
A Tabular Q-Learning Hyperparameter Sweeps

Figure 1: This figure presents learning curves using the standard Tabular Q-
Learning algorithm. Given an appropriately chosen learning rate, this algorithm
does converge, but this can take several thousand timesteps on all but the
simplest domains.

Figure 2: This figure presents learning curves for Tabular Q-Learning with a
count-based exploration bonus. Actions are chosen using the following formula-
tion: a← argmaxa′ Q(s, a′)+k/(1+N(s, a′)) where k is the exploration bonus
hyperparameter, assuming values {0, 0.01, 0.1, 1} in the graph, and N(s, a′) is
the visitation count for the state-action (s, a′).

B Random Prediction Ablation

This ablation studies the contribution that each prediction type makes to ICPI’s
ability to learn. To this end, for prediction type — observation, termination,
action, and reward — we ran an ablation that substitutes a random, valid
prediction for the prediction made by the LLM. For example, for actions, we
first sample a random action from the action space of the environment and
then apply the standard string formatting used in other parts of the algorithm.
As figure 3 indicates, on Chain, the simplest of our environments, none of the
ablations are able to learn.

1

Figure 3: This figure presents learning curves for the random prediction ablation
described above on the Chain domain. The Y-axis represents regret and the X-
axis represents timesteps in the environment. Each colored line refers to a
different prediction which was randomized. The red line is the original ICPI
learning curve, included for reference.

C Error Analysis

In this section we present examples of errors made by ICPI on each domain. In
each subsection, we will examine one rollout generated by the Codex LLM that
causes the agent to choose suboptimal behavior in the actual environment.

Chain

Here, we analyze an example in which the rollouts incorrectly estimate equal
values for all three actions. Each line in the code snippet represents actual
output from the LLM, excluding comments which are added for clarity. The
agent’s state is 5 (recall that the goal state is 4). For the left() action, the
model generates the following rollout:

assert state == 5 and state != 4 # the current, starting state

state = left() # a new state is the result of the left() action

assert not done

assert reward == 0

assert state == 4 and state == 4 # The new state is state 4, the goal state

Here the rollout policy unexpectedly chooses to move right

instead of trying the goal.

state = right()

assert not done

assert reward == 0

assert state == 5 and state != 4

Again the rollout policy outputs a suboptimal action:

reward = try_goal(state)

assert done # try_goal always terminates an episode with 0 reward

assert reward == 0

Note that the model outputs the action right() when the agent is in goal

2

state 4, and then outputs action try goal(). As a result the rollout estimates
value 0 for an action which has value γ under the optimal policy (one timestep
away from a terminal state with reward 1).

The estimate for action try goal() is accurate in state 5:

assert state == 5 and state != 4 # the current, starting state

reward = try_goal(state)

assert done

assert reward == 0

However the rollout also underestimates the value of action right():

assert state == 5 and state != 4 # the current, starting state

state = right()

assert not done

assert reward == 0

assert state == 6 and state != 4

reward = try_goal(state) # left() would be the optimal policy, not try_goal().

assert done

assert reward == 0

Distracter Chain

In this example the agent starts in state (2, 3). Recall that in this environment,
the second digit in the tuple is chosen randomly and does not affect environment
transitions or reward.

In the first of the three rollouts, the first action is left(). Since the goal is
state (4, *), this action is already suboptimal. However, we see that the agent
continues to behave sub-optimally throughout the rest of the rollout by con-
tinuously choosing action left() instead of the optimal action right(). This
occurs because at this stage of training, the agent has mostly taken left() ac-
tions and as a result, the rollout policy prompt mostly contains left() actions.

assert state == [2, 3] and state != [4, 3]

state = left()

assert not done

assert reward == 0

assert state == [1, 2] and state != [4, 2]

state = left() # The optimal action is right()

assert not done

assert reward == 0

assert state == [0, 0] and state != [4, 0]

state = left() # The optimal action is right()

assert not done

assert reward == 0

assert state == [0, 0] and state != [4, 0]

state = left() # The optimal action is right()

3

assert not done

assert reward == 0

assert state == [0, 0] and state != [4, 0]

state = left() # The optimal action is right()

assert not done

assert reward == 0

assert state == [0, 0] and state != [4, 0]

state = left() # The optimal action is right()

assert not done

assert reward == 0

assert state == [0, 1] and state != [4, 1]

state = left() # completion

The rollout for the try goal() action is correct:

assert state == [2, 3] and state != [4, 3]

reward = try_goal(state)

assert done

assert reward == 0 # completion

Here the initial action is optimal: right(). However, we once again see
that the rollout policy is suboptimal because it favors the left() action over
the optimal right() action.

assert state == [2, 3] and state != [4, 3]

state = right()

assert not done

assert reward == 0

assert state == [3, 7] and state != [4, 7]

state = left()

assert not done

assert reward == 0

assert state == [2, 4] and state != [4, 4]

state = left()

assert not done

assert reward == 0

assert state == [1, 7] and state != [4, 7]

state = left()

assert not done

assert reward == 0

assert state == [0, 0] and state != [4, 0]

state = left()

assert not done

assert reward == 0

assert state == [0, 0] and state != [4, 0]

state = left()

assert not done

4

assert reward == 0

assert state == [0, 0] and state != [4, 0]

state = left()

This causes the model to inaccurately produce a value estimate of 0 for the
right() action.

Maze

Similar to the previous example, we study an example for maze early in training,
when the rollout policy is still quite suboptimal. As a result, the rollout policy
does not discover the reward, causing the rollouts to estimate equal value for
each of the four actions.

The rollouts all start at state (1, 1).

assert state == C(i=1, j=1) and state != C(i=1, j=0)

state, reward = left()

assert not done

assert reward == 0

assert state == C(i=1, j=0) and state != C(i=1, j=0)

state, reward = right()

assert not done

assert reward == 0

assert state == C(i=1, j=1) and state != C(i=1, j=0)

state, reward = up()

assert not done

assert reward == 0

assert state == C(i=0, j=1) and state != C(i=1, j=0)

state, reward = down()

assert not done

assert reward == 0

assert state == C(i=1, j=1) and state != C(i=1, j=0)

state, reward = up()

assert not done

assert reward == 0

assert state == C(i=0, j=1) and state != C(i=1, j=0)

state, reward = down()

assert not done

assert reward == 0

assert state == C(i=1, j=1) and state != C(i=1, j=0)

state, reward = up()

assert state == C(i=1, j=1) and state != C(i=1, j=0)

state, reward = down()

assert not done

assert reward == 0

assert state == C(i=2, j=1) and state != C(i=1, j=0)

5

state, reward = down()

assert not done

assert reward == 0

assert state == C(i=2, j=1) and state != C(i=1, j=0)

state, reward = left()

assert not done

assert reward == 0

assert state == C(i=2, j=0) and state != C(i=1, j=0)

state, reward = right()

assert not done

assert reward == 0

assert state == C(i=2, j=1) and state != C(i=1, j=0)

state, reward = right()

assert not done

assert reward == 0

assert state == C(i=2, j=2) and state != C(i=1, j=0)

state, reward = right()

assert not done

assert reward == 0

assert state == C(i=2, j=2) and state != C(i=1, j=0)

state, reward = right()

assert state == C(i=1, j=1) and state != C(i=1, j=0)

state, reward = up()

assert not done

assert reward == 0

assert state == C(i=0, j=1) and state != C(i=1, j=0)

state, reward = down()

assert not done

assert reward == 0

assert state == C(i=1, j=1) and state != C(i=1, j=0)

state, reward = up()

assert not done

assert reward == 0

assert state == C(i=0, j=1) and state != C(i=1, j=0)

state, reward = right()

assert not done

assert reward == 0

assert state == C(i=0, j=2) and state != C(i=1, j=0)

state, reward = right()

assert not done

assert reward == 0

assert state == C(i=0, j=2) and state != C(i=1, j=0)

state, reward = right()

assert not done

assert reward == 0

6

assert state == C(i=0, j=2) and state != C(i=1, j=0)

state, reward = right()

assert state == C(i=1, j=1) and state != C(i=1, j=0)

state, reward = right()

assert not done

assert reward == 0

assert state == C(i=1, j=2) and state != C(i=1, j=0)

state, reward = right()

assert not done

assert reward == 0

assert state == C(i=1, j=2) and state != C(i=1, j=0)

state, reward = down()

assert not done

assert reward == 0

assert state == C(i=2, j=2) and state != C(i=1, j=0)

state, reward = right()

assert not done

assert reward == 0

assert state == C(i=2, j=2) and state != C(i=1, j=0)

state, reward = right()

assert not done

assert reward == 0

assert state == C(i=2, j=2) and state != C(i=1, j=0)

state, reward = right()

assert not done

assert reward == 0

assert state == C(i=2, j=2) and state != C(i=1, j=0)

state, reward = right()

7

