
A Details of Agents 13378

A.1 DTQN, TSAC . 13379

A.2 ZP-DRQN, ZP-RSAC . 13380

A.3 BA-DTQN, BA-TSAC . 13381

A.4 UA-DTQN, UA-TSAC . 14382

A.5 B-DQN, B-SAC . 14383

A.6 Hyper-parameters . 15384

A.7 Network Structures . 16385

B Details of Domains 18386

B.1 Sphinx . 18387

B.2 CarFlag-2D . 18388

B.3 Heaven-Hell . 19389

B.4 Robot Domains . 19390

C Representations Training Details 21391

C.1 Training Data Generation . 21392

C.2 Network Architecture . 21393

C.3 Mutual Information Estimation . 21394

C.3.1 Minimizing I(zs; zo) . 21395

C.3.2 Maximizing I(o; zo) and I(s; zs) . 23396

C.4 Hyper-parameters . 23397

D Additional Experiments 24398

D.1 Using zs ⊕ zo versus zs for Task Learning . 24399

D.2 Using Only Auxiliary Task/Intrinsic Rewards . 24400

D.3 Using GRU v.s. GPT . 25401

D.4 Visualization of Intrinsic Rewards . 25402

E Details of Hardware Experiments 25403

E.1 Obtaining Depth Images . 25404

E.2 Added Perlin Noise for Better Sim-To-Real Transfers 26405

F Details of SO(2) Rotational Augmentation 26406

12

A Details of Agents407

A.1 DTQN, TSAC408

These are variants of DQN and SAC, made memory-based by using a transformer as the sequence409

model as shown in Fig. 8 and Fig. 9. Similar models have been explored in recent work [21, 22].

DTQN

Encoder

Encoder

Transformer

Encoder

MLP

History-based
Critic

Figure 8: Architecture of DTQN.

Encoder

Encoder

Transformer

Encoder

Encoder

Encoder

Transformer

Encoder

MLP

Encoder

MLP

MLP

History-based
Actor

TSAC

History-based
Critic

Figure 9: Architecture of TSAC.

410

A.2 ZP-DRQN, ZP-RSAC411

These agents [41] are similar to DTQN and TSAC, except they use a recurrent sequence model in-412

stead of a transformer. Importantly, using a recurrent sequence model (e.g., a GRU [42]) is required413

(see [41]). Additionally, these agents are regularized with a self-predictive auxiliary task of predict-414

ing the next latent state z from a history h. Specifically, given a recurrent encoder fϕ : H → Z and415

a latent dynamics model gθ : Z ×A → Z , the auxiliary task is to minimize:416

Laux = ∥gθ(fϕ(h), a)− fϕ̄(h
′)∥22 , (6)

where ϕ̄ is the target network of ϕ.417

A.3 BA-DTQN, BA-TSAC418

In BA-DTQN [6] (see Fig. 10), a state-based critic Q(s, a) and a history-based critic Q(h, a) are419

learned to leverage the state availability during training but not during execution (i.e., we cannot use420

Q(s, a) during execution). Unfortunately, as in [6], Q(s, a) is not mathematically well-defined and421

generally a biased estimate of Q(h, a), which is used to select actions during execution.422

13

Encoder

Encoder

Transformer MLP

History-based
Critic

BA-DTQN

Encoder MLP

State-based
Critic

Encoder

Figure 10: Architecture of BA-DTQN.

State-based
Critic

Encoder

Encoder

Transformer

Encoder

Encoder

MLP

Encoder

MLP

MLP

BA-TSAC

History-based
Actor

Figure 11: Architecture of BA-TSAC.

The difference between BA-TSAC (see Fig. 11) and TSAC is that the critic is trained additionally423

using state input during training. Specifically, we learn a state-based critic Q(s, a) instead of the424

history-based Q(h, a). Similar to BA-DTQN, BA-TSAC also has bias. For BA-TSAC, during425

execution, actions are computed using a history-based actor.426

A.4 UA-DTQN, UA-TSAC427

In UA-DTQN [6] (see Fig. 12), a history-state-based critic Q(h, s, a) and a history-based critic428

Q(h, a) are learned. Unlike BA-DTQN with Q(s, a), Q(s, h, a) can be well-defined and has been429

proven to be an unbiased estimate of Q(h, a). During execution, actions are selected from Q(h, a).430

Unlike BA-TSAC, UA-TSAC [9] (see Fig. 13) combines both state and history features to train the431

critic, i.e., we learn a history-state-based critic Q(s, h, a). Similar to UA-DTQN, UA-TSAC does432

not introduce learning bias. During execution, actions are computed from a history-based policy.433

A.5 B-DQN, B-SAC434

The architectures of these agents are depicted in Fig. 14. These agents are based on Believer [8],435

which leveraged the state availability to train an agent in three stages:436

Stage 1. Learning compact state representations with state-labeled transitions, i.e., a batch of sam-437

ples (s, o, a, r, s′, o′). This stage is similar to our first stage (see Algorithm 1) but without the438

information-based regularizations. Instead, the authors proposed to regularize the KL divergence439

KL[ϕ(s)∥N (0, 1)] to avoid overlapping features between ϕ(s) and ψ(o) by giving penalty when-440

ever ϕ(s) is used to derive features. This, however, does not avoid the overlapping issue between441

learned state and observation features, as shown in our experiment (see Fig. 4).442

14

Encoder

Encoder

Transformer MLP

UA-DTQN

Encoder

History-State-based
Critic

History-based
Critic

Encoder

Encoder

Transformer MLP

Encoder

Encoder

Figure 12: Architecture of UA-DTQN.

Encoder

Encoder

Transformer

Encoder

MLP

UA-TSAC

Encoder

Encoder

Transformer

Encoder

MLP

Encoder

MLP

Encoder

History-based
Actor

History-State-based
Critic

Figure 13: Architecture of UA-TSAC.

Stage 2. Learn a recurrent history model p(ϕ(s)|h) with variational autoencoders [46] (VAE) by443

maximizing the joint log-likelihood p(ϕ(s), h)) averaged over (s, h) samples.444

Stage 3. Use the history module p(ϕ(s)|h) for task learning. First, samples are drawn from the445

VAE to derive a history summary. Then, this summary is used as the “states” for task learning using446

memoryless RL algorithms. The authors optionally fine-tune p(ϕ(s)|h) with the on-policy data.447

As the original paper applied their method for PPO [47], which is on-policy, we had to modify the448

method to apply to DQN and SAC, resulting in B-DQN and B-SAC. In Stage 2, to fairly compare449

with other baselines, we replace GRU in the history model with the GPT model used in other base-450

lines. Moreover, in Stage 3, we fine-tuned the history module for every domain (as used in the451

original code). Finally, the sequence model of B-SAC is shared between the actor and the critic,452

following the original code.453

A.6 Hyper-parameters454

For DDQN [39], we use an epsilon-greedy exploration strategy with a linear schedule, starting at455

ϵ = 1.0 and ending at ϵ = 1
T with T being the episode length. The schedule time is equal to 10% of456

the total training timesteps. We use a batch size of 64 episodes.457

15

https://github.com/awwang10/sphinx

B-DQN

Encoder

MLP

History-based
Critic

Transformer

Pretrained History Encoder

Transformer

Encoder

MLP

Encoder

MLP

B-SACHistory-based
Critic

Pretrained History Encoder

MLP

History-based
Actor

Figure 14: Architectures of B-DQN and B-SAC with a pre-trained history encoder from Believer [8].
We change the history encoder from GRU-based to transformer-based for a fair comparison with
other agents. For B-SAC, we use a shared history module, similar to the original code.

For continuous actions, we use SAC [40]. We automatically tune the entropy temperature, initializ-458

ing at 0.01. The chosen target entropy is equal to the negation of the action dimension. We use the459

discount factor γ = 0.99. We use a batch size of 64 episodes.460

Other hyper-parameters are in Table 2 with shared parameters and ones specific for each agent.461

Table 2: Hyper-parameters used for RL agents. HH: Heaven-Hell, S: Sphinx, CF: CarFlag-2D.
Agent Hyper-parameter Value

Shared Episode Length 50
Discount Factor 0.99
Replay Buffer Size 1M: discrete domains, 100k: robot domains
Target Update Rate 0.005
Actor Learning Rate 3e-4
Critic Learning Rate 3e-5: CF and S; 3e-4: other
Batch size 64

SAC Initial Entropy Temperature 0.01
Update Per Step 0.25: discrete domains, 1.0: robot domains

ZP-DRQN Loss weighting 1.0: discrete domains, 0.1: robot domains

Ours Loss Weighting 0.5 for all domains
Reward Weighting 10.0: HH, S, 0.1: robot domains, 0.0: CF

B-DQN, B-SAC Latent Dimension 32
X-Dim 16
Z-Dim 16

A.7 Network Structures462

We use the following acronyms: FC(n): a fully connected layer with n outputs; Conv(f , s): a463

convolutional layer with filter size f×f and stride s; R: the ReLU activation function; MaxPool(w):464

a max pooling layer with window size w; T(H, N, HS, D): Transformer with H heads, N layers,465

hidden size HS, and the dropout rate D; GRU(N, HS): GRU with N layers and hidden size HS.466

16

https://github.com/awwang10/sphinx

FC(64) + RObs. Encoder Action Encoder

Top Branch

FC(64) + R

Obs. Encoder

Sequence Model Trans(2, 1, 128, 0.1) GRU(1, 128)or

Bottom Branch

FC(128) + RFC(128) + R FC(32)

Figure 15: Network structures used in Heaven-Hell.

car

FC(64) + R

Obs. Encoder

Action Encoder

Top Branch

Obs. Encoder

Sequence Model Trans(2, 1, 128, 0.1) GRU(1, 128)or

64 Conv(2,1) + R MaxPool(2) 128 Conv(2,1) + R MaxPool(2) 256 Conv(2,1) + R Flatten FC(32)

Bottom Branch

16 Conv(2,1) + R 32 Conv(2,1) + R Flatten FC(100)

Figure 16: Network structures used in CarFlag-2D.

Obs. Encoder

Bottom Branch

64 Conv(2,1) + R 128 Conv(2,1) + R MaxPool(2) 256 Conv(2,1) + R Flatten FC(32)

FC(64) + R

Obs. Encoder

Action Encoder

Top Branch

Sequence Model Trans(2, 1, 128, 0.1) GRU(1, 128)or

16 Conv(2,1) + R 32 Conv(2,1) + R Flatten FC(100)

Figure 17: Network structures used in Sphinx.

Obs. Encoder

Bottom Branch

32 Conv(8,4) + R 64 Conv(4,4) + R 64 Conv(3,1) + R Flatten FC(32)

FC(64) + R

Obs. Encoder

Action Encoder

Top Branch

Sequence Model Trans(2, 1, 128, 0.1) GRU(1, 128)or

16 Conv(2,1) + R 32 Conv(2,1) + R Flatten FC(100)

Figure 18: Network structures used in robot domains.

17

B Details of Domains467

B.1 Sphinx468

Observation

Channel 0 Channel 1

State

Channel 0 Channel 1

Figure 19: Sphinx domain with two-channeled pixel-based observations and states. Channel 1 of
the observation reveals the goal cell (green) only when the agent enters the blue cell. In contrast, the
same channel of the state always reveals the goal cell regardless of the agent’s position.

In this domain (see Fig. 19), an agent must visit the goal cell, which can be in one of three corners469

except the top-left one. The agent must visit the information cell (blue) at the top-left corner to know470

the current corner of the goal. However, there is a cost when going to the information cell.471

Action. Move-Right, Move-Left, Move-Up, Move-Down472

Observation. A 6× 6× 2 image with the first channel encodes the agent’s position and the second473

encodes the goal’s position. The second channel only contains the goal information when the agent474

enters the blue cell.475

State. A state has the same structure as an observation, but the second channel always contains the476

goal information.477

Reward. +1 when reaching the goal, −0.2 when visiting the information cell, and 0 otherwise.478

B.2 CarFlag-2D479

Channel 0 Channel 1Channel 0 Channel 1

StateObservation

Figure 20: CarFlag-2D domain with two-channeled pixel-based observations and states. Channel
1 of the observation reveals the goal cell only when the agent enters the blue region. In contrast, the
same channel of the state always reveals the goal cell.

In this domain (see Fig. 20), an agent must visit the goal cell (green) to finish the task. The goal cell,480

however, is only present in the observation when the agent visits the information region (blue).481

Action. Move-Right, Move-Left, Move-Up, Move-Down482

Observation. A 11 × 11 × 2 image with the first channel encodes the agent’s position, and the483

second encodes the goal’s position. The second channel only contains the goal information when484

the agent enters the blue region.485

State. A state has the same structure as an observation, but the second channel always contains the486

goal information.487

Reward. +1 when reaching the goal, and 0 otherwise.488

18

B.3 Heaven-Hell489

In this domain, an agent must visit heaven (green cell) to finish the task. The goal cell can be either490

on the left or on the right side with 50% probability. To observe the side of the goal (left or right),491

the agent must visit the priest, who resides in the bottom right corner.

50% 50%
Heaven Hell

Priest

Agent

Figure 21: The Heaven-Hell domain with vector-based observations and states.

492

Action. Move-Right, Move-Left, Move-Up, Move-Down493

Observation. A vector consists of the agent’s position and the side information. The side informa-494

tion can take the value of 0 (no information), 1 (heaven on the right), or −1 (heaven on the left).495

State. Like the observation, but the true side of the goal is always revealed.496

Reward. +1 when reaching heaven, −1 when reaching hell, and 0 otherwise.497

B.4 Robot Domains498

In these domains, the agent must manipulate the only movable object among two objects, which are499

exactly the same under the top-down depth image observation.500

Action. An action a = (δx, δy, δz, δr), where δxyz ∈ [−0.05, 0.05] are the displacements of the501

gripper in the XYZ axes, and δr ∈ [−π/8, π/8] is the angular rotation around the Z axis.502

Observation. All robot domains share the same observation: the top-down depth image taken from503

the camera centered at the gripper’s position. Two fingers of the gripper are projected on the image.504

State. The state also has two channels. The first channel is the first top-down depth image of the505

observation. While the second channel of the observation is non-informative, the second channel506

of the state is an image that masks everything except the movable object (see Fig. 22) in which the507

movable objects are colored red for visualizations).508

Reward. In Block-Pulling, the agent receives a reward of 1.0 only when the two blocks are in509

contact. In Block-Pushing, the agent receives a reward of 1.0 only when the movable block is510

within 5 cm from the center of the goal pad. In Drawer-Opening, the agent receives a reward of511

1.0 only when the unlocked drawer is opened more than 5 cm.512

19

State
O

bservation

Channel 0 Channel 1

State
O

bservation

Channel 0 Channel 1

O
bservation

State

Channel 0 Channel 1

Figure 22: Visualization of an observation and a state in Block-Pulling, Block-Pushing, and
Drawer-Opening. The movable object is the red one. The state and the observation have two
channels, the first being the top-down depth image. In Block-Pulling, the second channel of the
state reveals the movable object and the gripper. In Block-Pushing, the second channel reveals the
movable block, the gripper, and the goal pad. In Drawer-Opening, the second channel in the state
reveals the unlocked drawer and the gripper.

20

C Representations Training Details513

C.1 Training Data Generation514

Heaven-Hell, CarFlag-2D, Sphinx: In these domains, we use a uniform random agent to generate515

training samples, each is a transition (s, o, a, r, s′, o′). For the number of samples used in each516

domain, please see Table 3.517

In the robot domains, we use the same number of demonstrations (80 episodes) to learn the represen-518

tations during task learning. Furthermore, we augment the training data using random rotations per519

transition as used in [48] (also see Appendix F). Finally, we describe the planners used to generate520

the demonstrations in these domains.521

Planner in Block-Pulling: The planner randomly selects a block and attempts to pull it to the522

other block direction until the task is accomplished. If, for a while, the position of the selected block523

remains unchanged, the planner will move the gripper to the other block and repeat the pulling.524

Planner in Block-Pushing: A block is randomly chosen and pushed toward the goal pad. If the525

block’s position remains unchanged for a while, the planner will move the gripper to the other block526

and resume pushing until the task is finished.527

Planner in Drawer-Opening: The planner selects a drawer randomly and tries to open it. If the528

chosen drawer fails to open after a while, the gripper will move to the other drawer and repeat the529

opening action.530

C.2 Network Architecture531

The specific architecture used to learn representations is shown in Fig. 23.532

Maximize MI

Minimize MI +

Reward
Predictor

Next Obs.
Feature

Predictor

Next State
Feature

Predictor

Sum

State Encoder

Obs. Encoder

Action Encoder

Dynamics
Model

Maximize MI

Figure 23: Architure to learn representations in all domains.

Next, we describe the components for each domain from Fig. 24 to Fig. 27. To succinctly describe533

the network architecture, we use the following acronyms: FC(n): a fully connected layer with534

n outputs; Conv(f , s): a convolutional layer with filter size f × f and stride s, R is the ReLU535

activation, and MaxPool(w): a max pooling layer with window size w.536

C.3 Mutual Information Estimation537

C.3.1 Minimizing I(zs; zo)538

From the upper bound equation Eq. (2), we minimize its variational estimate defined below:539

LCLUB =
1

B2

B∑
i=1

B∑
j=1

[log q(zoi |zsi)− log q(zoj |zsi)] (7)

21

64 Conv(2,1) + R 128 Conv(2,1) + R MaxPool(2) 256 Conv(2,1) + R Flatten FC(32)
Obs. Encoder
State Encoder

FC(16)Action Encoder

FC(256) + R FC(256) + R FC(256) + R
Dynamics

Model

FC(1)Reward Pred. FC(32)Next State Feature Pred.

FC(32)Next Obs. Feature Pred.

Figure 24: Network architecture in Sphinx.

64 Conv(2,1) + R MaxPool(2) 128 Conv(2,1) + R MaxPool(2) 256 Conv(2,1) + R Flatten FC(32)
Obs. Encoder
State Encoder

FC(16)Action Encoder

FC(256) + R FC(256) + R FC(256) + RDynamics
Model

FC(1)Reward Pred. FC(32)Next State Feature Pred.

FC(32)Next Obs. Feature Pred.

Figure 25: Network architecture in CarFlag-2D.

FC(128) + R FC(128) + R FC(32)
Obs. Encoder
State Encoder

FC(16)Action Encoder

FC(128) + R FC(128) + R FC(128) + R

FC(1)Reward Pred. FC(32)Next State Feature Pred.

FC(32)Next Obs. Feature Pred.
Dynamics

Model

Figure 26: Network architecture in Heaven-Hell.

ro

32 Conv(8,4) + R 64 Conv(4,4) + R 64 Conv(3,1) + R Flatten FC(32)
Obs. Encoder
State Encoder

FC(16)Action Encoder

FC(256) + R FC(256) + R FC(256) + RDynamics
Model

FC(1)Reward Pred. FC(32)Next State Feature Pred.

FC(32)Next Obs. Feature Pred.

Figure 27: Network architecture in robot domains.

22

The variational distribution q(zo|zs) is updated to minimize DKL [q(z
o|zs) ∥ p(zo|zs)]. We assume540

q(zo|zs) follows a Gaussian distribution and use the following network architectures:541

Mean network: FC(32) → R → FC(32)542

Log variance network: FC(32) → R → FC(32) → Tanh543

We use the batch size B = 500 and use a learning rate of 0.001 for all tasks, except Heaven-Hell,544

in which a learning rate of 0.0003 is used. We update q whenever we update ϕ(s) and ψ(o).545

C.3.2 Maximizing I(o; zo) and I(s; zs)546

Layer nLayer 1Layer 0

State Encoder

Layer nLayer 1

Layer nLayer 1Layer 0

Observation Encoder

Layer nLayer 1

Figure 28: Architecture to calculate σ(s, E(s)) and σ(o,E(o)) using the dot product operation.

From the lower bound equation Eq. (3), we minimize the following loss:547

LDIM =
1

B2

B∑
i=1

B∑
j=1

[sp(−σ(xi, E(xi))) + sp(σ(xj , E(xi)))] (8)

As shown in Fig. 28, the discriminator σ uses the same architecture of the state encoder ϕ (when548

calculating the state feature zsl of s) and the observation encoder ψ (when calculating the observation549

feature zol of o). We dot product to compute σ(s, E(s)) = zsl · zs and σ(o,E(o)) = zol · zo.550

C.4 Hyper-parameters551

We provide the hyper-parameters used for training representations in Table 3.552

Table 3: Hyper-parameters used in learning representation. HH: Heaven-Hell, S: Sphinx, CF:
CarFlag-2D, BP: Block-Pulling, , BPs: Block-Pushing, and DO: Drawer-Opening.

Domain HH CF S BP BPs DO

of samples 21785 45406 13682 1226 1240 1234
of episodes 500 1000 500 80 80 80
of augmentations per sample - - - 4 12 6
of training epochs 1000 1000 1000 1000 1000 1000
Batch size B 500 500 500 500 500 500
Learning rate 0.003 0.001 0.001 0.001 0.001 0.001
Reward loss coeff. λr 10.0 1.0 10.0 10.0 100.0 100.0
State loss coeff. λs 1.0 1.0 0.5 0.1 1.0 1.0
Observation loss coeff. λo 0.5 5.0 0.03 1.0 1.0 1.0
↓ I(zs; zo) loss coeff. λCLUB 1.0 10.0 0.3 10.0 0.001 1.0
↑ I(s; zs) loss coeff. λDIM 0.0 0.0 0.0 0.1 0.01 0.001
↑ I(o; zo) loss coeff. λDIM 1.0 1.0 0.5 1.0 1.0 1.0

23

D Additional Experiments553

D.1 Using zs ⊕ zo versus zs for Task Learning554

Continuing the experiment from Section 5.2.1, we report the performance using zs and zs ⊕ zo for555

task learning in all domains.556

0 100k 200k 300k 400k 500k
Environment Step

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Re
tu

rn

zs ⊕ zo

zs only

(a) Sphinx

0 200k 400k 600k 800k 1.0M
Environment Step

0.0

0.1

0.2

0.3

0.4

Re
tu

rn

zs ⊕ zo

zs only

(b) CarFlag-2D

0 100k 200k 300k 400k 500k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn zs ⊕ zo

zs only

(c) Heaven-Hell

0 10k 20k 30k 40k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn zs ⊕ zo

zs only

(d) Block-Pulling

0 20k 40k 60k 80k
Environment Step

0.0

0.2

0.4

0.6

0.8

Re
tu

rn

zs ⊕ zo

zs only

(e) Block-Pushing

0 10k 20k 30k 40k
Environment Step

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

zs ⊕ zo

zs only

(f) Drawer-Opening

Figure 29: Task learning performance when using zs and zs ⊕ zo as the “state”.

D.2 Using Only Auxiliary Task/Intrinsic Rewards557

Here, we show the learning performance when using intrinsic rewards and/or the auxiliary task.

0 100k 200k 300k 400k 500k
Environment Step

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Re
tu

rn

Intrinsic-Only
Auxiliary-Only
Auxiliary+Intrinsic

(a) Sphinx

0 200k 400k 600k 800k 1.0M
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn Intrinsic-Only
Auxiliary-Only
Auxiliary+Intrinsic

(b) CarFlag-2D

0 100k 200k 300k 400k 500k
Environment Step

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

Re
tu

rn

Intrinsic-Only
Auxiliary-Only
Auxiliary+Intrinsic

(c) Heaven-Hell

0 10k 20k 30k 40k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Intrinsic-Only
Auxiliary-Only
Auxiliary+Intrinsic

(d) Block-Pulling

0 20k 40k 60k 80k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Intrinsic-Only
Auxiliary-Only
Auxiliary+Intrinsic

(e) Block-Pushing

0 10k 20k 30k 40k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Intrinsic-Only
Auxiliary-Only
Auxiliary+Intrinsic

(f) Drawer-Opening

Figure 30: Comparing using intrinsic rewards or the auxiliary task versus using both.

558

24

D.3 Using GRU v.s. GPT559

Here, we report the performance in all domains when using a GRU versus GPT as the sequence560

model in our proposed agent.

0 100k 200k 300k 400k 500k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

GPT
GRU

(a) Sphinx

0 200k 400k 600k 800k 1.0M
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn GPT
GRU

(b) CarFlag-2D

0 100k 200k 300k 400k 500k
Environment Step

−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Re
tu

rn

GPT
GRU

(c) Heaven-Hell

0 10k 20k 30k 40k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

GPT
GRU

(d) Block-Pulling

0 20k 40k 60k 80k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0
Re

tu
rn

GPT
GRU

(e) Block-Pushing

0 10k 20k 30k 40k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

GPT
GRU

(f) Drawer-Opening

Figure 31: Task learning performance when using a GRU v.s. GPT.

561

D.4 Visualization of Intrinsic Rewards562

We visualize the intrinsic rewards of trained agents in three grid-world domains in Fig. 32. The563

intrinsic rewards peak when the agents perform the information-gathering actions.564

0 5 10 15 20 25 30
Environment Step

−2

−1

0

1

2

In
tri

ns
ic

Re
wa

rd

Episode 0
Episode 1
Episode 2
Enter Info. Cell

(a) Sphinx

0 2 4 6 8
Episode Step

0.0

0.2

0.4

0.6

0.8

In
tri

ns
ic

Re
wa

rd

Episode 0
Episode 1
Episode 2
Enter Info. Region

(b) CarFlag-2D

0 2 4 6 8 10 12
Episode Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

In
tri

ns
ic

Re
wa

rd

Heaven On Left Side
Heaven On Right Side
Ask Priest

(c) Heaven-Hell

Figure 32: Intrinsic rewards within an episode of trained agents in three grid-world domains. Red
circles denote when the intrinsic rewards peak, e.g., when they perform informative actions.

E Details of Hardware Experiments565

E.1 Obtaining Depth Images566

We fuse the point clouds from two RealSense D455 cameras (Cam 1 and Cam 2) and one Azure567

Kinect camera (Cam 3) to create an integrated point cloud (see Fig. 33). We then orthographically568

project the point cloud at the gripper’s position to create a depth image observation. Examples of569

observations in the three robot domains can be seen in Fig. 34.570

25

Orthographic
Projection

Cam 1

Cam 3

Cam 2
Fuse Point Clouds

Figure 33: We fuse the point clouds from three cameras (to avoid occlusions) and performed an
orthographic projection at the gripper’s position to create a depth image observation.

(a) Block-Pulling (b) Block-Pushing (c) Drawer-Opening

Figure 34: Examples of observations in real robot experiments.

E.2 Added Perlin Noise for Better Sim-To-Real Transfers571

Following [38], we found it useful for better sim-to-real transfers by adding the Perlin [45] noise to572

the depth images during training for more robust policies by being closer to real-world depth images.573

For all robot domains, we applied the noise with a magnitude of 7mm (see Fig. 35).

Block-Pulling before. Block-Pushing before. Drawer-Opening before.

Block-Pulling after. Block-Pushing after. Drawer-Opening after.

Figure 35: Depth images before and after adding Perlin [45] noise for better sim-to-real transfers.
574

F Details of SO(2) Rotational Augmentation575

We perform SO(2) rotational augmentation by choosing a random angle and rotating the depth im-576

ages around its center. We perform this augmentation in two cases:577

When learning the representations to utilize the data better. For each transition (s, o, a, r, s′, o′),578

we sample a random angle and rotate s, o, s′, o′ at the same angle. Each transition has its own579

random angle, see Fig. 36 for examples.580

26

When performing task learning robot domains. Given an episode, we first sample a random angle581

and apply the rotation with this angle for every s, o, s′, o′ within the episode. Because we are trying582

to learn a history-based policy, this is to ensure the augmented history is valid (see Fig. 37).583

t = 0 t = 1 t = 2 t = 3

t = 0 t = 1 t = 2 t = 3

Figure 36: Examples of rotation data augmentation applied for transitions in an episode in
Block-Pushing to augment the data for learning the representation: a different random rotation
is applied independently for s, o, s′, o′ in each timestep in an episode.

t = 0 t = 1 t = 2 t = 3

t = 0 t = 1 t = 2 t = 3

Figure 37: Examples of rotation data augmentation applied for an episode in Block-Pushing: the
same random rotation is consistently applied to every s, o, s′, o′ within an episode.

27

