(@) .
~ logp({ti}i,]g) + const.,

where approximation (a) follows from the Bayesian information criterion (BIC) (Schwarz, [1978).
BIC further simplifies the Laplace approximation by assuming that when the event number n is
large, the prior p(g|6,. ) is independent of n and the term p({¢;}}_,|g) will dominate the rest. It
allows us to treat other independent terms as a constant in this inference problem.

We can compute the estimate ¢ via a maximization problem maxg log f(g) in Lemma 1} which is
equivalent to minimizing the negative log-likelihood derived in equation (3. Based on the likelihood
of the Poisson point process, we have:

min {Zlog k(g(t:)) +/Sﬂ(g(t))dt}~ (6)

To tackle the optimization problem in equation (6), we utilize the concept of reproducing kernel
Hilbert space (RKHS), which is a Hilbert space of functions h : & — R where point evaluation
is a continuous linear functional. Given a non-empty domain S and a symmetric positive definite
kernel £ : S x § — R, a unique RKHS Hj; can be constructed. If we can formulate a regularized
empirical risk minimization (ERM) problem as minp ey, R({h(t;)}7_1) + vQ(||h(t)|/2, ), where
R(-) denotes the empirical risk of h, 7 is the penalty factor, and €(-) is a non-decreasing error in the
RKHS norm, a unique optimal solution exists given by representer theorem (Scholkopf et al., [2001)

as h*(-) = 31", a;k(t;, ), and the optimization can be cast regarding dual coefficients v € R™.

Since (-) is non-negative smooth link function, we define h(t) £ k2 (g(t)) so that h2(t) =

k(g(t)) : & — RT. This definition will provide us with access to the property of Lo-norm that
simplifies the problem-solving in the next. Then, we can formulate a minimization problem of the
penalized negative log-likelihood as regularized ERM, with a penalty factor ~, given by:

min{—ZloghQ(tiH/h%t)dtw”h(t)l%k} (7
i=1 s

h(t)

However, equation does not allow a direct application of the representer theorem due to the
existence of an extra integral term |, s h2(t) dt in the optimization. To this end, we show that the term
can be merged into the square norm term ~y||2(¢)|%,, by a change of kernel technique (resulting in a
new RKHS) and using the Mercer’s theorem (Rasmussen & Williams|, 2006). Specifically, note that
the integral term actually defines a Lo-norm of h(t). Taking Mercer’s expansion of the integral term
and the square norm term in #;, we can add these two expansions together and view the result as
Mercer’s expansion of the RKHS square norm regarding a new kernel. It transforms the optimization
in equation (/) into a new RKHS (concerning the new kernels), thus enabling the application of the
representer theorem. The result is stated in the following lemma (proof in Appendix [B).

Lemma 2 (Kernel transformation). The minimization objective J(h) in equation @ can be written
using a new kernel k(t,t') as:

J(h) = = logh*(t:) + |A(®)]3, , ®
i=1
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where the new kernel function defined by Mercer’s theorem is k = Y05 n;(ni + )~ i (t) i (')
given that {n;}52,, {$i(t)}32, represent the eigenvalues and orthogonal eigenfunctions of the ker-
nel function k, respectively.

The new objective (&) is now solvable through the application of the representer theorem. Hence, we

can derive the solution i (t) for the original minimization problem in equation (7)) and further obtain
the ¢ to maximize the likelihood (IJ), which leads to the following theorem (proof in Appendix[C).

Theorem 1 (Posterior mean). Given observations {t;}_, in S, the posterior mean p of GP is
the solution g of the minimization problem , taking the form g = k= 1(h%(t)), where h(-) =
>y aik(ts, ).

Theorem [I] gives the solution of posterior mean estimate using the kernel transformation technique

in Lemma |2} Similarly, posterior covariance in equation can be obtained in the next theorem
(proof in Appendix D).

Theorem 2 (Posterior covariance). Given observations {t;}_, in S, the posterior covariance ma-

trix A=Y is given by
R(@)R(@) @) _ p2(a) =N\
= — diag R i(g:)At = , 9
—k?(g;)At i # ]
where §;,g; represent g(%];),g(tj), and j and At are from the m-partition Riemann sum of the

ATl =

second term in equation (6) as [g r(g) dt = 377" | k(g;)At.

We note that in Theorem [2] the diagonal values of the covariance matrix A~! exhibit two distinct
patterns, depending on whether the observation point £; overlaps with the partition of the Riemann
sum t;. Results in this section establish posterior mean and covariance estimates for the Gaussian
Cox process model, which lays the foundation for our BO framework.

3.3 NUMERICAL KERNEL APPROXIMATION

The computation of posterior mean and covariance requires solving the new kernel function k in
Lemma[2] which may not yield a closed-form solution for kernels that cannot be expanded explicitly
by Mercer’s theorem. To tackle this, we discretize space S with a uniform grid {z; }*;, and propose
an approximation of the kernel matrix Kj; via a m X m symmetric positive definite Gram matrix
K., : R™ — R™ using Nystrom approximation (Baker & Taylor, [1979). This method is highly
efficient since it leverages approximations in previous BO steps and obtains the next approximation
from new samples in an incremental fashion. We integrate the grid into kernel matrix as:

Ky =Ki@KoKot, Koo =UAU" =) A" uuf, (10)
i=1
where A" u; are the eigenvalue and eigenvector of K, and A £ diag(A1, ..., Ap) is the

diagonal matrix of eigenvalues. The Nystrom method provide us with the estimates of the eigenvalue
and eigenfunction of the Mercer’s expansion, i.e.,

~ 1 ma n \/ﬁ
N = E)‘i Y i(t) = Wktmuia (11)

where k¢, = (k(t, ;). This approximation enables efficient computation of posterior mean and
covariance using the proposed method while achieving superior estimates than existing baselines as
shown later in the evaluation, given by the following lemma (proof in Appendix [E). Also, since BO
requires step-wise intensity estimation, Nystrom method allows iterative approximation based on
K, obtained in previous steps to facilitate the estimation on a larger observation space in the next.

Lemma 3 (Nystrom approximation). Based on eigenvalue and eigenfunction in equation (I1), the
new kernel matrix can be approximated as:

S 1 -1
Ky = K U (mA2 + 7A> UTK,, (12)

T _ n o _ /
where K, = (Kt,)7— 1 = Kgt are m X n matrices.
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3.4 BAYESIAN OPTIMIZATION OVER ESTIMATED INTENSITY

In this section, we introduce our proposed BO framework built upon the Gaussian Cox process
model and introduce new acquisition function designs guided by the estimated posterior mean and
covariance 0, 5. that provides a stochastic surrogate model over 7 C R¢. Specifically, in each
step 4, given the current observed region S; C 7T, our BO obtains a Gaussian Cox process model
using posterior mean and covariance estimates and then samples the next observation (e.g., events
in a small interval 7 from unknown parts of 7)) according to an acquisition function to expand
the observations to S;+1 = {7} U S;. This process starts from an initial Sy C 7 with known
events ty € Sy and continues to update the Gaussian Cox process model (as new samples are
iteratively obtained) until the BO terminates. The acquisition function is designed to capture the
desired optimization objective (e.g., finding a peak through expected improvement) relying on the
proposed Gaussian Cox process model.

The Gaussian Cox process model introduced in this paper enables a wide range of BO acquisition
functions. We note that having only the posterior mean estimate is not enough to support BO acqui-
sition functions, which require estimating the uncertainty of the underlying surrogate model, e.g.,
through the notion of probability of improvement (PI) (Kushner, [1964), upper-confidence bounds
(UCB) (Lai & Robbins) |1985), and expected improvement (EI) (Mockus, [1975). We demonstrate
the design of four acquisition functions enabled by our model in this section, while the BO frame-
work can be readily generalized to a wide range of BO problems.

Peak intensity prediction: This can be achieved by many forms of acquisition functions (such as
UCB, PI, and EI) based on our proposed model. We take UCB as an example, i.e.,

aUCB(t;wl) = /L(t) + (4)10'(15)7 (13)

where p denotes the posterior mean, wy is the scaling coefficient, and o represents the standard
deviation obtained from posterior covariance. This formulation contains explicit exploitation and
exploration terms, allowing effective identification of the latent peak in Speak.

Maximum idle time: We can calculate the distribution of the number of arrivals of a Gaussian Cox
process model:

Proposition 1. Ler the point process N (t) be modulated by a latent intensity function k(g), then
the probability of the number of arrivals in the region [a,b] is given by Pr(N(a,b) = n) =

(n!) "L exp(— [ w(g) dt)([” w(g) dt)™,

We can plug in the posterior mean and variance derived in Theorems [I|and 2] into the above Propo-
sition, i.e., § + w20 (t), where ws is the scaling coefficient. Therefore, the acquisition function for
maximum idle time detection takes the form:

aidle(t; 6) = PI‘(N(CL, b) < E)a (14)
where € is a pre-defined small threshold.

Maximum cumulative arrivals: Finding an interval with maximum cumulative arrivals can be
useful for many data analytic tasks. This acquisition function also differs from peak intensity
detection since it considers arrivals within an interval. According to Proposition [I] by replacing
g = §+wso(t) with the scaling coefficient ws, the cumulative arrival detection acquisition function
can be defined as:

acum(t; 5) = PI"(N(CL, b) > 6)7 (15)
where ¢ is a threshold and can be updated based on samples observed as in existing BO.

Change point detection: The occurrence of a sudden change in intensity often indicates a latent
incident in the real-world scenario. We can integrate the Bayesian online change point detection
algorithm into our framework using Gaussian Cox process models. The following lemma extends
the results in (Adams & MacKay, [2007)).

Lemma 4 (Bayesian online change point probability). Considering the run length ri with time
step k since the last change point given the arrivals so far observed, when 1y reduces to zero, the
change point probability is Pr(r;, = 0,t;) = Z”A Pr(rg—1,tg—1)mk—1H(rg—1), where  is the
underlying predictive probability and H (-) is the hazard function.
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The estimated posterior mean and variance can be directly plugged into Lemmaf]to obtain a change
point acquisition function, i.e.,

acpp(t;r) = Pr(r = 0,¢). (16)
It is important to note that the posterior mean and variance are re-estimated each time a new sam-
ple is obtained. Thus, the change point acquisition function are continuously improved using the
knowledge of observed ground-truth arrivals in our BO framework.

The proposed BO framework for intensity estimation with four mentioned acquisition functions are
implemented on the real-world dataset. The representative results are provided in Section

4 EXPERIMENTS

We evaluate our proposed solutions — i.e., Gaussian Cox process inference as well as BO based
on the model — using both synthetic functions in the literature (Adams et al.,|2009) and real-world
spatio-temporal datasets, including DC crime incidents (DC.gov,2022)), 2D neuronal data (Sargolini
et al.| |2006)), and taxi trajectory data in city of Porto (O’ Connell et al.,[2015)). More evaluation results
about acquisition function, additional dataset, and sensitivity study, along with further details about
evaluation setups are provided in the appendix.

4.1 EVALUATION USING SYNTHETIC DATA

4.1.1 ESTIMATION OF SYNTHETIC INTENSITY FUNCTIONS
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Figure 1: Mean estimations comparison on three types of synthetic data.

Following commonly used examples in the literature (Adams et al.| (2009); Kim| (2021))) for Gaus-
sian Cox process inference, we consider synthetic intensity functions: A (t) = 2exp(—t/15) +
exp(—[(t — 25)/10]?) for t € [0,50], A\2(t) = 5sin(t?) + 6 for t € [0, 5], and A3 that is piecewise
linear over (0, 20), (25, 3), (50, 1), (75, 2.5), (100, 3) for ¢ € [0, 100]. For three given functions, we
generate 44, 27, and 207 synthetic events, respectively. We compare our intensity estimation result
with those of existing baselines, including RHKS (Flaxman et al.,[2017), MFVB (Donner & Opper,
2018), STVB (Aglietti et al., 2019), and PIF (Kim| 2021). The radial basis function (RBF) kernel
and quadratic link function are used in this experiment.

The intensity estimation by different methods is visualized in Fig. [T} Table [2] provides the quan-
titative results in three metrics, consisting of ls-norm to the ground-truth intensity function and
integrated p-quantile loss (IQL,) (Seeger et al.l 2016) ['| where we adopt IQL 5, (mean absolute er-
ror) and IQL ¢5(0.85-quantile). The smaller numbers of these metrics indicate better performances.
Since the PIF code has not made available, we borrow the reported numbers in the paper recorded
in IQL only. In the table, our method outperforms the baselines in 7 out of all 9 settings. In partic-
ular, when considering function \g, our result regarding the /5-norm surpasses the STVB by 1.43.
For function A3, the difference between our result and MFVB concerning the IQL  is 2.75. This
demonstrates the superior performance of the proposed method for Gaussian Cox process inference.

4.1.2 BAYESIAN OPTIMIZATION OVER SYNTHETIC INTENSITY

As the central focus of our work, the proposed BO framework with UCB is performed on the Gaus-
sian Cox process model for effective identification of the intensity peaks. The proposed BO frame-

'IQL, £ [52(A(t:) - S‘(ti)l(plz\(ti)>;\(ti) +(1=p)Ly,)<acr,)) dt, where I, X, and A denote the indicator
function, ground-truth intensity, and MAP estimation, respectively.
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Table 2: Average performance on synthetic data regarding l»-norm and IQL.

. A1 (t) Aa(t) As(t)
Baselines l2 IQLA50 IQLA&% l2 IQLAso IQL.ss l2 IQL.50 IQLAss
Ours 2.98 11.44 7.38 28.58 12.56 8.59 294  30.02 24.32

RKHS 437  16.19 1229 4478 18.84 1127  6.63 5431 53.39
MFVB 3.15 14.36 10.88  32.60 14.41 9.40 382 3277 17.89
STVB 296 13.64 10.26  30.01 12.86 8.66 4.19  36.68 21.86
PIF - 12.50 9.00 - 13.05 8.65 - 30.81 20.03
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(a) Initial step. (b) Step 8. (c) Step 14. (d) Step 20.
Figure 2: Step-wise visualization of BO on synthetic intensity function.

work facilitates effective intensity estimation and computation of the posterior covariance, enabling
the step-wise optimization of next sampling/observation region through UCB acquisition functions,
as shown in Fig.[2] The BO process in this test has a budget of 25 steps. As shown in Fig. 23] the
algorithm keeps sampling by maximizing UCB acquisition function and then improving the estima-
tion based on new samples observed. Three peaks are detected at Step 8 (Fig.[2b), Step 14 (Fig.[2d),
and Step 20 (Fig. 2d). The completed figure showcasing the consecutive BO procedure is provided
in Appendix [[] We will present BO with other acquisition functions in Section4.3]

4.2 EVALUATION USING REAL-WORLD DATA

4.2.1 INTENSITY ESTIMATION ON 2D SPATIAL DATA

RKHS STVB MFVB Ours RKHS STVB MFVB Ours

70
60
50
40

30

(a) 2D neuronal data. (b) 2D Porto taxi data.

Figure 3: Mean estimations comparison on two types of 2D real-world data.

We have compared our method with selected baselines on two 2D real-world spatial datasets and
provided the qualitative results in Fig.[3] The first dataset is 2D neuronal data in which event loca-
tions relate to the position of a mouse moving in an area with recorded cell firing (Sargolini et al.,
2006). The other dataset consists of the trajectories of taxi travels in 2013-2014 in Porto, where we
consider their starting locations within the coordinates (41.15, —8.63) and (41.18, —8.60).

As depicted in Fig. 3] our method successfully recovered the intensity functions. In Fig. [3a our
approach exhibits an enhanced ability to capture structural patterns reflecting the latent gathering
locations of events in comparison to other baselines. Meanwhile, in Fig. [3b} the predicted intensity
by our approach is smoother than other baselines, while important structures on the map are all
identified. The performance demonstrated in these 2D comparative experiments underscores the
validity of our approach for supporting effective BO using the Gaussian Cox models.

4.2.2 BAYESIAN OPTIMIZATION ON SPATIO-TEMPORAL DATA

We utilize a public spatio-temporal dataset of crime incidents (i.e., locations and time) in Washing-
ton, DC, USA, for 2022. We specifically filtered out 343 crime events involving firearm violence
and applied the proposed BO and Gaussian Cox process model to those events. Our initial obser-
vations consist of the events that took place on May 20th and June 10th. We employ UCB as the
acquisition function in this experiment.
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Figure 4: Step-wise visualization of BO on 2022 DC crime incidents data.

The results are visualized in Fig. 4] where our proposed method successfully identified the general
temporal-spatial intensity pattern after 10 steps, observing a small fraction of incidents. Since the
BO continues to sample regions with the highest intensity, it keeps exploring and pinpointing pri-
mary latent central locations on the map, which are south-east DC area at step 3 (Fig.[4b), downtown
area at step 7 (Fig. i), and east DC area at step 10 (Fig.[4d). After Step 10, the resulting intensity
pattern does not undergo major changes, even as more observations were incorporated, ultimately
stabilizing by step 25 (Fig. ffe). The entire BO process of 25 steps took only 91.56 seconds. This
demonstrates the effectiveness of our BO framework in efficiently identifying spatial patterns and
optimizing unknown functions.

4.3 EXPERIMENTS WITH DIFFERENT ACQUISITION FUNCTIONS
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(b) BO with acpp. From left: step 1, 2, 4, and 12.
Figure 5: BO with a;q1 and acpp on coal mining disaster data.

As outlined in Section [3:4] our Gaussian Cox process model and inference solution enable novel
acquisition functions beyond the standard ones (e.g., aycs, ap1, and agg), to address tasks like idle
time and change point detection. We evaluate these novel acquisition functions on a coal mining dis-
aster data (Jarrett, [1979), comprising 190 mining disaster events in the UK with at least 10 casualties
recorded between March 15, 1851 and March 22, 1962.

Fig. 54 shows the results for a;qie, which prioritizes the exploration of regions with low mean and
high variance from the current prediction, implying a higher probability of fewer arrivals (idle time).
When acpp is adopted, the BO leans toward sampling regions where significant changes in inten-
sity are likely to occur based on the posterior mean and variance, as demonstrated in Fig.[5b] These
experiments showcase the versatility of our method in addressing different BO objectives by intro-
ducing corresponding acquisition functions.

5 CONCLUSION

In this paper, we provide a novel framework for estimating the posterior mean and covariance of the
Gaussian Cox process model by employing Laplace approximation and transforming the problem in
a new reproducing kernel Hilbert space. The results enable a novel BO framework based on Gaus-
sian Cox process models, allowing the design of various acquisition functions. Our experimental
results on synthetic and real-world datasets demonstrate significant improvement over baselines in
estimating spatio-temporal data and supporting BO of unknown functions. The work paves the path
to considering more complex scenarios, such as models with the time-variant latent intensity, sparse
input spaces, and high dimensions.
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A PROOF OF LEMMA ]

Proof. Assuming a mode g such that g = arg max, log f(g), the condition Vlog f(g) = 0 must
be satisfied. Therefore, when expanding log f(g) using Taylor’s formula at g, we have:

log f(g) ~ log f(g) + Vlog f(g)(g — g) + 1(g —-9)"'Vi_;log f(9)(g — 9)

. 2 (17
=log f(9) + (9 — 9)" Vg log f(9)(g — 9)-
Let A £ —Vf]: glog f(g). Based on the derived expansion |i the likelihood in equation (1)) can

be approximated as:

ol

(2m)

(18)
A2

[ @~ 1@ [ |50 -0 Alg - 9)| ag = 1@ 200
g g
This concludes the proof. O

B PROOF OF LEMMA 2]

Proof. With the uniform convergence on S x S, the Mercer’s representation of the kernel function
kis:

=Y mdi(t)git), t,t' €S, (19)
i=1

where {n;}32, and {¢;(t)}2, are the corresponding eigenvalues and orthogonal eigenfunctions of
kernel functlon k, respectively.

The second integral term in the original objective (7) is the Lo-norm, which is:

/S BA(E) dt = (DI, s (20)

Since h € Hj, we write it as b = Zfol biy; using Mercer’s theorem, leading to Hh||2L2(S) =

>oio, b7 and ||h|3, = 3272, bin; ', Here, {b;};°, signifies the eigenvalues, {1;}5°, represents
the orthogonal eigenfunctions of h, and {ni}s2, corresponds to the eigenvalues of the orlglnal kernel
function k. Therefore, the original objectlve in equation (7)) can be rewritten as:

J(h) = —Zlogh2 IR, s) + IR 13,

oo

:fZIOgh2 +Zb2+’yZb§nj_l
]:1 j=1
2D
:fZIOgh2 +Zb2(1+’ynj_1)
7j=1
= —Zlogh2 iL
= ni(n +7)7

Considering a eigenvalue of a new kernel k satisfying its eigenvalue 7j; = n;(n; +) ™', the second
and third terms in equation (/) can be merged into a single square norm in ;.. In this case, compared
to the original expansion in equation (T9), the Mercer’s expansion of the new RHKS kernel is:

oo

E(t,t) = Z " 7@( Yoi(t), tt €S, (22)

i=1

13
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and thus the simplified objective is:

Zlogiﬂ + A5, - (23)
This concludes the proof. O

C PROOF OF THEOREM

Proof. Since ZJ L b3n ! < oo if and only if E; NGRS 7)77] that is h € Hy, is equivalent to
h € Hj, two RHKS spaces then correspond to exactly the same set of functions. Thus, optimization
over Hj, equals the optimization over Hj,. In this case, we can apply the representer theorem to the

simplified objective (8) after kernel transformation into k.

Given {t;};" |, any h € H; can be decomposed into a part that lives in the span of the k and a part
orthogonal to it, i.e.:

n
- Zalk(tl7) +Ua (24)
i=1
where, for « € R™ and v € Hj, we have:
(v,k(t;,-)) = 0,Vt; € S. (25)

The first term in objective (8)) is independent of v and only related to A(-). Using equation the
reproducing property, application of &(-) to other points ¢; yields:

hok(ti, ),

(ke euit)

h(tz) =

—~

k

LI - (26)
= Z ik(tivtj) + <U7 k(tja ')>’H,;
i=1
n ~
=Y ak(tity).
i=1
As for the second term, since the orthogonal property in equation (23)), we get:
n 2
(@), = ||>_ aik(t
=1 H,
n 2
= 1> auk(t + [loll3, 27)
i=1 Hi,
n 2
Z Z Oélk(t )
=1 H,

where, in the last inequality, the equality case occurs if and only if v = 0. Setting the v = 0 thus
does not have any effect on the first term in equation (§)), while strictly reducing the second term.
Hence, the minimizer must have v = 0 and the solution takes the form:

h(-) = Zai%(th ). (28)
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Since we define h(t) = x2 (g(t)), the mean g of GP should be:

2
n

g=r" || D aikltity) | |- (29)

ij=1

The theorem is proven. 0

D PROOF OF THEOREM

Proof. Since p(g|0, ) ~ N (u,X), we can expand and rewrite log-likelihood of equation (1)) as:
log f(g) = logp({t:}i=119) + log p(g(0,. )

N 1,
=logp({t:}iiilg) — 59" 2719 - 5 log || (2m)°,
and its second-order gradient with respect to g is:
Vilog f(g) = Vi logp({ti}ii|g) — =" 31)

The first term in equation (31)) denote the inhomogeneous Poisson process log-likelihood in equa-
tion (2). We approximate its integral term with m-partition Riemann sum for all dimensions and
compute the second-order gradient, resulting:

(30)

n

Valogp({t:}ii1g) = Vg [ Y rlg(t) — D r(g(t;))At

i=1 j=1
O logp({ti}p,18) . 9*logp({ti}7,19)
0g1 0g1 Ogm 0g1
= : - : (32)
O logp({ti}p,19) . 9*logp({t:}7,19)
agl 897” 8g'm agm,
K Ari K A{, —f‘iz Ari 3 ~ . .
= diag (1) ?(7271-) 9 i2(gi) At =7
—i?(g;) At i #

Given A = —Vf]: glog f (@), we conclude the proof by providing the variance A~! in equation (EI)
with respect to Gaussian mean g by applying a subtraction:

_ _ oy —1

AT = (71 - Vilogp({ti}inilg) (33)

where the result of Vg log p({t;}"_,|g) is derived in equation li To align the dimension between

the covariance and gradient results, we discretize each dimension of the covariance matrix via a size

m uniform grids to ensure a lossless computation, where we have 3 = 3; ® --- ® 3y with ®
denoting Kronecker product.

It is worth noting that £; and ¢; may not always be exactly identical in practical implementations. To
address this, we can consider them as the same if their absolute difference falls within a small error
range. O

E PROOF OF LEMMA

Proof. We use the ith estimated eigenfunction ngSi (t) and eigenvalue 7); to compute the approximation
of the new kernel function in Lemmal[2] as:

m 1 )\ma,t

Z Tymat o A‘(t)(i%:(t’)

177741

/\mat m

o Z APAE (A
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Since the A in equation (10) is the diagonal matrix of every ith eigenvalue A\**, by applying the
derived kernel function estimation (34) to all input observations, the estimation of the new kernel
matrix K becomes:

R m
Ky =K [Z(m-lw’w + w?mrluiu;f] Kot

i=1 X (35)
) _
= K U (A2 + 7A> UK,

m

which concludes the proof. O

F PROPOSED ALGORITHMS

We summarize the workflow of the proposed BO framework on Gaussian Cox Process Models in
Algorithm [T} The numerical approximation approach for posterior mean and variance estimation is
provided in Algorithm 2]

Algorithm 1 BO on the Gaussian Cox Process

1: initialize Starting observation region Sy, acquisition function a(t), total step T

2: fori=0:(T—1)do

3:  Estimate posterior mean and covariance of the Gaussian Cox process 0,, 5 using Theorem
and 2] based on observations in region S;

4:  Find observations in next sampling region {7} through the acquisition function a(t; 6, )
regarding current mean and covariance

5: Si+1 — {T} usS;

6: end for

Algorithm 2 Estimations using Nystrom Approximation

1: initialize Kernel matrix K, observed events {¢;}7_,, discretized grid {=;}}”,, random dual
coefficient o, learning rate §

Perform eigendecomposition on grid K, = UAUT = 7" | Anaty,u
Derive the eigenvalue and eigenfunction of k(¢;, ;) using equation

Update dual coefficient o for new kernel function k using gradient descent:
Compute the gradient of optimization objective J in equation (8) as V,.J
fork=0:(n—1)do

Qpy1 < Q — (5VaJ
end for )
Compute new kernel matrix K regarding k based on Lemma
Compute the posterior mean g and covariance A !, respectively

T

3

A A S A A I

—

G DETAILED EVALUATION SETUPS

We conducted our experiments on the Ubuntu 20.04 system, with Intel(R) Core(TM) i7-6700 4-
core CPU (3.4 GHz) and 16.0 GB RAM. The algorithm is implemented in Python 3.8, using main
Python libraries NumPy 1.22.3 and Pandas 2.0.3. The code has been made available on GitHub via
https://github.com/ysmei97/gaussian_cox_bo.

To evaluate the BO over synthetic intensity in Section [d.1.2] a random ground-truth intensity func-
tion is generated (black curve in Fig. 2, where the samples are shown by thinned events (Lewis &
Shedler, 1979) in the bottom of plots, marked by black vertical bars. In the experiment, we initialize
the region centers ¢ = (25, 60) in the time domain of [0, 100] with a region radius of 2, i.e., region
size of 4. Observations in selected regions are highlighted in red vertical bars. We use the UCB ac-
quisition function for identifying intensity peaks. To expedite the BO process, we set the acquisition
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values of explored regions as zero to prevent the algorithm from becoming trapped within the same
region.

For different acquisitions experiments in Section [4.3] we utilize coal mining disaster data (Jarrett,
1979), comprising 190 mining disaster events in the UK with at least 10 casualties recorded between
March 15, 1851 and March 22, 1962. We conducted the experiments with a total budget of 12 steps.
The initial region centers are (20, 60), and the region radius is 4. For visualization purposes, we let
the year 1851 be the starting point (i.e., 0) of the time axis, shown in Fig. 5]

H ADDITIONAL EXPERIMENTS ON ACQUISITION FUNCTIONS

H.1 INTENSITY PEAK PREDICTION

In Table 3] we provide measures of the [, distance between our predictions and the ground-truth
intensity at the steps where intensity maxima are identified. All three intensity peaks in Fig. 2| (from
left to right) correspond to the respective maxima in the table. We include information about the
step at which each maximum is identified, along with its current /3 norm, considering different ac-
quisition functions for each maximum. We adopt common acquisition functions for deciding the
optimum solution, i.e., UCB, PI, and EI. These results illustrate that all three acquisition functions
can effectively identify the peaks in the synthetic intensity. Furthermore, we present the lo norm
every 8 steps, demonstrating a decreasing trend in the distances between the ground truth and pre-
dicted intensities over time. This experiment underscores the capability of our method to efficiently
locate peaks in a given point process when equipped with an appropriate acquisition function.

Table 3: Step-wise evaluation to intensity peak regarding different acquisition functions (AFs).

AFs 1: Ist maximum  2: 2nd maximum  3: 3rd maximum l2-norm every 8 steps
Step l2 Step l2 Step l2 Step8 Step 16  Step 24
UCB 8 10.79 14 8.91 20 9.16 10.79 10.21 9.27
EI 12 13.68 23 8.07 8 9.92 9.92 10.54 8.51
PI 9 17.01 12 14.50 25 11.17 17.34 11.79 11.15

H.2 CUMULATIVE ARRIVAL DETECTION

15 =
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Variance )
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Figure 6: BO with a.,,, on coal mining disaster data.

Fig. @ shows the results for ac,um, Which indicates the region that contains the most cumulative
arrivals. This acquisition function differs from peak intensity detection since the selected region by
the former might not necessarily have the global maxima but most point events. As showcased in
the figure, the designed acquisition function a.y,y, can successfully pinpoint the region of interest
where more arrivals are possibly gathered.

I BAYESIAN OPTIMIZATION ON 2022 USA TORNADO DATA

We utilize a public spatio-temporal dataset of tornado disasters (i.e., locations and time) in the USA
in 2022. We specifically filtered out 1126 tornado events with actual loss and applied the proposed
BO and Gaussian Cox process model on those events with a budget of 20 steps. We employ the UCB
acquisition function in this experiment. The results are visualized in Fig. [/| where our proposed
method successfully identified the general temporal-spatial intensity pattern after 6 steps. After
Step 12, the resulting intensity pattern does not change significantly as more observations fall in
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(a) Initial step. (b) Step 4. (c) Step 6. (d) Step 14. (e) Final step.
Figure 7: Step-wise visualization of BO on 2022 USA tornado data.

Table 4: Sensitivity results regarding different link functions in /3-norm, IQL, and errors.

. A1 (t Aa(t As(t
Baselines l2 IQL(Ast)) IQL.ss l2 IQI—(‘.s)o IQLA85 l2 IQL(.S)O IQLA85
Ours (q) 2.98 11.44 7.38 28.58 12.56 8.59 2.94 30.02 24.32
’ (1.32) (2.87) (3.01) (7.64) (1.01) (2.34) (0.98) (5.73) (3.04)
Ours (¢) 3.11 12.46 8.56 31.22 15.63 12.84 4.00 31.98 26.41
’ (1.01) (3.44) (3.55) (8.14) (1.73) (2.11) (1.25) (6.54) (6.03)
Ours (s) 291 11.98 7.21 29.73 15.32 11.37 4.17 33.77 24.15
o (1.27) (3.21) (3.18) (7.87) (1.69) (2.85) (1.88) (7.91) (5.34)
RKHS 4.37 16.19 12.29 44.78 18.84 11.27 6.63 54.31 53.39
(1.64) (3.21) (3.04) (11.56) (2.81) (2.34) (2.78) (8.20) (7.89)
MFVB 3.15 14.36 10.88 32.60 14.41 9.40 3.82 32.77 17.89
(1.23) (2.84) (2.98) 9.01) (2.45) (1.89) (2.31) (5.94) (3.01)
STVB 2.96 13.64 10.26 30.01 12.86 8.66 4.19 36.68 21.86
(1.43) (2.91) (2.94) (8.57) (2.30) 2.41) (2.01) (6.22) (3.16)
PIF () B 12.50 9.00 _ 13.05 8.65 B 30.81 20.03
(4.40) (4.29) (1.88) (1.70) (5.89) 4.12)
PIF (¢) B 12.29 9.30 _ 15.68 12.35 B 32.24 21.05
(4.33) (3.74) (1.67) (1.99) (7.14) 4.79)
PIF (s) B 11.58 7.62 B 14.46 10.96 B 32.59 20.21
(3.26) (3.22) (0.83) (3.20) (7.24) (6.94)

the predicted high-intensity region, ultimately stabilizing by step 20 (Fig.[7e). The evolution of the
intensity of this experiment shows that the southern USA will experience more tornado disasters,
demonstrating the effectiveness of our BO framework.

J SENSITIVITY EXPERIMENTS REGARDING DIFFERENT LINK FUNCTIONS

We change the link functions used in our framework and show the sensitivity results in estimating the
synthetic intensity function Table[z_f} In this table, we use the abbreviations g, e, and s to represent
the quadratic, exponential, and softplus link functions, respectively. Detailed results of baseline
methods, including statistical errors, are also given in the table. Notably, our results consistently
outperform the other baseline methods in 8 out of 9 cases. In particular, for the synthetic function
A1, our approach with the softplus link function yields superior results, while the quadratic link
function proves effective in handling other scenarios.

K RUNTIME EXPERIMENTS

We conducted runtime tests of our BO framework on three distinct datasets, each with a trial budget
of 20 steps. The step-wise and total runtime, along with the error in parenthesis for each trial, are
presented in Table[5] Notably, the test involving 1126 events from the USA tornado dataset requires
the most time to complete, whereas the tests on DC crime data with 343 events and coal mining
disaster data with 190 events need comparatively less time. Additionally, the step-wise runtime
exhibits a noticeable increasing trend as the number of observed events grows over time. This is due
to the corresponding increase in estimation complexity as more point events are incorporated into
the analysis.
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Table 5: BO runtime evaluation (in second) for 20 steps regarding different datasets.

Datasets Step 5Stime  Step 10 time  Step 15 time  Step 20 time  Total time

DC crimes 1.42 2.55 4.22 5.95 68.61
(0.56) (0.44) (0.84) (1.28) (1.45)

USA tornadoes 14.71 58.80 77.89 194.23 820.56
(2.56) (8.73) (9.75) (14.67) (21.40)
0.57 0.96 1.45 271 25.96

Coal mining disasters 0.21) (0.26) (0.32) 0.51) (0.33)

L VISUALIZATION OF THE BAYESIAN OPTIMIZATION PROCEDURE
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Figure 8: Complete BO procedure from step 1 (top left) to 20 (bottom right) on a synthetic intensity.

In this section, we provide a complete visualization of Fig. 2]in Section In the figure, the
acquisition function depicted by the green curve anticipates the region of interest for the next step
based on our posterior estimates of the current step. For instance, in step 1, the acquisition function
suggests the region centered at 100. Thus, the algorithm will observe the indicated region at the step
2, though no events exist in that region.

M SENSITIVITY EXPERIMENTS REGARDING WEIGHTS IN ACQUISITION
FUNCTIONS

Introduced in Section @ w1,ws, w3 are weights for mean and covariance terms to balance their
contributions in the acquisition functions aycp, Gidle, and acum, respectively. When these hyper-
parameter values are small, BO will place higher emphasis on the mean, favoring exploitation in
the process. In contrast, when they are large, BO favors exploration by placing higher emphasis on
large variance. In our previous experiments, these hyperparameters were fixed at 0.8. In this section,
we conducted the sensitivity experiments regarding ws as the illustrative example. Comparing the
results in Fig. El and Fig. |§| (where ws = 0.8), when we reduce the value of ws to 0.6, the unexplored
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Figure 9: Sensitivity study about tuning w3 for acym.

areas with high mean and low uncertainty will be prioritized, such as region centered at ¢ = 30 in
step 2, Fig[0al Conversely, increasing ws to 1.0, as shown in Fig. [9b] shifts the focus to areas with
high uncertainty.

N BAYESIAN OPTIMIZATION ON SPARSE SYNTHETIC DATA
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Figure 10: Complete BO procedure from step 1 (top left) to 18 (bottom right) on sparse data.

In Section [3.2] we utilized an approximation (5) assuming the number of events n being large.
Therefore, we experiment over a sparse synthetic data with 48 events to demonstrate the capability
of the proposed framework. The results of 18 steps are shown in Fig. Initially, the estimation
deviates significantly from the ground truth due to the limited observations. However, as the number
of observations accumulates during the BO process, the approximation becomes more accurate after
each step. In the figure, the method demonstrates its ability to predict latent intensity peaks with
relatively sparse data.
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Figure 11: Visualization of tabular results regarding /5-norm.

O VISUALIZATION OF TABULAR SYNTHETIC INTENSITY RESULTS

In this section, we visualize the tabular results using box plots for [-norm metric with three synthetic
functions in Section £.I.1] In the experiments, we adopt ten replicates for each available baseline.
The results are provided in Fig.[TT} where the red horizontal lines show the medians.
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