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ABSTRACT

Large Language Models (LLMs) have been used as experts to infer causal graphs,
often by repeatedly applying a pairwise prompt that asks about the causal rela-
tionship of each variable pair. However, such experts, including human domain
experts, cannot distinguish between direct and indirect effects given a pairwise
prompt. Therefore, instead of the graph, we propose that causal order be used as a
more stable output interface for utilizing expert knowledge. Even when querying a
perfect expert with a pairwise prompt, we show that the inferred graph can have
significant errors whereas the causal order is always correct. In practice, however,
LLMs are imperfect experts and we find that pairwise prompts lead to multiple
cycles. Hence, we propose the triplet method, a novel querying strategy that intro-
duces an auxiliary variable for every variable pair and instructs the LLM to avoid
cycles within this triplet. It then uses a voting-based ensemble method that results
in higher accuracy and fewer cycles while ensuring cost efficiency. Across multiple
real-world graphs, such a triplet-based method yields a more accurate order than
the pairwise prompt, using both LLMs and human annotators. The triplet method
enhances robustness by repeatedly querying an expert with different auxiliary
variables, enabling smaller models like Phi-3 and Llama-3 8B to surpass GPT-4
with pairwise prompting. For practical usage, we show how the expert-provided
causal order from the triplet method can be used to reduce error in downstream
graph discovery and effect inference tasks.

1 INTRODUCTION

Based on evidence that LLMs’ domain knowledge, even if imperfect, can be used to decide the
direction of causal relationship between a pair of variables (Kıcıman et al., 2023; Willig et al., 2022),
recent years have seen the use of LLMs for inferring the entire causal graph for a given problem
domain. This is done by typically invoking a pairwise prompt—of the form: “does variable A cause
variable B?”—multiple times for different pairs of variables (Long et al., 2022; Antonucci et al.,
2023; Kıcıman et al., 2023; Cohrs et al., 2023). In other related efforts, causal graphs or edges
obtained from LLMs are used as a prior (Takayama et al., 2024) or constraint (Long et al., 2023;
Khatibi et al., 2024; Ban et al., 2023a) for causal discovery algorithms, showing that LLM-derived
graphs enhance downstream graph discovery accuracy.

However, we highlight a key limitation of using graphs as the output interface for such domain
knowledge inferred from LLMs, or for that matter, even other imperfect experts (e.g., humans).
Obtaining the complete graph requires distinguishing between direct and indirect effects among
variables. Given only a pair of variables, it is not possible to decide whether an edge exists or is
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Code: https://github.com/AniketVashishtha/Causal_Order_Imperfect_Experts.
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Figure 1: Cancer dataset (Scu-
tari & Denis, 2014): Top: True
causal graph. Bottom: Expert-
estimated causal graph. Note that
the latter, while not correct wrt.
the true graph, yields the correct
causal order.
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Figure 2: Top: Using the pairwise prompt, even under a perfect expert
(e.g., domain expert), the estimated graph may not be correct (SHD = 1).
Causal order, however, is correct (Dtop = 0) and hence a better metric.
Bottom: under imperfect experts such as LLMs, pairwise prompts may not
lead to valid order, creating cycles. The proposed triplet prompting strategy
alleviates this issue to provide better estimates of causal order (Dtop = 0).

mediated by another variable, even for a perfect human expert—the existence of an edge depends on
which other variables are considered to be a part of the node set in the query. For example, consider
the true data-generating process, Smoking→ Lung Damage→ Respiratory Diseases. If an expert
is asked whether there should be a direct causal edge from Smoking to Respiratory Diseases, they
would answer “Yes”, which may not capture the true process. However, if they are told that the set
of observed variables additionally includes Lung Damage, then the correct answer would be to not
create a direct edge between Smoking and Respiratory Diseases, but rather create edges mediated
through Lung Damage. In large graphs, keeping track of the different variables that can affect a given
pairwise decision can be cumbersome.

As another example showing the subjectivity of deciding direct or indirect edges, consider the scenario
in Fig 1 with the variables: Pollution Exposure, Cancer, Dyspnoea, Smoking History and Positive
X-ray. When queried only for the presence of a causal edge from Pollution to Dyspnoea (shortness
of breath), an expert may answer “Yes”. However, if one has to provide a complete graph, it may
be non-trivial for an expert to decisively agree on adding a direct edge from Pollution to Dyspnoea,
creating edges mediating through Cancer, or both.

Causal Order: Significance and Utility. We instead propose causal order as a more stable approach
to obtain experts’ domain knowledge. Causal order is defined as the topological ordering over
graph variables. Since the causal order does not distinguish between direct and indirect effects, in
both examples above, the causal order is unique and unambiguous. In the first example, Smoking
≺ Respiratory Diseases is a valid causal order (a ≺ b indicates that a occurs before b in a casual
process). Similarly, in the second example, the causal order, Pollution ≺ Dyspnoea holds true in all
three cases considered above by the expert. Formally, we show that for an (optimal) perfect expert
that is given only a pair of variables at a time, the predicted causal graph can be incorrect but the
predicted causal order is always correct. As a result, the standard practice of obtaining a causal
graph from LLMs and crowd-sourced annotators (using pairwise questions) may introduce errors
in inferred edges, which can be mitigated by using causal order in downstream causal algorithms.
Order is a stable causal construct, independent of other variables present in the query, making it more
generalizable. Though simpler than a full graph, it aids tasks like effect inference and graph discovery.
We show that the correct causal order is sufficient for identifying a valid backdoor set for any pair
of treatment and outcome variables. Moreover, a causal order-based metric, topological divergence
(Dtop), correlates better with effect estimation accuracy than commonly used graph metrics such as
structural hamming distance (SHD). Specifically, Dtop = 0 if and only if the causal order provides a
valid backdoor adjustment set. Causal order enhances effect inference and improves graph discovery.
We provide simple algorithms to integrate it into existing causal discovery methods.
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Causal Order: Eliciting from Experts. In practice, obtaining causal order from experts is still a
challenge because we need to account for imperfect experts such as human annotators and LLMs.
Using the standard method (Kıcıman et al., 2023; Long et al., 2022) of iterating with a pairwise
prompt/question over a set of variables, while a perfect expert would always predict the correct causal
order, we find that using LLMs as experts leads to many cycles. To reduce the number of cycles from
LLM output, we propose a novel triplet method for obtaining causal order (see Figure 2). Rather
than asking questions about a pair of variables, the triplet prompt asks about the causal relationship
between the pair and an auxiliary variable, and instructs the LLM to obey acyclicity for the triplet.
We theoretically show that given an imperfect expert with an error ϵ on each prediction, using the
triplet-based prompt results in an error less than ϵ, which is less than the error of the pairwise
prompt. Moreover, since each variable pair occurs in more than one triplet, the repetition allows for
ensembling strategies for a more reliable order. Using human annotators and LLMs as imperfect
experts, the triplet method provides more accurate causal order than the pairwise prompt, especially
in large graphs. It also enables small models like Phi-3 and Llama-3 8B to outperform GPT-4’s
pairwise prompt.

2 RELATED WORK

Domain Expertise-aided Causal Discovery. Prior knowledge has been used in causal discovery
literature (Hasan & Gani, 2022; Constantinou et al., 2023; Heckerman & Geiger, 2013; Teshima &
Sugiyama, 2021; O’Donnell et al., 2006; Wallace et al., 1996). These methods rely on prior knowledge
such as domain experts’ opinions and documented knowledge from randomized controlled trials.
Various priors have been studied in literature, such as edge existence, forbidden edge (Meek, 1995),
and ancestral constraints (Constantinou et al., 2023; Ban et al., 2023b). Recent advances in LLMs
have led to more attention on how LLMs may act as imperfect experts and provide causal knowledge
based on metadata such as variable names (Kıcıman et al., 2023; Ban et al., 2023b; Long et al., 2023;
Willig et al., 2022). Early methods (Kıcıman et al., 2023; Willig et al., 2022; Long et al., 2022) rely
on LLMs to predict the complete causal structure, which is evaluated using metrics for full graph
structure such as Structural Hamming Distance (SHD). Recent methods however use LLM’s output to
improve accuracy of graph discovery algorithms. The key idea is that LLM can provide information
about edges in the graph, which can then be added as a prior or constraint (Long et al., 2023; ?) to
improve the accuracy for a causal discovery algorithm. For example, (Long et al., 2023) use LLMs
to improve output of a constraint-based algorithm for full graph discovery by orienting undirected
edges in the CPDAG. Most of these works, however, depend on obtaining correct edge information
from LLMs and evaluate LLMs’ quality by full graph metrics (Naik et al., 2023; Zhang et al., 2024)
such as SHD (Kıcıman et al., 2023; Long et al., 2023). We observe that imperfect experts (LLMs or
humans) cannot reliably provide edge information given a pair (or subset) of variables. Causal order
may be a more appropriate causal structure to elicit from experts. For the same reason, the quality of
an imperfect expert’s output for such tasks is better evaluated on the accuracy of causal order, rather
than the full graph structure.

LLM-based Prompting Strategies. Existing LLM-based algorithms for graph discovery (Kıcıman
et al., 2023; Long et al., 2022; Ban et al., 2023b; Antonucci et al., 2023) use a pairwise prompt,
essentially asking “does A cause B?” with varying levels of prompt complexity. Going beyond
this line of work, we propose a triplet-based prompt that provides more accurate answers through
aggregation and provides an uncertainty score for each edge to aid in cycle removal. As a result, our
triplet-based prompt may be of independent interest for causal tasks.

3 CAUSAL ORDER: A STABLE INTERFACE FOR EXPERTS’ KNOWLEDGE

Preliminaries. Let G(X,E) be a causal directed acyclic graph (DAG) consisting of a set of vari-
ables X = {X1, . . . , Xn} and a set of directed edges E among variables in X. A directed edge
Xi → Xj ∈ E denotes the direct causal influence of Xi on Xj . Let pa(Xi) = {Xk|Xk → Xi},
de(Xi) = {Xk|Xk ← · · · ← Xi}, ch(Xi) = {Xk|Xi → Xk} denote the set of par-
ents, descendants and children of Xi respectively. If a variable Xk is a descendant of Xi

(but they are not connected by a direct edge), then Xi is said to have an indirect effect on
Xk. Average causal effect (Pearl, 2009) (ACE) of a variable Xi on a variable Xj is defined
as: ACE

Xj

Xi
= E[Xj |do(Xi = xi)]− E[Xj |do(Xi = x∗

i )], where Xi is called the treatment, Xj

is called the target, and do(Xi = xi) denotes an external intervention to the variable Xi with the
value xi. If a set of variables Z satisfies the backdoor criterion (Defn. B.1) relative to (Xi, Xj),
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E[Xj |do(Xi = xi)] can be computed as: E[Xj |do(Xi = xi)] = Ez∼ZE[Xj |Xi = xi,Z = z] (Thm.
3.3.2 of Pearl (2009)); and Z is called a valid adjustment set. We now define the causal (topological)
order and the topological divergence metric (Rolland et al., 2022) that measures the goodness of a
given causal order wrt. the ground-truth graph.
Definition 3.1. Topological Order. Given a causal graph G(X,E), a sequence (or ordered permuta-
tion) π of variables X is a topological order iff for each edge Xi → Xj ∈ E, πi < πj .
Definition 3.2. The topological divergence of an estimated order π̂ with ground truth adjacency
matrix A, denoted by Dtop(π̂, A), is defined as: Dtop(π̂, A) =

∑n
i=1

∑
j:π̂i>π̂j

Aij where Aij = 1 if
there is a directed edge from node i to j else Aij = 0. Dtop(π̂, A) counts the number of ground-truth
edges that cannot be recovered due to the estimated topological order π̂.

Structural Hamming Distance (SHD) is also a popular metric for assessing the goodness of a predicted
DAG. Given a true DAG G and an estimated DAG Ĝ, SHD counts the number of missing, falsely
detected, and falsely directed edges in Ĝ. Dtop acts as a lower-bound on SHD (Rolland et al., 2022).

3.1 CAUSAL ORDER FROM A PERFECT EXPERT IS ALWAYS ACCURATE, BUT GRAPH IS NOT

The predominant approach to extract causal knowledge from LLMs is to use a pairwise prompt (Kıcı-
man et al., 2023; Long et al., 2022; Choi et al., 2022) to determine the existence of an edge and then
aggregate to build a causal graph. We highlight a key limitation of pairwise prompts for inferring
edges and causal graphs, even with a hypothetical perfect expert, as LLMs are imperfect.

Revisiting the two graphs in Fig. 1, the second graph is estimated by asking pairwise questions
to a perfect expert that (hypothetically) knows about all cause-effect relationships in a domain
(see Defn. 3.3 for a formal definition). The difference in edge predictions is introduced due to the
existence of direct and indirect effects. For example, when asked about the relationship between
Pollution and Dyspnoea, it may be valid to draw a direct edge if the expert is not aware of the Cancer
node. As a result, if we compare the estimated graph in Fig. 1 using standard graph comparison
metrics such as SHD, we may find that that the estimated graph is significantly different from
the true graph and (incorrectly) conclude that the expert’s knowledge was insufficient. Instead,
if we compute the causal order using Def. 3.1 for the predicted graph (Fig. 1 right), we obtain
{Smoking, Pollution} ≺ Cancer ≺ {Dyspnoea,X-ray}. This order is fully consistent with the
true graph (Fig. 1 left), and thus is a valid causal order. We could thus correctly validate the expert’s
knowledge as perfect. In particular, using causal order as the output interface of the expert-estimated
graph ensures that no incorrect constraints are added. If the expert was asked to output the entire
graph, erroneous edge constraints such as Pollution→ Dyspnoea may be added to a downstream
discovery algorithm. However, causal order only constrains that some path exists from Pollution to
Dyspneoa, and allows the downstream algorithm to learn the correct edges from data.

Note that the limitation is not about using a pairwise prompt, but using its output to infer edges
in a graph. As stated earlier, given a pair of variables, it is not possible to determine whether an
edge exists between them, without knowing whether potential mediators between the two variables
exist. By not explicitly inferring edges, causal order instead corresponds to an ancestor-descendant
relationship between a pair of variables which can be objectively decided given only the two variables.
One can view our approach as formalizing the intuition in Ban et al. (2023b) who consider an LLM’s
pairwise answer to represent ancestor relationship between a pair of variables. We now formally show
that causal order is a more accurate measure of an expert’s knowledge. All proofs are in Appendix B.
Definition 3.3. Perfect Expert. A perfect expert is an entity with access to the full ground-truth DAG
G(X,E). Given two variables two variables, Xi, Xj ∈ X, and (optionally) an auxiliary set of nodes
Oij ⊂ X (note that rest of the variables in set U = X \Oij

⋃
{Xi, Xj} need not be known), the

expert can provide information on the existence of a causal edge between Xi and Xj (“does Xi

cause Xj”) as follows:

• Xi → Xj: If there is directed edge from Xi to Xj (Xi → Xj ∈ E), or if a directed path exists
from Xi to Xj such that it does not contain any node Z ∈ Oij .

• Xj → Xi: If there is directed edge from Xj to Xi (Xj → Xi ∈ E), or if a directed path exists
from Xj to Xi such that it does not contain any node Z ∈ Oij .

• Otherwise, output no edge.
Definition 3.4. Level Order. Given a causal DAG G(X,E), its level order is the systematic as-
signment of levels to variables, beginning with level 0 to the set of variables {Xi|pa(Xi) = ∅}.
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Subsequently, each remaining variable is assigned a level such that for each variable at a given level
i, the length of the longest directed path from one/more variables in level 0 is i.

Proposition 3.1. Let the true causal DAG be G(X,E) with ground-truth adjacency matrix A.
Consider a procedure to estimate a graph Ĝ by querying a Perfect Expert (as in Def. 3.3) with pairwise
queries Xi, Xj with auxiliary set Oij , followed by subsequent aggregation of predicted edges from
each query (i.e. from a total of |X|C2 queries). The causal order of the graph Ĝ thus estimated
is correct, i.e. Dtop(π(Ĝ), A) = 0 for all values of the sets Oij . As a corollary, the causal graph
thus estimated can however have errors. In other words, when Oij = ϕ ∀i, j, Dtop(π(Ĝ), A) = 0

whereas Structural Hamming Distance (SHD) between G and Ĝ =
∑|X|

i=1 |de(Xi)| − |ch(Xi)|.

2 3 4 5 6
| |

0
2
4
6
8

10
12
14

SH
D

SHD score when Dtop = 0

Figure 3: Variability of SHD
for various graph sizes with
Dtop = 0 within each graph.

Figure 3 illustrates the result of the proposition using empirical simu-
lation. Given a fixed number of nodes, we sample a graph at random
as the ‘ground truth’ and then consider all graph orientations of the
same size (number of nodes) such that Dtop = 0 w.r.t. the ground truth
graph. These are potentially the graphs outputted by a Perfect Expert
with different values of the auxiliary set O. For this set of graphs, we
compute SHD w.r.t the ground truth graph. Notice the variance in SHD,
despite Dtop being 0. For graphs with six nodes, SHD can vary from 0
to 14 even as Dtop = 0.

The above observations indicate that SHD can be high even when we obtain information from a
Perfect Expert, but Dtop is always 0. This result is of significance since most estimated graphs
(including those that are LLM-generated (Ban et al., 2023b; Long et al., 2023)) are evaluated using
graph metrics such as SHD. Rather than the graph, it motivates us to posit the use of causal order as a
more accurate output interface for experts’ domain knowledge, since it allows objective evaluation of
the expert’s output using the topological divergence metric (Defn 3.2).

3.2 DOWNSTREAM UTILITY OF CAUSAL ORDER: DISCOVERY AND EFFECT INFERENCE

While the causal order is a more stable measure of experts’ knowledge than the full graph, a natural
question is whether it is a useful measure by itself. We now show the utility of causal order for effect
estimation and causal discovery, which is also demonstrated by our experimental results in Sec 5.
Specifically, we show that causal order is sufficient to find a valid backdoor set and Dtop is an ideal
metric to minimize for effect estimation, assuming no latent confounders. Effect estimation error
correlates more with topological divergence than it does with SHD. Causal order is also useful as a
prior or constraint to increase accuracy of graph discovery algorithms.

Correct topological order is necessary and sufficient for finding a valid backdoor set. We first
present the (known) result that a correct causal order is sufficient for identifying a backdoor set. We
assume there are no unobserved variables in the underlying causal graph.
Proposition 3.2. (Pearl, 2009; Cinelli et al., 2022) Under the no latent confounding assumption,
for a pair of treatment and target variables (Xi, Xj) in a DAG G, Z = {Xk|πk < πi} is a valid
adjustment set relative to (Xi, Xj) for any topological order π of G.

Proofs of all propositions are provided in App. § B. Propn 3.2 states, in simple words, that all variables
that precede the treatment variable in a topological order π of G constitute a valid adjustment set.
Note that the set Z may contain variables that are not necessary to adjust for (e.g., ancestors of
only the treatment or target variables). For statistical efficiency purposes, ancestors of the target
variable are helpful for precise effect estimation, whereas ancestors of treatment variable can be
harmful (Cinelli et al., 2022). In practical scenarios, however, it is recommended to adjust for all
available adjustment variables since one cannot possibly rule out unknown confounding factors (Sauer
et al., 2013; VanderWeele & Shpitser, 2011), which aligns with the set obtained using the causal
order in Propn 3.2 (see App. C for a discussion).

We now show that Dtop is an optimal metric to minimize for effect estimation. That is, Dtop being 0
for a topological order is equivalent to obtaining the correct backdoor adjustment set using Propn. 3.2.
And if Dtop ̸= 0, there exists some treatment-target pair whose backdoor set is not correctly identified.
Proposition 3.3. For an estimated topological order π̂ and a true topological order π of a causal
DAG G with the corresponding adjacency matrix A, Dtop(π̂, A) = 0 iff Z = {Xk|π̂k < π̂i} is a
valid adjustment set relative to (Xi, Xj), ∀πi < πj .
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Empirically, the correlation of Dtop with effect estimation is shown in App. E.2 for common BNLearn
datasets. As long as Dtop is zero, changing the graph has no impact on effect estimation error.

Topological order can improve accuracy of graph discovery algorithms. Constraints implied by
the topological order can be used to reduce the search space for discovery algorithms. For instance, if
Xi ≺ Xj in the order, then Xi cannot be a descendant of Xj in the corresponding causal graph.

Using causal order with Constraint-Based Discovery Methods: Constraint-based causal discovery
algorithms usually return a Completed Partially Directed Acyclic Graph (CPDAG), from which a
Markov equivalence class of graphs can be obtained. However, not all edges in a CPDAG are oriented.
Given a CPDAG from a constraint-based algorithm like PC (Spirtes et al., 2000), we use the causal
order π̂ obtained from experts to orient the undirected edges, similar to the algorithm from Meek
(1995). Iterating over undirected edges, we first check if the nodes of that edge occur in π̂. If yes,
we orient the edge according to π̂. Since it is possible that the causal order obtained from querying
experts may not include some nodes (Isolated Nodes (IN)), if either (or both) nodes of the undirected
edge are not in π̂, we query a superior expert (e.g. oracle) (see Sec 4) to finalize a direction between
the pair. Algorithm 1 (Appendix D) outlines the specific steps for this integration.

Using causal order with score-based discovery methods: Score-based methods like CaMML (Wallace
et al., 1996) allow the specification of prior constraints which are respected while obtaining the
complete graph. We hence utilize the causal order π̂ obtained from experts as a level order prior (Defn
3.4) to such methods. We handle any cycles in the expert’s output by assigning all nodes in a cycle to
the same level. The approach is similar to an LLM-prior approach by Ban et al. (2023b) where the
output of LLM and a score-based method are combined using an ancestral constraint. This approach
also allows us to provide a prior probability to control the influence of prior on the discovery method.
Algorithm 2 (Appendix D) outlines the specific steps for this integration.

4 OBTAINING A CAUSAL ORDER FROM IMPERFECT EXPERTS

If we assume a Perfect Expert, then aggregating edge responses from the standard pairwise
prompt (Kıcıman et al., 2023) can yield an accurate order. However, in practice, LLMs are im-
perfect experts and their answers can contain unpredictable errors. As a result, aggregating responses
from the pairwise prompt leads to many cycles in the final graph (see Sec. 5, Table 2), which in
turn implies that the causal order is undefined. In this section, we propose two ways to reduce the
errors made by an imperfect expert such as an LLM, motivated by Prop. 3.1 that showed that adding
additional context may help an expert avoid creating unnecessary edges. First, we consider strategies
to add auxiliary context in the pairwise prompt. Second, we propose a strategy that adds dynamic
context to each variable pair by iterating over all triplets of variables.

4.1 ENHANCING ACCURACY OF PAIRWISE PROMPT

One way to avoid cycles is to make the pairwise prompt more robust. Beyond the standard pairwise
prompt that asks the expert to identify the causal relationship between a pair of variables (Kıcıman
et al., 2023), we consider the following strategies to add contextual information (see Appendix G).
• Iterative Context. Here we provide the previously oriented pairs as context in the query while

iteratively prompting for next pair.
• One-hop Iterative Context. Providing all previously oriented pairs can become prohibitive for large

graphs. Therefore, in this setting, we limit the provided information to the already oriented edges
connecting the node pair under inspection with their adjacent neighbors. Specifically, we only
supply the orientation details for the current node pair and their neighboring nodes.

• Chain-of-Thought (+In-context Learning). Here we include names of all variables in the graph as
additional context. Based on recent results on providing in-context examples in LLM prompts for
various tasks (Brown et al., 2020), we include examples of the ordering task (viz. node pairs and
their correct causal ordering), before asking the question about the given nodes.

4.2 THE TRIPLET METHOD FOR PROMPTING LLMS

Rather than providing a pair of variables, another way is to provide a larger set of nodes in a prompt
and ask LLM to obey the acyclicity constraint while providing the edges among them. The number
of total prompts used for a graph with size |V | would be O(|V |k) where k is the size of the subset
included in each prompt. In addition, LLM’s accuracy is known to reduce as the query prompt
becomes more complex (Levy et al., 2024). Therefore, while the set of nodes can be of any size, we
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decide to go with triplet-based prompts as they allow for adding more context with minimal increase
in prompt complexity and the total number of LLM calls. Moreover, empirically, we did not see a
noticeable improvement in accuracy when moving from a triplet to quadruplet prompt (see Table A9).

In effect, we move from O(|V |2) calls to O(|V |3) LLM calls. A key benefit is that for each pair of
nodes, we have n− 1 responses from the LLM, each considering a different auxiliary node as context.
For large graphs, we can use a variant that considers a constant k responses for each pair of nodes,
leading to O(k|V |2) complexity. To aggregate the final graph, we take a majority vote on the answers
from each edge, further leading to robustness.

1. From a given set of graph nodes, we generate all possible triplets of nodes.
2. We query the expert to orient nodes of each triplet group to form a DAG representing the causal

relationship between the triplet’s nodes. This results in multiple acyclic mini-graphs representing
causal relationships for each triplet group.

3. Once we have DAGs for each triplet, we focus on merging them. This is done in two steps: (i) We
iterate over all node pairs, and for each combination we obtain a majority vote on the orientation
between them across all triplets containing the node pair; (ii) In case of a conflict (or a tie in the
majority vote) among the three possible edge orientations (A→ B; B→ A; No edge between A
and B), we resort to a high-cost expert for tie-breaking.

4. Finally, a causal order is extracted from the merged graph.

Our triplet prompt additionally use in-context examples and the chain-of-thought strategy from the
pairwise setup. An example prompt is shown in Table A28.

Theoretical Analysis. Next, we analyze the triplet strategy for its impact on predicting incorrect
edges. We begin by defining (imperfect) ϵ-experts as in Long et al. (2023). For ease of exposition,
we define the ϵ-expert to have error probability exactly equal to ϵ; this could however be generalized
to have error probability at most ϵ. By enforcing the acyclicity constraint for each triplet, the
triplet prompt avoids errors that a pairwise prompt may make. Below we assume that the ϵ-expert’s
predictions satisfy acyclicity for subgraphs having 3 nodes.*

Definition 4.1 (ϵ-Experts). Given two nodes A and B of a graph and three options of the causal
relationship between them: (i) A→ B, (ii) A← B, and (iii) no edge between A and B (denoted as
[c1, c2, c3]), an expert E queried for the causal relationship between A and B is said to be an ϵ-expert
(denoted as Eϵ) if the probability of making an error in the prediction of the causal relationship
between A and B is ϵ, where ϵ ∈ (0, 1).

Proposition 4.1. Given two nodes A and B of an underlying causal graph, access to an ϵ-expert Eϵ
that doesn’t produce any cycles in the predicted causal graph (see Assm B.1 for formal statement)
and and renormalizes the probability in case an option is not available (see Assm B.2 for formal
statement), let C ̸= A ̸= B be any other node in the graph. If Eϵ predicts causal relationship between
all pairs of nodes sequentially, the marginalized probability that Eϵ makes an error in predicting the
causal relationship between A and B, after it has already predicted the causal relationships between
(C,A) and (C,B), is less than ϵ, where marginalization is over all possible causal graphs that can
be formed between A,B and C, with each of such graphs being equally likely.

Thus, given two nodes A and B, a querying strategy using triplets will have error probability < ϵ on
determining the causal relationship between A and B than a pairwise strategy (proof in Appendix B).
Still, some cycles may be produced in the aggregated global graph, hence we use a cycle removal
algorithm from Zheng et al. (2018) in the third step of our triplet method. For every edge, we leverage
the votes from the triplet prompts to establish a probability distribution over edge orientations. We
use this to compute entropy for each edge, removing those with higher entropy (lower confidence).
To minimize Dtop, we prune edges with entropy below the mean of all entropies.

5 EXPERIMENTS AND RESULTS

Datasets. We evaluate the triplet method using benchmark datasets from the BNLearn repository (Scu-
tari & Denis, 2014): Earthquake, Cancer, Survey, Asia, Asia modified (Asia-M), and Child. Asia-M
is derived from Asia by removing the node either since it is not a node with a semantic meaning (see

*For imperfect experts, it is possible to enforce acyclicity by removing any cycles from their triplet output.
However, this step is not needed for GPT-3.5 and GPT-4 as they follow acyclicity constraint with high accuracy.
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App.§ G for details). To address memorization concerns with the BNLearn datasets, we also use
recently proposed datasets that require nuanced medical domain understanding: (i) Neuropathic:
A medium-sized subset graph from a relatively less popular Neuropathic dataset (Tu et al., 2019)
(see Appendix Fig A8). (ii) Alzheimers: This graph (refer Figure A9) provides features (such as
ventricular volume, brain volume, APOE4, etc) to study the clinical and phenotype of Alzheimer’s
disease (Abdulaal et al., 2024). It was created by a consensus of human experts. (iii) Covid-19:
This graph, curated by medical experts, models the pathophysiological process of SARS-CoV-2 in
the respiratory system which involves outlining the various pathways from viral infection to key
complications (refer Figure A10). Orienting this graph requires understanding of how nodes like
Pulmonary capillary leakage, systemic inflammatory response, Virema and more influence each other
(Mascaro et al., 2022). All graphs are real-world graphs constructed by human experts. We provide
more details on the datasets in Table A18.

Imperfect Experts. We consider two types of imperfect experts: LLMs and human annotators.

Human Annotation. We considered 15 human annotators, each with undergrad-level training in STEM
but no formal experience in causality. Each annotator was randomly assigned graphs for pairwise and
triplet query strategies while ensuring no annotator got the same graph to query with both strategies.
To get an estimate of the upper bound of human performance, for resolving tie-breaking conflicts in
the triplet method, we used a ground truth-based oracle (proxy for a human domain expert). For each
dataset, three human annotators were asked to annotate the final graph and the aggregate of that was
reported. For feasibility reasons, human annotations were done only for the BNLearn graphs.

LLM-Based. We consider two main LLM-based experts, GPT-3.5-turbo and GPT-4. For the triplet
method, GPT-4 was used for tie-breaking. To understand the effect of model size, we also evaluate the
pairwise and triplet methods on Phi-3 (3.8B parameters) (Abdin, 2024) and Llama3 (8B parameters)
(Dubey, 2024) which are significantly smaller models than GPT-3.5-turbo and GPT-4.

Baselines. In addition to the pairwise prompt and its extensions from Sec. 4.1, we consider two
methods based on breadth-first search from Jiralerspong et al. (2024). The first method, BFS, iterates
over nodes and uses an LLM to query children of each node. The second method, BFS+Stats, uses
correlation coefficient between nodes as additional context in the LLM’s prompt.

5.1 ACCURACY OF CAUSAL ORDER WITH TRIPLET VS. PAIRWISE METHODS

We first present the accuracy of obtaining causal order using our triplet method over other pairwise
query strategies. Subsequently, we present the results of using the causal order obtained from
imperfect experts to downstream tasks such as causal discovery and effect inference.

Human Experts. With human annotators, Table 1 shows that graphs like Survey and Asia-M result
in cycles when queried pairwise. However, no cycle formations were observed across annotators
when they were queried to orient causal graphs using the triplet method. Moreover, the triplet method
shows consistently low Dtop and SHD across all human outputs, highlighting its effectiveness.

GPT-3.5-turbo as Expert. Tables A5 and A6 present the performance of various pairwise optimization
strategies from Sec. 4.1. While strategies like CoT offer some gains over the base pairwise method,
they often produce cycles, especially in larger graphs like Child. These findings show that our
pairwise variations improve graph discovery but still fall short. Table 3 compares the base pairwise
method, best pairwise variation (CoT), and the triplet method across benchmark datasets using metrics
like Dtop, SHD, Cycles, IN, and Total Nodes (TN). Triplet method consistently outperforms the best
pairwise CoT approach, showing a significant performance gap over the base pairwise method. For
larger graphs like Child, the pairwise base approach shows a more pronounced difference, with higher
cycle counts and SHD. Results on the Neuropathic dataset further confirm that the triplet method
yields low Dtop and significantly lower SHD than pairwise methods.

GPT-4 as Expert. Table A7 shows the impact of using a more advanced model like GPT-4 for the
pairwise method. Despite superior model capabilities, we observe a consistently high number of
cycles in bigger, complex graphs such as Child, Neuropathic, Covid-19 and Alzheimers, indicating
that simply upgrading the model is not sufficient. In comparison, upgrading to GPT-4 for orienting
subgraphs for the triplet method leads to further performance improvements as shown in Table A10.

Results with Small LMs. To assess the robustness of the triplet method, we use it with small LMs such
as Phi-3 and LLama3-8B as experts and GPT-4 for tie-breaker. Remarkably, as shown in Table 2, the
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Dataset Metric Pairwise Triplet
Using Human Annotators

Earthquake

Dtop 0 0
SHD 4.67 1.67

Cycles 0 0
IN 0 0.33

Survey

Dtop - 0
SHD 6.33 3.67

Cycles 0.67 0
IN 0.67 0

Cancer

Dtop 0 0
SHD 4.33 3.67

Cycles 0 0
IN 0.67 0

Asia-M

Dtop - 1.33
SHD 11.67 11.33

Cycles 3 0
IN 0 0

Table 1: Experiments with non-expert human annota-
tors show that the triplet method consistently produces
lower SHD and Dtop values.

Dataset Metric Pairwise
GPT-4

Triplet
Phi-3

Triplet
Llama3

Asia

Dtop 1 0 2
SHD 18 13 17

Cycles 0 0 0
IN/TN 0/5 1/5 0/5

Alzheimers

Dtop - 7 5
Cycles 1 0 0
IN/TN 0/11 0/11 1/11

Child

Dtop - 17 12
SHD 148 69 129

Cycles »10k 0 0
IN/TN 0/20 0/20 0/20

Table 2: Comparison of triplet method using Phi-
3/Llama3 against pairwise (base) using GPT-4. Triplet
method with significantly smaller models obtains
lower SHD and Dtop values while avoiding cycles.

Table 3: Results using GPT-3.5-Turbo. Performance
of triplet method, best performing pairwise query strat-
egy (Chain of Thought), standard pairwise technique
(Base) on multiple benchmark datasets across diff
metrics: Dtop, SHD, (Num of) Cycles, IN, TN. When
number of cycles>0, π̂ cannot be computed, hence
Dtop is given by ‘-’. While CoT method shows im-
provement over base pairwise, triplet method outper-
forms pairwise methods across all datasets and met-
rics, with significant improvements on larger graphs
such as Child and Neuropathic.

Dataset Metric Pairwise (Base) Pairwise (CoT) Triplet
Using LLM

Earthquake

Dtop 0 0 0
SHD 7 4 4

Cycles 0 0 0
IN/TN 0/5 0/5 0/5

Survey

Dtop 3 1 0
SHD 12 9 9

Cycles 0 0 0
IN/TN 0/6 2/6 0/6

Cancer

Dtop 0 - 1
SHD 6 - 6

Cycles 0 - 0
IN/TN 0/5 - 0/5

Asia-M

Dtop - - 1
SHD 15 13 11

Cycles 7 1 0
IN/TN 0/7 0/7 0/7

Child

Dtop - - 1
SHD 177 138 28

Cycles »3k »500 0
IN/TN 0/20 0/20 0/20

Covid

Dtop - 0 0
SHD 41 27 30

Cycles »1000 0 0
IN/TN 0/20 0/20 0/20

Alzheimers

Dtop - 6 4
SHD 42 26 28

Cycles 684 0 0
IN/TN 0/20 0/20 0/20

Neuropathic

Dtop - - 3
SHD 212 64 24

Cycles »5k 5 0
IN/TN 0/22 0/22 13/22

triplet method using smaller LMs outperforms the base pairwise method using GPT-4, particularly for
complex networks. Results with small LMs are shown in Table A8. The triplet method outperforms
the pairwise method consistently, yielding low Dtop values for both small and large graphs.

Comparison with BFS and BFS+Stats. We also compare the triplet method to recently proposed
BFS-based methods on a subset of the datasets in Table A17. BFS and BFS+Stats methods obtain
lower accuracy than the triplet method. Across datasets, SHD and Dtop for BFS and BFS+Stats
methods (especially with GPT-3.5-turbo) are higher than the triplet method. Among the Child and
Covid-19 datasets, all configurations lead to cycles in atleast one of them, except BFS with GPT-4.

Cost Estimation Analysis: Pairwise vs Triplet for LLMs. The triplet method optimizes cost by using
smaller models efficiently, reserving larger models for clash resolution, reducing inference costs
while improving accuracy over pairwise methods. See Appendix F for a detailed cost comparison.

5.2 USING CAUSAL ORDER FOR DOWNSTREAM APPLICATIONS

Causal Discovery. Table 4 presents the Dtop results of using the causal order obtained from the
triplet method (both using LLMs and humans) to assist causal discovery methods. We compare our
approach using the triplet method with well-known causal discovery methods: PC (Spirtes et al., 2000),
SCORE (Rolland et al., 2022), ICA-LiNGAM (Shimizu et al., 2006), Direct-LiNGAM (Shimizu
et al., 2011), NOTEARS (Zheng et al., 2018), and CaMML (Wallace et al., 1996) across five different
sample sizes: 250, 500, 1000, 5000, 10000 (complete results in Table A3). Among the discovery
algorithms, we find that PC and CaMML perform the best, with the lowest Dtop across all datasets.
We hence studied 4 variants of using the causal order with discovery algorithms: PC+Human,
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Dataset PC SCORE ICA Direct NOTEARS CaMML Ours Ours Ours Ours
LiNGAM LiNGAM (LLM+PC) (LLM+CamML) (Human+PC) (Human+CaMML)

Earthquake 0.16±0.28 4.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 1.00±0.00
Cancer 0.00±0.00 3.00±0.00 2.00±0.00 2.00±0.00 2.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Survey 0.50±0.00 4.00±0.00 2.00±0.00 4.00±0.00 4.00±0.00 3.33±0.94 0.00±0.00 3.33±0.94 0.00±0.00 0.00±0.00
Asia 2.00±0.59 7.00±0.00 3.33±0.47 1.00±0.00 3.00±0.00 1.85±0.58 1.00±0.00 0.97±0.62 N/A N/A

Asia-M 1.50±0.00 6.00±0.00 1.00±0.00 3.00±0.00 3.00±0.00 1.00±0.00 1.00±0.00 1.71±0.45 1.00±0.00 2.00±0.00

N
=

25
0

Child 5.75±0.00 12.0±0.00 14.33±0.47 16.0±0.00 14.0±0.00 3.00±0.00 4.00±0.00 3.53±0.45 N/A N/A
Neuropathic 4.00±0.00 6.00±0.00 13.0±6.16 10.0±0.00 9.00±0.00 10.4±1.95 3.00±0.00 5.00±0.00 N/A N/A

Earthquake 0.00±0.00 4.00±0.00 3.00±0.00 3.00±0.00 1.00±0.00 0.40±0.48 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Cancer 2.00±0.00 3.00±0.00 3.00±0.00 3.00±0.00 2.00±0.00 0.60±0.80 2.00±0.00 0.00±0.00 2.00±0.00 0.00±0.00
Survey 2.00±0.00 4.00±0.00 5.00±0.00 5.00±0.00 3.00±0.00 3.60±1.35 2.00±0.00 1.83±0.00 2.00±0.00 0.00±0.00
Asia 1.5±0.00 4.00±0.00 6.00±0.00 4.40±1.35 3.00±0.00 1.40±0.48 0.00±0.00 0.34±0.47 N/A N/A

Asia-M 1.00±0.00 4.00±0.00 8.00±0.00 4.80±0.39 3.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 3.00±0.00

N
=

10
00

0

Child 6.00±3.04 3.00±0.00 12.2±1.46 11.6±0.48 14.4±0.48 2.80±0.84 5.00±2.64 1.00±0.00 N/A N/A
Neuropathic 10.00±0.00 6.00±0.00 1.00±0.00 10.0±0.00 10.0±0.00 3.00±0.00 10.00±0.00 1.00±0.00 N/A N/A

Table 4: Comparison with causal discovery methods, showing mean and std dev of Dtop over 3 runs. (For the
Neuropathic subgraph (1k samples), PC Algorithm returns cyclic graphs in the MEC). Human experiments not
conducted for Neuropathic, Child (due to feasibility issues) and Asia; hence rows marked as N/A.

CaMML+Human, PC+LLM, and CaMML+LLM. The results show that using expert-provided causal
order improves Dtop across our experiments consistently. Specifically, the improvement (reduction)
in Dtop when using our approach is larger at lower sample sizes. This indicates that obtaining causal
order from imperfect experts like humans and LLMs can help with causal discovery in limited sample
settings. While the results on the BNLearn datasets may be impacted by memorization, we obtain
consistent results on the less popular Neuropathic dataset that requires nuanced medical knowledge.

Causal Effect Inference. Table 5 presents the results of using the causal order obtained from the
triplet method to compute average causal effect (ACE). We report the error in ACE ϵACE across the
same set of methods and datasets as above. The obtained causal order shows unanimous improvement
in performance across the studies, especially when using the causal order from CaMML+LLM.
Following Proposition 3.2, we use all variables that precede the treatment variable in estimated
topological order as the adjustment set. Once the adjustment set is identified, the causal effect is
estimated using the DoWhy library (Sharma & Kiciman, 2020) and linear regression as the estimator.
Table A16 compares the causal effects estimated using this approach versus minimal backdoor set
adjustment in the Asia dataset, showing minimal differences.

Dataset Metric: ϵACE PC SCORE ICA Direct NOTEARS CaMML Ours Ours
(Treatment, Target) LiNGAM LiNGAM (LLM+PC) (LLM+CaMML)

Earthquake (JohnCalls,alarm) 0.00± 0.00 0.85± 0.02 0.63± 0.10 0.63± 0.10 0.21± 0.12 0.08± 0.03 0.00± 0.00 0.00± 0.00
Cancer (dyspnoea,cancer) 0.20± 0.01 0.30± 0.00 0.30± 0.01 0.30± 0.01 0.18± 0.02 0.06± 0.00 0.30± 0.00 0.00± 0.00
Survey (T,E) 0.02± 0.00 0.04± 0.00 0.05± 0.01 0.05± 0.01 0.03± 0.00 0.03± 0.00 0.02± 0.01 0.01± 0.01
Asia (smoke,dyspnoea) 0.10± 0.00 0.09± 0.00 0.27± 0.03 0.27± 0.04 0.14± 0.01 0.05± 0.00 0.02± 0.00 0.00± 0.00
Child (Lung Parench, 0.22± 0.01 0.02± 0.00 0.52± 0.00 0.52± 0.00 0.52± 0.07 0.01± 0.00 0.22± 0.00 0.00± 0.00

Lowerbody O2)

Table 5: Comparison of causal effect inference with existing methods, showing mean and std dev of error in
Average Causal Effect (ϵACE) of a variable on another, over 3 runs.

PC SCORE ICA Direct NOTEARS CaMML Ours Ours
LiNGAM LiNGAM (LLM+PC) (LLM+CaMML)

N = 250 4.00±0.00 6.00±0.00 13.0±6.16 10.0±0.00 9.00±0.00 10.4±1.95 3.00±0.00 5.00±0.00
N = 10000 10.00±0.00 6.00±0.00 1.00±0.00 10.0±0.00 10.0±0.00 3.00±0.00 10.00±0.00 1.00±0.00

Table 6: Performance on causal discovery for the Neuropathic dataset subgraph (1k samples), showing mean
and std dev of Dtop over 3 runs.

6 CONCLUDING DISCUSSION

Obtaining reliable knowledge from imperfect experts is challenging. We presented causal order as a
suitable output interface to elicit causal knowledge from imperfect experts like LLMs and human
annotators. Compared to the full graph, we showed that causal order is a more stable quantity to elicit
from imperfect experts since it avoids making a distinction between direct and indirect effects. We
also proposed a novel triplet-based method to query experts for obtaining the causal order.

Limitations. While LLMs can provide causal order for relationships over known variables, we do
not expect them to be useful for completely novel nodes and causal relationships. Separately, causal
order may not be sufficient for tasks such as counterfactual estimation (Janzing et al., 2019) that
require the graph structure for estimating functional equations. For both these cases, a viable method
may be to obtain causal order over known relationships from LLMs and use it as a prior /constraint
for existing discovery methods to obtain the full causal graph.
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ETHICAL IMPACT AND REPRODUCIBILITY

Ethical Statement. All datasets used in our work are publicly available and are accurate to the best
of our knowledge. We made best efforts to compare against contemporary benchmarks in a fair
manner. There may be no direct harmful impact, especially considering our causal order is only a
pre-processing steps for downstream algorithms. However, since LLMs may be used in our approach,
suitable prudence may be necessary to avoid ill-effects in applications.

Reproducibility. Our methods are fairly straightforward, and implementation details are already
included in our paper descriptions. Our code is publicly available at https://github.com/
AniketVashishtha/Causal_Order_Imperfect_Experts
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APPENDIX

In this appendix, we include the following additional information, which we could not include in the
main paper due to space constraints:

• Appendix A: Illustration of our triplet query strategy
• Appendix B: Proofs of propositions
• Appendix C: Practicality of the adjustment set obtained using the Causal Order
• Appendix D: Algorithms to integrate causal order into existing discovery methods
• Appendix E: Additional results, including LLMs used in post-processing for graph discovery and a

discussion of triplet vs pairwise query strategies
• Appendix F: More details and examples of our query strategies
• Appendix G: Causal graphs used in our experiments of the datasets

A ILLUSTRATION OF OUR TRIPLET QUERY STRATEGY

We present an intuitive illustration of our overall triplet querying framework to obtain causal order
from imperfect experts in Fig A1 below.

Figure A1: Leveraging Causal Order from Imperfect Experts. Our triplet-based querying method infers all
three-variable subgraphs from imperfect experts and aggregates them (using majority voting) to produce a causal
order. Ties in causal order are broken using a high-cost expert. Expert-generated causal order is integrated with
discovery algorithms, before estimating causal effect.

B PROOFS OF PROPOSITIONS

To estimate E[Xj |do(Xi = xi)] from observational data, the backdoor adjustment formula is used.

14
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Definition B.1. Backdoor Adjustment (Pearl, 2009). Given a DAG G, a set of variables Z satisfies
the backdoor criterion relative to a pair of treatment and target variables (Xi, Xj) if (i) no variable
in Z is a descendant of Xi; and (ii) Z blocks every path between Xi and Xj that contains an arrow
into Xi.

Proposition 3.1. Let the true causal DAG be G(X,E) with ground-truth adjacency matrix A.
Consider a procedure to estimate a graph Ĝ by querying a Perfect Expert (as in Def. 3.3) with pairwise
queries Xi, Xj with auxiliary set Oij , followed by subsequent aggregation of predicted edges from
each query (i.e. from a total of |X|C2 queries). The causal order of the graph Ĝ thus estimated
is correct, i.e. Dtop(π(Ĝ), A) = 0 for all values of the sets Oij . As a corollary, the causal graph
thus estimated can however have errors. In other words, when Oij = ϕ ∀i, j, Dtop(π(Ĝ), A) = 0

whereas Structural Hamming Distance (SHD) between G and Ĝ =
∑|X|

i=1 |de(Xi)| − |ch(Xi)|.

Proof. First claim (Dtop(π(Ĝ), A) = 0): By definition, the Perfect Expert adds new edges that are
not present in the true G, but cannot miss predicting a ground truth edge. This implies that all edges
between any two level i, j where i < j that are present in the ground truth graph G are also present
in the estimated graph Ĝ. Given any two nodes X l

1 and X l
2 with the same level order “l" in the

true causal graph. Since there is no directed path between X l
1 and X l

2, the perfect expert will never
predict any edge between them (using Def. 3.3). Combining these two observations, the level order
of both the graphs Ĝ and G remains the same. Next, we will use the following lemma that states that
if the level order of two graphs remains the same then the topological order remains the same thus
completing the proof of the first claim.

Lemma B.1. Given two DAG G1 and G2 have same level order (see Def. 3.4) then there exist two
topological order π(G1) and π(G2) corresponding to the two DAG s.t. the ordered set π(G1) = π(G2).

Proof. Since the level order is the same for both the graphs, all the nodes on a given level “l” for both
graphs G1 and G2 are the same. Now, any two nodes on the same level don’t have any edges between
them. Thus add all the nodes on the level in the same order to both π(G1) = π(G2). Thus when we
are done adding the nodes from all the levels in the topological order we get the π(G1) = π(G2).

Second claim (SHD > 0): Recall that SHD counts the number of missing, falsely detected, and
falsely directed edges in the estimated causal graph as compared to the ground truth graph. Since the
perfect expert correctly predicts all the ground truth edges, there are no falsely directed or missing
edges in the predicted graph. From Def. 3.3, when queried over all |X|C2 pairs of nodes the perfect
expert will add additional (falsely directed) edges between a node and all its descendants. Thus total
number of falsely directed edges =

∑|X|
i=1 |de(Xi)| − |ch(Xi)| = SHD.

Proposition 3.2. (Pearl, 2009; Cinelli et al., 2022) Under the no latent confounding assumption,
for a pair of treatment and target variables (Xi, Xj) in a DAG G, Z = {Xk|πk < πi} is a valid
adjustment set relative to (Xi, Xj) for any topological order π of G.

Proof. Before starting the proof, we define a confounding variable. A confounder is a variable
that should be casually associated with both the treatment and the target variables and is not on the
causal pathway between treatment and target. An unmeasured common cause can also be a source
of confounding the treatment→ target relationship. Coming to the proof, we need to show that the
set Z = {Xk|πk < πi} satisfies the conditions (i) and (ii) in Defn B.1. For any variable Xk such
that πk < πi, we have Xk ̸∈ de(Xi) and hence the condition (i) is satisfied. Additionally, for each
Xk ∈ pa(Xi) we have πk < πi and hence pa(Xi) ⊆ Z. Since pa(Xi) blocks all paths from Xi to
Xj that contains an arrow into Xi (Peters & Bühlmann, 2015), Z satisfies condition (ii).

Proposition 3.3. For an estimated topological order π̂ and a true topological order π of a causal
DAG G with the corresponding adjacency matrix A, Dtop(π̂, A) = 0 iff Z = {Xk|π̂k < π̂i} is a
valid adjustment set relative to (Xi, Xj), ∀πi < πj .
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Proof. The statement of proposition is of the form A ⇐⇒ B with A being “Dtop(π̂, A) = 0”
and B being “Z = {Xk|π̂k < π̂i} is a valid adjustment set relative to (Xi, Xj), ∀i, j”. We prove
A ⇐⇒ B by proving (i) A =⇒ B and (ii) B =⇒ A.

(i) Proof of A =⇒ B: If Dtop(π̂, A) = 0, for all pairs of nodes (Xi, Xj), we have π̂i < π̂j whenever
πi < πj . That is, causal order in estimated graph is same that of the causal order in true graph. Hence,
from Propn 3.2, Z = {Xk|π̂k < π̂i} is a valid adjustment set relative to (Xi, Xj), ∀i, j.

(ii) Proof of B =⇒ A: we prove the logical equivalent form of B =⇒ A i.e., ¬A =⇒ ¬B,
the contrapositive of B =⇒ A. To this end, assume Dtop(π̂, A) ̸= 0, then there will be at least
one edge Xi → Xj that cannot be oriented correctly due to the estimated topological order π̂. i.e.,
π̂j < π̂i but πj > πi. Hence, to find the causal effect of Xi on Xl; l ̸= j, Xj is included in the
back-door adjustment set Z relative to (Xi, Xl). Adding Xj to Z renders Z an invalid adjustment set
because it violates the condition (i) of Defn B.1.

Assumption B.1 (DAG Acyclicity). Given that ϵ-expert Eϵ is used to predict a causal graph between
a set of nodes, the predicted causal graph is acyclic.

Assumption B.2 (Error Distribution and Probability Renormalization). Let [c1, c2, c3] be the three
choices for a causal relationship between node A and B (see Def 4.1). Let P (c1), P (c2) and P (c3)
be the probability of selecting the corresponding three choices by the ϵ-expert Eϵ. We assume that
the probability for the two wrong options are equally likely, i.e., equal to ϵ/2. If any constraint
T renders some of the choices as not possible i.e. P (cj |T ) = 0 for some j ∈ {1, 2, 3}, then Eϵ
renormalizes the posterior probability over the other choices,i.e., P (ci|T ) = P (ci)∑

j,P (cj |T )̸=0 P (cj)

where the denominator is summed over j s.t. P (cj |T ) ̸= 0.

Proposition 4.1. Given two nodes A and B of an underlying causal graph, access to an ϵ-expert Eϵ
that doesn’t produce any cycles in the predicted causal graph (see Assm B.1 for formal statement)
and and renormalizes the probability in case an option is not available (see Assm B.2 for formal
statement), let C ̸= A ̸= B be any other node in the graph. If Eϵ predicts causal relationship between
all pairs of nodes sequentially, the marginalized probability that Eϵ makes an error in predicting the
causal relationship between A and B, after it has already predicted the causal relationships between
(C,A) and (C,B), is less than ϵ, where marginalization is over all possible causal graphs that can
be formed between A,B and C, with each of such graphs being equally likely.

Proof. Without any additional constraint, ϵ-expert (Eϵ) has “ϵ" probability of making incorrect
prediction. But in presence of additional constraint, e.g. DAG constraint (see Assm B.1), the
probability of error changes and is given by the following lemma:

Lemma B.2. Suppose we have two nodes A and B and three possible choices [c1, c2, c3] for causal
relationship between them i.e A→ B, B → A or no edge between them (not in any particular order).
Without loss of generality, let c3 be the ground truth causal relationship between node A and B. Thus,
without any additional constraint, let the probability assigned to each of the three choices by ϵ-expert
(Eϵ) is P (c1) = ϵ1, P (c2) = ϵ2 and P (c3) = 1− ϵ1 − ϵ2 respectively where ϵ = ϵ1 + ϵ2. If due to
additional constraint (e.g. acyclicity Assm B.1), one of the incorrect choice gets discarded, say c1,
then the new probability of selecting the wrong choice (c2 given by ϵ

′
) is always less than ϵ. However

if the correct/ground truth choice is discarded due to this additional constraint the new probability of
selecting the wrong choice (c1 or c2) is 1. In case, no options are discarded the new probability of
choosing the wrong choice remains same i.e ϵ as before.

Proof. For the case when the correct/ground truth choice i.e c3 is discarded due to some constraint,
the only left out choices are wrong choices i.e. c1 and c2. Thus the probability of making error in
selecting the correct choice is 1. Next, for the case when one of the incorrect choice (here c1 w.l.o.g)
is discarded, we are left with one incorrect (c2) and one correct choice (c3). From Assm B.2 once a
particular option is discarded, the ϵ-expert renormalizes the probability proportional to their initial
probability. Thus the new probability (P̃ (c2)) of choosing wrong option c2 is:

P̃ (c2) =
ϵ2

1− ϵ1 − ϵ2 + ϵ2
=

ϵ2
1− ϵ1

=
ϵ/2

1− ϵ/2
=

ϵ

2− ϵ
(1)
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where ϵ1 = ϵ2 = ϵ/2 from Assm B.2. Next, we can show that P̃ (c2) < ϵ completing our proof. To
have P̃ (c2) < ϵ we need:

P̃ (c2) =
ϵ2

1− ϵ1
< ϵ = ϵ1 + ϵ2

=⇒ ϵ2 < ϵ1 + ϵ2 − ϵ21 − ϵ1ϵ2

=⇒ ϵ1(ϵ1 + ϵ2 − 1) < 0

(2)

which is always true since from Assm B.2 we have ϵ1 > 0, ϵ2 > 0 and 1− ϵ1 − ϵ2 > 0.

Now, give any three nodes A,B and C, Table A1 summarizes all possible partially completed graph
(henceforth partial graph) possible between those nodes. Each partially-completed DAG in Table A1
generated more DAG based on the orientation of the node A and B. Specifically, each of the partial
graph 1, 2, 3, 4, 5, 7 and 9 generated three graphs (A → B, B → A or no edge between A and
B) and partial graph 6 and 8 will give two DAG (one option is not possible to maintain acyclicity
constraint). Thus overall we have 25 possible graphs. Our next goal is to show that the marginal
probability of choosing the wrong causal relationship for node (A,B) when oriented last among is
less than ϵ, where marginalization is over all the causal graph depicted in Table A1 (assuming all
graphs are equally likely). The expert Eϵ finds the causal relationship sequentially for all the pairs
in {(C,A), (C,B), (A,B)}. We are interested in the case when Eϵ finds the causal relationship for
pair (A,B) in the end. Let F, S, T (called first,second and third) be three binary random variable and
the value 0 represent whether the causal relationship discovered by Eϵ for first, second or last/third
pair respectively is incorrect and 1 represent it is correct. So the probability of error when finding the
causal relationship between node A and B when oriented last/third (denoted by P (T )) is given by:

P (T = 0) =
∑
G∈G

∑
S,T∈{0,1}×{0,1}

P (G)P (F, S|G)P (T = 0|F, S,G)

=
1

25
·
∑
G∈G

∑
S,T∈{0,1}×{0,1}

P (F, S|G)P (T = 0|F, S,G)
(3)

where G denotes the set of graphs generated by orienting the causal relationship between A and B for
all partial graphs in Table A1, |G| = 25 and all the graphs are equally likely, different configuration
of (F, S) shows whether the causal relationship between first two pairs (C,A) and (C,B) are correct
or not. When orienting the first two pair of nodes i.e (C,A) and (C,B) there is no DAG constraint
thus we have:

P (F, S) =


ϵ2 when S = 0, T = 0

ϵ(1− ϵ) when S = 0, T = 1

ϵ(1− ϵ) when S = 1, T = 0

(1− ϵ)2 when S = 1, T = 1

(4)

Now based on the graph G ∈ G and the setting of S, T , P (T = 0|F, S,G) takes different values.
Suppose that the causal relationship between the first two pairs (C,A) and (C,B) are already
predicted by the expert. We observe that the DAG acyclcity constraint (Assm B.2) will only change
the probability of error for orienting nodes (A,B) (P (T = 0|F, S,G) given by Lemma B.2) when
the predicted causal graphs is either B → C → A or A → C → B after orienting (C,A) and
(C,B). For all the other predictions of (C,A) and (C,B), they don’t enforce any acyclicity constant
for finding the causal relationship between (A,B), thus, P (T = 0|F, S,G) = ϵ (from Lemma B.2).
Table A2 summarizes of error probability for all the partial graphs in Table A1 (P (F, S|G) and
P (T |F, S,G)). The first column shows different partial graphs from Table A1. The second column
then shows different causal relationships that are possible between the nodes A and B for a particular
partial graph. Given one true orientation between node A and B we get a final ground truth graph.
Thus the third column shows the probability of prediction of structure A← C → B for a particular
true graph and the fourth column shows the probability of making an error in predicting the third
causal relationship i.e between (A,B) given the first and second pair (C,A) and ((C,B)) is already
predicted. Similarly, the fifth and sixth columns show the same thing for the predicted structure
A→ C → B for each of the ground truth graphs. The partial-graph number 4, 7, 8 is not depicted in
the table but the entries for 4th graph is the same as 2nd, 7th is the same as 3rd and 8th is same as
6th due to symmetry in the partial-structure. The value of ϵ

′
= ϵ

2−ϵ in 4th and 6th column is given
by renormalized probability Eq. 1 in Lemma B.2. Substituting the values from Table A2 in Eq. 3
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A

C

B

1.

A

C

B

2.

A

C

B

3.

A

C

B

4.

A

C

B

5.

A

C

B

6.

A

C

B

7.

A

C

B

8.

A

C

B

9.

Table A1: All possible causal graph between three variables A,B and C. The dashed arrow represented
undecided causal relationship between node A and B. So, the dashed arrow can take one of three choices
A→ B, A← B or no edge between A and B. To ensure that the graph is acyclic, some of the graphs above
might not allow all three choice for causal relationship between node A and B. Hence the causal-graph 1, 2, 3, 4
and 7 each have three possible graphs and 5, 6, 8 and 9 each have two possible graphs based on the valid choice
of causal relationship between A and B that preserves acyclicity constraint. So overall there are 25 possible
different causal graph between three variables A, B and C.

and using the value P (T |F, S,G) = ϵ for the rest of the predicted structure not mentioned in the
Table A2 we get:

P (T = 0) =
1

25
·

{
2 ∗ ϵ

2

4

[
2ϵ

′
+ 1
]
+
[
1− 2 ∗ ϵ

2

4

]
ϵ

+

([ϵ2
4

+
ϵ(1− ϵ)

2

][
2ϵ

′
+ 1
]
+
[
1− ϵ2

4
− ϵ(1− ϵ)

2

]
ϵ

)
∗ 4

+

(
2 ∗ ϵ(1− ϵ)

2

[
2ϵ

′
+ 1
]
+
[
1− 2 ∗ ϵ(1− ϵ)

2

]
ϵ

)
∗ 2

+

(
(1− ϵ)2

[
2ϵ

′
]
+

ϵ2

4

[
ϵ
′
+ 1
]
+
[
1− (1− ϵ)2 − ϵ2

4

]
ϵ

)
∗ 2

}

=
1

25
·

{
ϵ(3ϵ2 − 30ϵ+ 52)

4− 2ϵ

}

(5)

Now we want to show that the error probability for the third pair (A,B) given by the above equation
is less than ϵ. For that, we need:

1

25
·

{
ϵ(3ϵ2 − 30ϵ+ 52)

4− 2ϵ

}
< ϵ

3ϵ2 + 20ϵ− 48 < 0

(6)

The above inequality is always satisfied since ϵ ∈ (0, 1) and 3ϵ2 + 20ϵ− 48 is always less than 0 in
the allowed range of ϵ since the roots of the quadratic equation are −10/3− 2

√
61/3 = −8.5 and

−10/3 + 2
√
61/3 = 1.87. Thus P (T = 0) < ϵ for all values of ϵ ∈ (0, 1) completing our proof.
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Predicted Orientation in first two steps (F, S)
True Orien-

tation
A← C ← B A→ C → B

Partial True Graph (A,B) P (F, S|G) P (T |F, S,G)P (F, S|G) P (T |F, S,G)

A

C

B

1. no edge (
ϵ
2

)2 ϵ
′ (

ϵ
2

)2 ϵ
′

A→ B 1 ϵ
′

A← B ϵ
′

1

A

C

B

2. no edge (
ϵ
2

)2 ϵ
′ (

ϵ
2

)
(1− ϵ)

ϵ
′

A→ B 1 ϵ
′

A← B ϵ
′

1

A

C

B

3. no edge (
ϵ
2

)
(1− ϵ)

ϵ
′ (

ϵ
2

)2 ϵ
′

A→ B 1 ϵ
′

A← B ϵ
′

1

A

C

B

5. no edge (
ϵ
2

)
(1− ϵ)

ϵ
′ (

ϵ
2

)
(1− ϵ)

ϵ
′

A→ B 1 ϵ
′

A← B ϵ
′

1

A

C

B

6. no edge
(1− ϵ)2

ϵ
′ (

ϵ
2

)2 ϵ
′

A← B ϵ
′

1

A

C

B

9. no edge (
ϵ
2

)
(1− ϵ)

ϵ
′ (

ϵ
2

)
(1− ϵ)

ϵ
′

A→ B 1 ϵ
′

A← B ϵ
′

1

Table A2: Summary of Error Probability for all the partial graphs in Table A1 (P (F, S|G) and P (T |F, S,G)):
The first column shows different partial graphs from Table A1. The second column then shows different
causal relationships that are possible between the nodes A and B for a particular partial graph. Given one
true orientation between node A and B we get a final ground truth graph. Now we observed in the proof of
Proposition 4.1 (see Proof B), that the error probability for the prediction of causal relationship for the pair
(A,B) will only change when the ϵ-expert predicts the the structure A← C → B or A→ C → B for the pair
of nodes (C,A) and (C,B) for any ground truth graph. For the rest of the possible predictions of a pair of nodes
(C,A) and (C,B) in any ground truth graph, the error probability for (A,B) remains ϵ ( see Lemma B.2). Thus
the third column shows the probability of prediction of structure A← C → B for a particular true graph and
the fourth column shows the probability of making an error in predicting the third causal relationship i.e between
(A,B) given the first and second pair (C,A) and ((C,B)) is already predicted. Similarly, the fifth and sixth
columns show the same thing for the predicted structure A→ C → B for each of the ground truth graphs. The
partial-graph number 4, 7, 8 is not depicted in the table but the entries for 4th graph is the same as 2nd, 7th is
the same as 3rd and 8th is same as 6th due to symmetry in the partial-structure. The value of ϵ

′
= ϵ

2−ϵ
in 4th

and 6th column is given by renormalized probability Eq. 1 in Lemma B.2.

C PRACTICALITY OF THE ADJUSTMENT SET OBTAINED USING THE CAUSAL
ORDER

Including variables appearing before treatment (in the causal order) is actually a widespread practice
in biomedical and social science empirical studies. In these studies, such variables are called "pre-
treatment variables" and a common practice is to condition on all of them. For this reason, we do not
think that our proposal is impractical. The importance of Prop. 3.2 is to show the utility of the causal
order to identify such a commonly used adjustment set.

For example, refer to the Covariate selection chapter (Sauer et al., 2013) by Sauer, Brookhart, Roy and
Vanderwheele in a User Guide ("Developing a Protocol for Observational Comparative Effectiveness
Research"). In the section on "Adjustment for all observed pre-treatment covariates", they mention

19



Published as a conference paper at ICLR 2025

the widely used propensity score adjustment and write, "The greatest importance is often placed on
balancing all pretreatment covariates." They also add that while theoretically colliders can bias the
result, "in practice, pretreatment colliders are likely rarer than ordinary confounding variables.".

Further, when unobserved confounding cannot be ruled out (as is the case with most observational
studies), evidence is not clear on whether we should include all pre-treatment covariates or select
a few, especially because the true graph may be unknown. “Strong arguments exist for error on
the side of overadjustment (adjusting for instruments and colliders) rather than failing to adjust for
measured confounders (underadjustment). Nevertheless, adjustments for instrumental variables have
been found to amplify bias in practice". As the last sentence suggests, note that we are not claiming
that adjusting for all pre-treatment variables (variables before treatment in causal order) is always the
correct approach; but rather showing that it can be practical in many situations.

Theoretically, of course, improvements to this causal order criterion are possible. Vanderweele and
Shpitser (2011) (VanderWeele & Shpitser, 2011) cite the popular practice of using "all pre-treatment
variables" and propose the Disjunctive Cause criterion as an improvement. This criterion states that
if a pre-treatment variable causes the treatment, outcome, or both; then it should be included in the
adjustment set. Note that this criterion—effectively including all pre-treatment ancestors of treatment
and/or outcome—is quite close to the causal order-based criterion in our paper. Except for possibly
conditioning on a collider in cases where there are unobserved variables in the graph (see Fig. 1 from
(VanderWeele & Shpitser, 2011)), additional variables in the causal order adjustment superset will
not have a significant effect on the estimate.

D ALGORITHMS FOR INTEGRATING CAUSAL ORDER IN EXISTING
DISCOVERY METHODS

In continuation to the discussion in Sec 3.2, the algorithms for integrating causal order into exist-
ing constraint-based and score-based discovery methods are summarized in Algorithms 1 and 2
respectively.

Algorithm 1 Integrating π̂ in constraint-
based methods

1: Input: Noisy expert topological order-
ing π̂, Expert E , CPDAG Ĝ

2: Output: Estimated topological order
π̂final of {X1, . . . , Xn}.

3: for (i− j) ∈ undirected-edges(Ĝ) do
4: If both nodes i and j are in π̂ and if

π̂i < π̂j , orient (i− j) as (i→ j) in
Ĝ.

5: Otherwise, use expert E to orient the
edge.

6: end for
7: π̂final = topological ordering of Ĝ
8: return π̂final

Algorithm 2 Integrating π̂ in score-based methods
1: Input: Dataset D, Variables {X1, . . . , Xn}, Ex-

pert E , Score-based method S , Prior probability p.
2: Output: Estimated topological order π̂final of
{X1, . . . , Xn}.

3: Ĝ = E(X1, . . . , Xn)

4: L = level order of Ĝ
5: for cycle C ∈ Ĝ do
6: for node ∈ C do
7: L(node) = min(level(c) ∀c ∈ C)
8: end for
9: end for

10: Ĝ = S(D, L, p) //L is provided as
prior

11: π̂final = topological ordering of Ĝ
12: return π̂final

E ADDITIONAL RESULTS

E.1 STUDY ON DOWNSTREAM TASKS: CAUSAL DISCOVERY

In continuation to the results presented in Sec 5 of the main paper, we present the performance
on the causal discovery task across all sample sizes in Table A3. Evidently, as stated in the main
paper, the results show that using expert-provided causal order improves Dtop across our experiments
consistently. CaMML+Human/LLM yields benefits even at higher sample sizes. At a sample
size of 10000, CaMML’s Dtop for Child and Asia surpasses CaMML+LLM by three and fourfold
respectively. In specific datasets like Survey where the variables are better understood by humans,
incorporating human priors to CaMML leads to consistently zero Dtop, outperforming LLM output.
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Dataset PC SCORE ICA Direct NOTEARS CaMML Ours Ours Ours Ours
LiNGAM LiNGAM (PC+LLM) (CaMML+LLM) (PC+Human) (CaMML+Human)

Earthquake 0.16±0.28 4.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 1.00±0.00
Cancer 0.00±0.00 3.00±0.00 2.00±0.00 2.00±0.00 2.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Survey 0.50±0.00 4.00±0.00 2.00±0.00 4.00±0.00 4.00±0.00 3.33±0.94 0.00±0.00 3.33±0.94 0.00±0.00 0.00±0.00
Asia 2.00±0.59 7.00±0.00 3.33±0.47 1.00±0.00 3.00±0.00 1.85±0.58 1.00±0.00 0.97±0.62 N/A N/A

Asia-M 1.50±0.00 6.00±0.00 1.00±0.00 3.00±0.00 3.00±0.00 1.00±0.00 1.00±0.00 1.71±0.45 1.00±0.00 2.00±0.00

N
=

25
0

Child 5.75±0.00 12.0±0.00 14.33±0.47 16.0±0.00 14.0±0.00 3.00±0.00 4.00±0.00 3.53±0.45 N/A N/A
Neuropathic 4.00±0.00 6.00±0.00 13.0±6.16 10.0±0.00 9.00±0.00 10.4±1.95 3.00±0.00 5.00±0.00 N/A N/A

Earthquake 0.75±0.25 4.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Cancer 0.16±0.28 3.00±0.00 3.40±0.48 3.00±0.00 2.00±0.00 1.00±0.00 0.33±0.57 1.00±0.00 0.00±0.00 0.00±0.00
Survey 1.25±0.00 4.00±0.00 6.00±0.0 6.00±0.00 3.40±0.48 3.39±0.08 1.00±0.00 3.33±0.94 1.00±0.00 0.00±0.00
Asia 3.06±0.00 5.00±0.00 5.60±0.48 7.00±0.00 3.20±0.39 3.81±0.39 1.00±0.00 0.97±0.62 N/A N/A

Asia-M 2.00±0.00 6.00±0.00 7.60±0.48 5.00±0.00 3.80±0.39 2.00±0.00 1.00±0.00 0.17±0.45 1.33±0.57 3.00±0.00

N
=

50
0

Child 8.09±0.00 6.20±1.32 12.2±0.74 10.6±1.35 15.4±0.48 2.00±0.00 5.00±1.73 2.00±0.00 N/A N/A
Neuropathic 7.50±0.00 6.00±0.00 9.00±1.41 13.0±0.00 11.0±0.00 5.32±0.57 8.00±0.00 7.49±0.64 N/A N/A

Earthquake 0.50±0.86 4.00±0.00 2.80±0.39 3.00±0.00 1.00±0.00 0.80±0.97 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Cancer 1.33±0.57 3.00±0.00 3.00±0.00 3.00±0.00 2.00±0.00 2.00±0.00 1.33±0.57 0.00±0.00 1.33±0.57 0.00±0.00
Survey 2.00±0.00 4.00±0.00 5.00±0.00 5.00±0.00 3.00±0.00 3.33±0.69 2.00±0.00 2.60±0.00 2.00±0.00 0.00±0.00
Asia 1.00±0.00 4.00±0.00 6.60±0.79 4.40±1.35 3.40±0.48 1.75±0.43 0.00±0.00 0.97±0.62 N/A N/A

Asia-M 2.00±0.00 4.00±0.00 7.60±0.48 4.60±0.48 3.20±0.39 1.68±0.46 2.00±0.00 0.00±0.00 2.00±0.00 2.00±0.00

N
=

50
00

Child 8.25±0.00 3.00±0.00 12.6±0.79 10.8±1.72 14.2±0.40 3.00±0.00 7.00±0.00 3.00±0.00 N/A N/A
Neuropathic 8.62±0.00 6.00±0.00 9.33±0.94 10.0±0.00 10.0±0.00 4.20±0.96 9.00±0.00 1.23±0.42 N/A N/A

Earthquake 0.00±0.00 4.00±0.00 3.00±0.00 3.00±0.00 1.00±0.00 0.40±0.48 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Cancer 2.00±0.00 3.00±0.00 3.00±0.00 3.00±0.00 2.00±0.00 0.60±0.80 2.00±0.00 0.00±0.00 2.00±0.00 0.00±0.00
Survey 2.00±0.00 4.00±0.00 5.00±0.00 5.00±0.00 3.00±0.00 3.60±1.35 2.00±0.00 1.83±0.00 2.00±0.00 0.00±0.00
Asia 1.5±0.00 4.00±0.00 6.00±0.00 4.40±1.35 3.00±0.00 1.40±0.48 0.00±0.00 0.34±0.47 N/A N/A

Asia-M 1.00±0.00 4.00±0.00 8.00±0.00 4.80±0.39 3.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 3.00±0.00

N
=

10
00
0

Child 6.00±3.04 3.00±0.00 12.2±1.46 11.6±0.48 14.4±0.48 2.80±0.84 5.00±2.64 1.00±0.00 N/A N/A
Neuropathic 10.00±0.00 6.00±0.00 1.00±0.00 10.0±0.00 10.0±0.00 3.00±0.00 10.00±0.00 1.00±0.00 N/A N/A

Table A3: Comparison with causal discovery methods, showing mean and std dev of Dtop over 3 runs. (For the
Neuropathic subgraph (1k samples), PC Algorithm returns cyclic graphs in the MEC). Human experiments not
conducted for Neuropathic, Child (due to feasibility issues) and Asia; hence rows marked as N/A.

E.2 Dtop VS SHD: BETTER MEASURE OF EFFECT ESTIMATION ERROR

As discussed in Sec 3.2 of the main paper, we show herein that Dtop has a strong correlation with
effect estimation error and hence is a valid metric for effect inference.
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Figure A2: Dtop vs. ϵACE . ϵACE increases as Dtop increases, aligning with theoretical observations.

Cancer

Dtop = 0 SHD = 2
SHD ϵACE Dtop ϵACE

0 0.00 0 0.00
2 0.00 1 0.25
4 0.00 2 0.50

Asia

Dtop = 0 SHD = 3

SHD ϵACE Dtop ϵACE

0 0.00 1 0.14
6 0.00 2 0.22

10 0.00 3 0.57

Survey

Dtop = 0 SHD = 2

SHD ϵACE Dtop ϵACE

0 0.00 0 0.00
2 0.00 1 0.25
4 0.03 2 0.50

Table A4: ϵACE vs SHD given Dtop (& Dtop given SHD)
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E.3 LLMS USED IN POST PROCESSING FOR GRAPH DISCOVERY

We conducted some experiments where we utilised discovery algorithms like PC for creating skeletons
of the graph and employed LLMs for orienting the undirected edges. The idea was to utilise LLMs
ability to correctly estimate the causal direction while leveraging PC algorithm’s ability to give a
skeleton which could be oriented in a post processing setup. We saw that LLM ended up giving
improved results as compared to PC alone.

E.4 TRIPLET VS PAIRWISE QUERY STRATEGIES

In continuation to the discussion in Sec 5 of the main paper, we include Tables A5 for more details.
The pairwise strategy also shows flaws when LLMs are used as noisy experts. In many cases, pairwise
querying yields cycles due to which Dtop cannot be computed. In particular, for the Child dataset
with 20 nodes, pairwise querying of LLMs yields an extremely high number of cycles (see Table A5).
LLM output tends to overconnect, resulting in high SHD. Overall, among the prompting strategies,
the chain of thought prompt performs the best: it has the lowest number of cycles for Child and
Neuropathic datasets. This indicates that in-context examples and chain-of-thought reasoning help to
increase the accuracy of causal order output, but other contextual cues do not matter.

Dataset Dtop SHD IN/TN Cycles

Base Prompt

Earthquake 0 7 0/5 0
Cancer 0 6 0/5 0
Survey 3 12 0/6 0
Asia - 21 0/8 1

Asia-M - 15 0/7 7
Child - 177 0/20 >>3k

Neuropathic - 212 0/22 >>5k

All Directed Edges

Earthquake 1 9 0/5 0
Cancer 1 7 0/5 0
Survey 2 11 0/6 0
Asia - 21 0/8 6

Asia-M 0 13 0/7 0
Child - 139 0/20 >>300

Neuropathic - 194 0/22 >>1k

One Hop Iteration

Earthquake 0 8 0/5 0
Cancer 0 6 0/5 0
Survey 3 12 0/6 0
Asia - 21 0/8 1

Asia-M 0 14 0/7 0
Child - 167 0/20 >>400

Neuropathic - 204 0/22 >>4k

Table A5: Comparison of various querying strategies for only LLM-based setups, providing different
contextual cues in each setup about the graph. IN: Isolated Nodes, TN:Total Nodes.
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Dataset Dtop SHD IN/TN Cycles

Chain of Thought

Earthquake 0 4 0/5 0
Survey 1 9 2/6 0
Asia - 18 0/8 1

Asia-M - 13 0/7 1
Child - 138 0/20 >>500

Neuropathic - 64 0/22 5

Triplet Query

Earthquake 0 4 0/5 0
Cancer 1 6 0/5 0
Survey 0 9 0/6 0
Asia 1 14 0/8 0

Asia-M 1 11 0/7 0
Child - 138 0/20 391

Child (+ Cycle Remover) 1 28 10/20 0
Neuropathic - 151 0/22 772

Neuropathic(+ Cycle remover) 3 24 13/20 0

Table A6: Triplet query output using variable names with their descriptions (Cancer not included
since CoT prompt has examples from this graph). IN: Isolated Nodes, TN:Total Nodes. Since
calculating total number of cycles in a DAG is computationally challenging (NP Hard), we find a
lower bound of cycles present in each graph based on total k lenght cycles in each setting, where k=5.
If k is scaled up, the number of such unique cycles in the LLM output will also scale significantly.
Lower bound helps us make a comparison with number of cycles in outputs like in Triplet strategy,
where numbers are comparatively smaller and can be calculated easily.

Dataset SHD Dtop Cycles IN/TN

Base Prompt

Asia 18 1 0 0
Child 148 - >>10k 0

Earthquake 4 0 0 0
Survey 7 - 1 0

Neuropathic 178 - >>10k 0
Covid 33 - 15 0

Alzheimers 30 - 1 0

Table A7: Final result of using performing base pairwise querying strategy with GPT-4. These results
show how using a superior model in pairwise querying does not lead to complete removal of cycles,
further highlighting the impact of triplet strategy.
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Dataset Metric Pairwise (Base) Pairwise (CoT) Triplet

Using Phi-3

Asia

Dtop - 4 0
SHD 17 11 13

Cycles 1 0 0
IN/TN 1/8 0/8 1/8

Alzheimers

Dtop - - 7
SHD 28 28 25

Cycles 11 11 0
IN/TN 0/11 0/11 0/11

Child

Dtop - - 17
SHD 142 80 69

Cycles »10k 59 0
IN/TN 0/20 0/20 0/20

Using Llama3

Asia

Dtop - - 2
SHD 22 23 17

Cycles 71 20 0
IN/TN 0/8 0/8 0/8

Alzheimers

Dtop - - 5
SHD 41 29 24

Cycles 1144 7 0
IN/TN 1/11 0/11 1/11

Child

Dtop - - 12
SHD 167 151 129

Cycles »10k 71 0
IN/TN 0/20 0/20 0/20

Table A8: (Top) Results using Phi-3 (Bottom) Performance of triplet method using Llama3 (8b) models vs
CoT pairwise vs base pairwise query strategy on multiple benchmark datasets across diff metrics:
Dtop, SHD, (Num of) Cycles, IN (Isolated Nodes), TN (Total Nodes). When num of cycles>0, π̂
cannot be computed, hence Dtop is given by ‘-’. Triplet consistently outperforms the pairwise (base
as well as CoT) strategy across metrics & datasets, especially by significant amounts on larger graphs
like Child.

Graphs Dtop SHD Cycles Isolated Nodes LLM Calls Number of Nodes Complexity
Quadruplet
Asia 1 6 0 0 70 8 O(n3)
Covid 1 19 0 0 330 11 O(n3)
Alzheimers 5 14 0 0 330 11 O(n3)
Triplet
Asia 1 14 0 0 286 8 O(n4)
Covid 0 30 0 0 165 11 O(n4)
Alzheimers 4 28 0 0 165 11 O(n4)

Table A9: Analyzing the performance differences between using triplets and quadruplets, we found
no significant difference in the quality of the final graph output. However, the number of LLM API
calls more than doubles when shifting from triplets to quadruplets, leading to a substantial increase in
cost.
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Dataset Metric Triplet GPT-4 Triplet GPT-3.5-Turbo
Asia Dtop 0 1

SHD 10 14
Cycles 0 0
IN/TN 0/8 0/8

Alzheimers Dtop 4 4
SHD 23 28
Cycles 0 0
IN/TN 0/11 0/11

Child Dtop 1 1
SHD 24 28
Cycles 0 0
IN/TN 6/20 10/20

Table A10: Results of running GPT-4 for orienting triplet subgraphs, and then re-using GPT-4 for
resolving clashes during merging phase. These results cover graph discovery on Asia, Alzheimers
and Child graphs. Upgrading to a superior model (GPT-4) leads to better results for all three graphs
on triplet strategy.

Graph Sample size Before LLM prior After LLM Prior

Child

250 18 16
500 16 15

1000 14 13
5000 13.5 12
10000 9.66 6

Earthquake

250 3.83 3
500 3.6 3

1000 3.6 3
5000 1.16 0.66
10000 0 0

Cancer

250 1 0
500 3.83 3.83

1000 2.6 2.6
5000 2.3 2.3
10000 2 2

Asia

250 7.5 7
500 6 5

1000 7 7
5000 2 1
10000 2 1

Asia-M

250 4.5 4
500 4 4

1000 5.5 5
5000 4 4
10000 4 4

Neuropathic

250 27 26
500 31 29

1000 41 40
5000 55 53

Table A11: Comparison of SHD Values Before and After Incorporating LLM Priors Using the PC
Algorithm Across Various Graphs

Finally, the triplet prompt provides the most accurate causal order. For small-scale graphs, it produces no cycles
and consistently produces minimal Dtop (ranging from 0 to 1) while also producing no isolated nodes. Even for
medium-size graphs like Child and Neuropathic, the LLM output includes significantly fewer cycles than the
pairwise strategy, which were removed leading to a significant and accurate causal order used further as prior.
That said, we do see that isolated nodes in the output increase after cycles are removed for medium graphs (all

graphs are connected, so outputting an isolated node is an error). Considering LLMs as virtual experts, this
indicates that there are some nodes on which the LLM expert cannot determine the causal order. This is still a
better tradeoff than providing the wrong causal order, which can confuse downstream algorithms. Overall, we
conclude that the triplet query strategy provides the most robust causal order predictions. Additional results

showing the error introduced by the LLM with respect to a ground truth order are shown in two different settings
in Tables A15 and A16.
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Dataset Dtop SHD IN Cycles
Alzheimers 5 14 0 0
Covid - 36 0 1

Table A12: Results of a hybrid approach where the PC algorithm integrates an LLM-derived prior
(GPT-4) obtained via BFS for Alzheimer’s and COVID graphs. The prior directly provides edge
orientations, which guide the initial graph structure, while PC subsequently orients remaining edges.
Unlike triplet that used only causal order, this approach incorporates the full graph as a prior. The PC
algorithm is further supported by a large observational dataset of 10,000 samples. The results show
that PC + BFS (GPT-4) is also outperformed by Triplet method (GPT-3.5). Specifically, PC+BFS
yields 1 cycle and higher SHD on Covid dataset. On the Alzheimers dataset, PC+BFS is comparable:
it yields higher Dtop but a lower SHD.

Dataset Samples LLM Ground Truth PC (Average over MEC)

250 1.00±0.00 0.00±0.00 2.00±0.00
Asia 1000 3.00±0.00 2.00±0.00 3.00±0.00

10000 3.00±0.00 3.00±0.00 3.00±0.00

250 5.00±0.00 5.00±0.00 6.50±0.00
Child 1000 6.00±0.00 6.00±0.00 8.43±0.00

10000 9.00±0.00 9.00±0.00 9.75±0.00

Table A15: Comparing Dtop of final graph using LLM order vs Ground truth order as prior to PC algorithm for
Child and Asia graph, averaged over 4 runs

1000 samples

Context Base prompt Past iteration Markov Blanket PC
orientations (Avg. over MEC)

Dtop 8.0 5.3 6.6 9.61
SHD 14.33 12.66 14.0 17.0

10000 samples

Dtop 6.33 9.66 6.0 7.67
SHD 9.0 13.33 8.33 12.0

Table A13: PC + LLM results where LLM is used to orient the undirected edges of the skeleton PC returns
over different data sample sizes. We show how LLMs can be used in a post processing setup for edge orientation
besides having the capability of acting as a strong prior for different discovery algorithms.

Dataset Samples ϵATE(S1) ϵATE(S2) ϵATE(S3) ∆12 ∆13

250 0.70±0.40 0.70±0.39 0.69±0.39 0.00±0.00 0.00±0.00
500 0.64±0.39 0.64±0.39 0.64±0.38 0.00±0.00 0.00±0.00

Asia 1000 0.59±0.32 0.59±0.32 0.59±0.32 0.00±0.00 0.00±0.00
5000 0.59±0.30 0.59±0.30 0.59±0.29 0.00±0.00 0.00±0.00

10000 0.49±0.00 0.49±0.00 0.49±0.00 0.00±0.00 0.00±0.00

Table A16: Results on Asia dataset. Here we test the difference in the estimated causal effect of lung on
dyspnoea when the causal effect is estimated using the backdoor set S1 = {smoke} vs. the causal effect
estimated when all variables that precede treatment variable in two possible topological orders as backdoor
sets: S2 = {asia, smoke}, S2= {asia, tub, smoke}. ∆12,∆13 refers to the absolute difference between the
pairs ϵATE(S1), ϵATE(S2) and ϵATE(S1), ϵATE(S3) respectively. From the last two columns, we observe that
using the variables that come before the treatment node in a topological order as a backdoor set does not result
in the deviation of causal effects from the ground truth effects.
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Dataset BFS BFS + Statistics
GPT-3.5 GPT-4 GPT-3.5 GPT-4

Dtop SHD IN Cyc Dtop SHD IN Cyc Dtop SHD IN Cyc Dtop SHD IN Cyc
Asia 2 7 0 0 0 1 0 0 - 23 0 33 0 3 0 0
Alzh. 5 17 2 0 0 34 0 0 - 27 1 17 - 14 0 1
Child - 40 0 6 11 30 0 0 - 52 2 21 2 27 4 0
Covid - 28 0 4 5 20 0 0 - 30 0 15 - 32 1 10

Table A17: Comparison of BFS and BFS+Statistics approaches using GPT-3.5-turbo and GPT-4. Datasets
used: Asia, Alzheimers, Child, Covid. Metrics: topological distance (Dtop), structural hamming distance (SHD),
Isolated Nodes (IN), and cycle count (Cyc).

F QUERY STRATEGIES: MORE DETAILS AND EXAMPLES

As stated in Sec. E.4, we follow earlier efforts in studying pairwise query strategies in our experiments. Beyond
the basic query strategy, we also study its augmentation with additional contextual information. In summary, we

study four types of pairwise queries, which we describe below.
• Basic prompt. This is the simplest technique. We directly ask the expert to find the causal direction between

a given pair of variables (Kıcıman et al., 2023).
• Chain-of-Thought (+ In-context Learning). Based on encouraging results of providing in-context examples

in prompts for various LLM tasks (Brown et al., 2020), we include 3 examples of the ordering task that we
expect the expert to perform on. Effectively, we provide example node pairs with their correct causal ordering
before asking the question about the given nodes. Each example answer also contains an explanation of the
answer, generated using a high-cost expert (GPT-4, in our experiments). Adding the explanation provides
the expert with additional reasoning information when deciding the causal order (Wei et al., 2022). To avoid
overfitting, we select node pairs from graphs that are not evaluated in our study, as additional input. Node
pairs with and without direct edges were equally chosen for this purpose. Examples of an expert’s (LLM’s in
this case) answers (and their explanations) using this query strategy are shown in tables below.

• Iterative Context. Here, we provide previously oriented pairs as context in the prompt. Since the expert has
access to its previous decisions, we expect that it may avoid creating cycles through its predictions.

• One hop iterative Context. Providing previously oriented pairs may become prohibitive for large graphs.
Here we provide the information of connections with neighbouring nodes of the node pair being inspected as
additional context in the query.

Cost Estimation Analysis: Pairwise vs. Triplet for LLMs
Triplet method ensures scalability by optimizing most calls to a cheaper and smaller model (like GPT-3.5-Turbo)
while improving performance. The triplet pipeline boosts accuracy through multiple context switches (varying
the third node) for better pairwise orientation. Strategic use of GPT-4 for conflict resolution enhances
effectiveness and controls costs. For a 100-node graph, pairwise orientation using GPT-4 costs an estimated
$574, while our triplet strategy, leveraging both GPT-4 and GPT-3.5-Turbo, reduces costs to $55. Although
our triplet method involves more calls, it optimally uses GPT-4 for error correction, significantly improving
performance while keeping costs low.

Tradeoff Between Increased Nodes: Gains vs. Complexity-Driven Errors As we increase the number of
nodes in the prompt, there is a tradeoff: Adding more nodes provides more context and thus is beneficial, but
more nodes in the LLM’s prompt can also lead to higher error and higher computational cost. Therefore, we
tackled this question empirically by comparing pairwise, triplet, and quadruplet-based prompts. As Table A9
shows, using a quadruplet prompt slightly increases accuracy but leads to a significant increase in the number of
LLM calls. In contrast, the increase in accuracy (especially cycle avoidance) is substantial when moving from
pairwise to the triplet method. Given these considerations, we decided to go with the Triplet prompt, as it allows
for adding more context with minimal increase in prompt complexity and total number of LLM calls. Note that
future iterations of language models might be able to handle longer context better with more improvements,
therefore the will vary with model size, architecture and data the model is trained on. Since we don’t have the
information about this, it will be difficult to model accurately. However, with the LLMs that we have tried
(GPT-4, GPT-3.5, Phi-3 and LLama3), we do not see an increased error when using the triplet prompt compared
to the pairwise prompt.

G CAUSAL GRAPHS USED IN EXPERIMENTS

Figures A3-A7 show the causal graphs and details we considered from BNLearn repository (Scutari & Denis,
2014).
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Dataset Graph Data for Variables

BN Learn Datasets (Asia,
Cancer, Earthquake, Survey,
Child)

Real-world graphs from scientific studies Synthetic data generation based
on bnlearn library

Neuropathic Pain Real-world graph constructed with consen-
sus from medical experts Tu et al. (2019). In-
cludes domain-specific variables as Right L1
Radiculopathy, Topical Dysfunction, DLS
L5-S1, etc. (see Fig. A8)

Synthetic data generation based
on Tu et al. (2019)

Alzheimers Dataset Real-world graph constructed with consen-
sus from medical experts Abdulaal et al.
(2023). Constructed in 2023, after the train-
ing cutoff date of GPT-3.5 and GPT-4 mod-
els used.

No data is available

Covid-19 Dataset Real-world graph constructed by experts to
understand effect of Covid-19 on respiratory
system Mascaro et al. (2023). Constructed
in 2022, after the training cutoff date of GPT-
3.5 and GPT-4 models used.

No data is available.

Table A18: Details about the datasets used for evaluation.

Dataset Number of Number of Description
Nodes Edges (used as a context)

Asia 8 8 Model the possible respiratory problems
someone can have who has recently visited
Asia and is experiencing shortness of breath

Cancer 5 4 Model the relation between various variables
responsible for causing Cancer and its possible
outcomes

Earthquake 5 5 Model factors influencing the probability of a burglary

Survey 6 6 Model a hypothetical survey whose aim is to investigate
the usage patterns of different means of transport

Child 20 25 Model congenital heart disease in babies

Neuropathic Pain
Diagnosis (subgraph) 22 25 For neuropathic pain diagnosis

Table A19: Overview of datasets used
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Figure A3: Earthquake Bayesian network. Abbreviations/Descriptions: Burglary: burglar entering, Earthquake:
earthquake hitting, Alarm: home alarm going off in a house, JohnCalls: first neighbor to call to inform the alarm
sound, Marycalls: second neighbor to call to inform the alarm sound.

Figure A4: Cancer Bayesian network. Abbreviations/Descriptions: Pollution: exposure to pollutants, Smoker:
smoking habit, Cancer: Cancer, Dyspnoea: Dyspnoea, Xray: getting positive xray result.
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Figure A5: Survey Bayesian network. Abbreviations: A=Age/Age of people using transport, S=Sex/male
or female, E=Education/up to high school or university degree, O=Occupation/employee or self-employed,
R=Residence/the size of the city the individual lives in, recorded as either small or big, T=Travel/the means of
transport favoured by the individual.

Figure A6: Asia Bayesian network. Abbreviations/Descriptions: asia=visit to Asia/visiting Asian countries
with high exposure to pollutants, smoke=smoking habit, tub=tuberculosis, lung=lung cancer, either=either
tuberculosis or lung cancer, bronc=bronchitis, dysp=dyspnoea, xray=getting positve xray result.
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Figure A7: Child Bayesian network. Abbreviations: BirthAsphyxia: Lack of oxygen to the blood during the
infant’s birth, HypDistrib: Low oxygen areas equally distributed around the body, HypoxiaInO2: Hypoxia
when breathing oxygen, CO2: Level of carbon dioxide in the body, ChestXray: Having a chest x-ray, Grunting:
Grunting in infants, LVHreport: Report of having left ventricular hypertrophy, LowerBodyO2: Level of oxygen
in the lower body, RUQO2: Level of oxygen in the right upper quadricep muscle, CO2Report: A document
reporting high levels of CO2 levels in blood, XrayReport: Report of having a chest x-ray, Disease: Presence
of an illness, GruntingReport: Report of infant grunting, Age: Age of infant at disease presentation, LVH:
Thickening of the left ventricle, DuctFlow: Blood flow across the ductus arteriosus, CardiacMixing: Mixing of
oxygenated and deoxygenated blood, LungParench: The state of the blood vessels in the lungs, LungFlow: Low
blood flow in the lungs, Sick: Presence of an illness
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Figure A8: For Neuropathic dataset, we consider a sub-graph induced by one of the root nodes, containing
the following 22 nodes and corresponding edges taken from https://observablehq.com/@turuibo/
the-complete-causal-graph-of-neuropathic-pain-diagnosis: ‘right C7’, ‘right elbow
trouble’, ‘left shoulder trouble’, ‘left bend of arm problem’, ’right shoulder trouble’, ‘right hand problem’,
‘left medival elbow problems’, ‘right finger trouble’, ‘left neck problems’, ‘left wrist problems’, ’left shoulder
problem’, ‘right neck’, ‘right wrist problem’, ‘right shoulder problem’, ‘discoligment injury C6 C7’, ‘left hand
problem’, ‘left C7’, ‘right arm band’, ‘left lower arm disorders’, ‘neck pain’, ‘left finger trouble’, ‘left arm’. We
did not use descriptions for the nodes of Neuropathic graph.
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Figure A9: The Alzheimer’s dataset is a Bayesian Network developed by Abdulaal, Ahmed, et al. in
collaboration with five domain experts, as detailed in their paper "Causal Modelling Agents: Causal
Graph Discovery through Synergising Metadata-and Data-driven Reasoning" (ICLR 2024). The
dataset includes the following variables: age, which represents the age of the patient; sex, indicating
the biological sex of the patient; APOE4, which measures the expression level of the APOE4 gene;
education, reflecting the patient’s educational attainment in years; av45, measuring the beta amyloid
protein level using Florbetapir F 18; tau, indicating phosphorylated-tau deposition; brain volume,
representing the total brain matter volume of the patient; Ventricular Volume, indicating the total
ventricular volume of the patient; and moca, which is the Montreal Cognitive Assessment Score.
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Figure A10: Respiratory causal DAG taken from Mascaro S, Wu Y, Woodberry O, et al. Modeling
COVID-19 disease processes by remote elicitation of causal Bayesian networks from medical experts.
BMC Med Res Methodol. Here, Virus enters upper respiratory tract (URT): SARS-CoV-2 viral
particles inhaled and attach to upper respiratory tract mucosal surface. The size of the viral inoculum
is dependent on exposure related factors, not included in the current model, Upper respiratory
tract (URT) epithelial infection: Viral infection of upper respiratory tract epithelial cells +/−
signaling an immune response and leading to local inflammation, Infection of olfactory epithelium:
Viral infection of the olfactory epithelial cells +/− leading to impaired olfaction, Ageusia and/or
anosmia: Loss of the ability to taste and/or smell, Alveolar epithelial infection: Viral infection of
the alveolar cells, +/− inducing an immune response which leads to local inflammation. Alveolar
endothelial infection: Viral infection of the endothelial cells of the capillaries of the terminal airways,
+/− inducing an immune response which leads to local inflammation., Viremi: Presence of SARS-
CoV-2 in blood allowing for systemic dissemination of the virus., Systemic immune/inflammatory
(inflam.) response: Activation of innate and/or adaptive immune system by the presence of virus
at one or more body site/s. Manifest by the release of pro- +/- anti-inflammatory markers in blood
by immune-related cells, Pulmonary capillary leakage: Leakage of plasma from the pulmonary
capillaries into the terminal airways., leakage Dry cough: Cough without the production of mucus or
phlegm., Productive cough: Cough with the production of mucus or phlegm.
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Question: For a causal graph used to model relationship of various factors and outcomes related to cancer
with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’],
Which cause-and-effect relationship is more likely between nodes ’smoker’ and ’cancer’?

A. changing the state of node ’smoker’ causally affects a change in another node ’cancer’.

B. changing the state of node ’cancer’ causally affects a change in another node ’smoker’.

C. There is no causal relation between the nodes ’cancer’ and ’smoker’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: The causal effect of "smoker" directing to "cancer" is based on the strong evidence from epidemi-
ological studies linking smoking to an increased risk of developing cancer. Smoking introduces harmful
substances into the respiratory system, leading to cellular damage and mutation, which significantly
raises the likelihood of cancer development in the lungs or respiratory tract, subsequently impacting the
occurrence of respiratory problems like shortness of breath. Therefore answer is ⟨Answer⟩A⟨/Answer⟩

Question: For a causal graph used to model relationship of various factors and outcomes related to cancer
with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’], Which cause-and-effect
relationship is more likely between nodes ’xray’ and ’dyspnoea’?

A. changing the state of node ’xray’ causally affects a change in another node ’dyspnoea’.

B. changing the state of node ’dyspnoea’ causally affects a change in another node ’xray’.

C. There is no causal relation between the nodes ’xray’ and ’dyspnoea’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: Reasoning behind the lack of causal relation between X-ray and dyspnoea is that X-ray and
dyspnoea are both effects of having cancer, but they do not directly cause or affect each other. X-ray is a
diagnostic test that can help detect cancer in the lungs or other organs, while dyspnoea is a symptom of
cancer that involves feeling short of breath. Therefore, X-ray and dyspnoea are not causally related, but
they are both associated with cancer. Therefore answer is ⟨Answer⟩C⟨/Answer⟩

Question: For a causal graph used to model relationship of various factors and outcomes related to cancer
with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’], Which cause-and-effect
relationship is more likely between nodes ’xray’ and ’cancer’?

A. changing the state of node ’xray’ causally affects a change in another node ’cancer’.

B. changing the state of node ’cancer’ causally affects a change in another node ’xray’.

C. There is no causal relation between the nodes ’xray’ and ’cancer’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Table A20: Chain of Thought Prompt
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Answer: The causal effect of cancer on X-ray is that X-rays are often used to diagnose or detect cancer
in different parts of the body, such as the bones, lungs, breasts, or kidneys123. X-rays use low doses of
radiation to create pictures of the inside of the body and show the presence, size, and location of tumors.
X-rays can also help monitor the response to treatment or check for signs of recurrence. Therefore,
having cancer may increase the likelihood of getting an X-ray as part of the diagnostic process or
follow-up care. Therefore answer is ⟨Answer⟩B⟨/Answer⟩

Question: For a causal graph used to model relationship of various factors and outcomes related to
cancer with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’], Which
cause-and-effect relationship is more likely between nodes ’pollution’ and ’cancer’?

A. changing the state of node ’pollution’ causally affects a change in another node ’cancer’.

B. changing the state of node ’cancer’ causally affects a change in another node ’pollution’.

C. There is no causal relation between the nodes ’pollution’ and ’cancer’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal
graph within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: The causal effect of pollution on cancer is that air pollution contains carcinogens (cancer-
causing substances) that may be absorbed into the body when inhaled and damage the DNA of cells.
Another possible reasoning is that particulate matter (tiny dust-like particles) in air pollution may cause
physical damage to the cells in the lungs, leading to inflammation and oxidative stress and eventually
cell mutations. A third possible reasoning is that air pollution may create an inflamed environment in
the lungs that encourages the proliferation of cells with existing cancer-driving mutations. These are
some of the hypotheses that researchers have proposed to explain how air pollution may cause cancer,
but more studies are needed to confirm them. Therefore answer is ⟨Answer⟩A⟨/Answer⟩

Question: For a causal graph used to model relationship of various factors and outcomes related to
cancer with the following nodes: [’Pollution’, ’Cancer’, ’Smoker’, ’Xray’, ’Dyspnoea’], Which
cause-and-effect relationship is more likely between nodes ’pollution’ and ’smoker’?

A. changing the state of node ’pollution’ causally affects a change in another node ’smoker’.

B. changing the state of node ’smoker’ causally affects a change in another node ’pollution’.

C. There is no causal relation between the nodes ’pollution’ and ’smoker’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal
graph within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: Reason behind the lack of causal relation between pollution and smoker is that pollution
and smoking are both independent risk factors for respiratory problems, but they do not directly cause or
affect each other. Pollution and smoking both contribute to air pollution, which can harm the health of
people and the environment. However, pollution is mainly caused by human activities such as burning
fossil fuels, deforestation, or industrial processes, while smoking is a personal choice that involves
inhaling tobacco smoke. Therefore, pollution and smoker are not causally related, but they are both
associated with respiratory problems. Therefore answer is ⟨Answer⟩C⟨/Answer⟩.

Table A21: Chain of Thought Prompt (continued..)
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Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Family Disease’ and
’Gene’?

A. changing the state of node ’Family Disease’ causally affects a change in another node ’Gene’.

B. changing the state of node ’Gene’ causally affects a change in another node ’Family Disease’.

C. There is no causal relation between the nodes ’Family Disease’ and ’Gene’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: Reason behind the causal effect of family disease on gene is that family disease is a term that
refers to diseases or health conditions that run in the family, meaning that they are influenced by genetic
factors. Gene is a term that refers to the basic unit of heredity that carries information for a specific trait
or function. Family disease can affect gene by altering the type or frequency of genes that are inherited
by the offspring from their parents. For example, some family diseases are caused by deterministic
genes, which are genes that guarantee the development of a disease if they are present in a person’s
genome. Other family diseases are influenced by risk genes, which are genes that increase the likelihood
of developing a disease but do not guarantee it. Therefore, family disease can causally direct to gene by
changing the genetic makeup of a person or a population. Therefore answer is ⟨Answer⟩A⟨/Answer⟩.

Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Coronary Heart Disease’
and ’Gene’?

A. changing the state of node ’Coronary Heart Disease’ causally affects a change in another node
’Gene’.

B. changing the state of node ’Gene’ causally affects a change in another node ’Coronary Heart Disease’.

C. There is no causal relation between the nodes ’Coronary Heart Disease’ and ’Gene’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: Possible reasoning behind the causal effect of gene on coronary heart disease is that gene is
a term that refers to the basic unit of heredity that carries information for a specific trait or function.
Gene can affect coronary heart disease by influencing the structure and function of the blood vessels,
the metabolism and transport of lipids (fats) in the blood, the inflammation and clotting processes, or
the response to environmental factors such as smoking or diet. For example, some genes code for
proteins that regulate the cell cycle and growth of the cells that line the arteries, which can affect their
susceptibility to damage or plaque formation. Other genes code for proteins that control the synthesis
and clearance of cholesterol or other lipids, which can affect their levels and deposition in the arteries.
Therefore, gene can causally direct to coronary heart disease by modifying the biological pathways that
contribute to the development or progression of the disease. Therefore answer is ⟨Answer⟩B⟨/Answer⟩

Table A22: Chain of Thought Prompt (continued..)
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Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Blood Pressure’ and
’Smoking’?

A. changing the state of node ’Blood Pressure’ causally affects a change in another node ’Smoking’.

B. changing the state of node ’Smoking’ causally affects a change in another node ’Blood Pressure’.

C. There is no causal relation between the nodes ’Blood Pressure’ and ’Smoking’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: Possible reasoning behind the causal effect of smoking on blood pressure is that smoking is
a habit that involves inhaling tobacco smoke, which contains nicotine and other harmful chemicals.
Smoking can affect blood pressure by activating the sympathetic nervous system (SNS), which is the part
of the nervous system that controls the body’s response to stress or danger. When the SNS is activated, it
releases hormones such as adrenaline and noradrenaline, which cause the heart to beat faster and harder,
and the blood vessels to constrict. This results in a temporary increase in blood pressure, which can
last for 15 to 20 minutes after each cigarette. Therefore, smoking can causally direct to blood pressure
by stimulating the SNS and increasing the cardiac output and vascular resistance. Therefore answer is
⟨Answer⟩B⟨/Answer⟩.

Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Headache’ and ’Smok-
ing’?

A. changing the state of node ’Headache’ causally affects a change in another node ’Smoking’.

B. changing the state of node ’Smoking’ causally affects a change in another node ’Headache’.

C. There is no causal relation between the nodes ’Headache’ and ’Smoking’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: One possible reasoning behind the lack of causal relation between headache and smoking is
that headache and smoking are both associated with various health conditions, but they do not directly
cause or affect each other12. Headache is a term that refers to pain or discomfort in the head, scalp, or
neck, which can have many possible causes, such as stress, dehydration, infection, injury, or medication.
Smoking is a habit that involves inhaling tobacco smoke, which contains nicotine and other harmful
chemicals, which can increase the risk of diseases such as cancer, heart disease, stroke, and lung disease.
Therefore, headache and smoking are not causally related, but they are both linked to different health
problems. Therefore the answer is ⟨Answer⟩C⟨/Answer⟩

Table A23: Chain of Thought Prompt (continued..)
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Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Headache’ and ’Smok-
ing’?

A. changing the state of node ’Headache’ causally affects a change in another node ’Smoking’.

B. changing the state of node ’Smoking’ causally affects a change in another node ’Headache’.

C. There is no causal relation between the nodes ’Headache’ and ’Smoking’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: One possible reasoning behind the lack of causal relation between headache and smoking is
that headache and smoking are both associated with various health conditions, but they do not directly
cause or affect each other. Headache is a term that refers to pain or discomfort in the head, scalp, or
neck, which can have many possible causes, such as stress, dehydration, infection, injury, or medication.
Smoking is a habit that involves inhaling tobacco smoke, which contains nicotine and other harmful
chemicals, which can increase the risk of diseases such as cancer, heart disease, stroke, and lung disease.
Therefore, headache and smoking are not causally related, but they are both linked to different health
problems. Therefore the answer is ⟨Answer⟩C⟨/Answer⟩

Question: For a causal graph used for modeling factors causing Coronary Heart Diseases with the
following nodes: [’Family Disease’, ’Gene’, ’Smoking’, ’Blood Pressure’, ’Coronary Heart Disease’,
’Headache’], Which cause-and-effect relationship is more likely between nodes ’Coronary Heart Disease’
and ’Smoking’?

A. changing the state of node ’Smoking’ causally affects a change in another node ’Coronary Heart
Disease’.

B. changing the state of node ’Coronary Heart Disease’ causally affects a change in another node
’Smoking’.

C. There is no causal relation between the nodes ’Coronary Heart Disease’ and ’Smoking’.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Answer: Possible reasoning behind the causal effect of smoking on coronary heart disease is smoking
damages the heart and blood vessels by raising triglycerides, lowering HDL, increasing blood clotting,
and impairing blood flow to the heart. This can lead to plaque buildup, heart attacks, and death. Therefore
answer is ⟨Answer⟩A⟨/Answer⟩.

Question: For a causal graph used for context with the following nodes: nodes, Which cause-and-effect
relationship is more likely between nodes X and Y?

A. changing the state of node X causally affects a change in another node Y.

B. changing the state of node Y causally affects a change in another node X.

C. There is no causal relation between the nodes X and Y.

Make sure to first provide a grounded reasoning for your answer and then provide the answer in the
following format: ⟨Answer⟩A/B/C⟨/Answer⟩. It is very important that you output the final Causal graph
within the tags like ⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your answer will not be processed.

Table A24: Chain of Thought Queries (continued..)
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Which cause-and-effect relationship is more likely?

A. changing the state of node which says X causally affects a change in another node which
says Y.

B. changing the state of node which says Y causally affects a change in another node which
says X.

C. There is no causal relationship between node X and Y.

Make sure to first output a factually grounded reasoning for your answer. X and Y are nodes
of a Causal Graph. The causal graph is sparse and acyclic in nature. So option C could be
chosen if there is some uncertainity about causal relationship between X and Y.

First give your reasoning and after that please make sure to provide your final answer within
the tags ⟨Answer⟩A/B/C⟨/Answer⟩.
It is very important that you output your final answer between the tags like
⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your response will not be processed.

Table A25: Base Queries

For the nodes X and Y which form an edge in a Causal Graph, you have to identify which
cause-and-effect relationship is more likely between the nodes of the edge. This will be used
to rearrange the nodes in the edge to create a directed edge which accounts for causal relation
from one node to another in the edge.

A. changing the state of node X causally affects a change in another node Y.

B. changing the state of node Y causally affects a change in another node X.

C. There is no causal relation between the nodes X and Y.

You can also take the edges from the skeleton which have been rearranged to create a directed
edge to account for causal relationship between the nodes: directed_edges.
Make sure to first output a factually grounded reasoning for your answer. First give your
reasoning and after that please make sure to provide your final answer within the tags
⟨Answer⟩A/B/C⟨/Answer⟩.
It is very important that you output your final answer between the tags like
⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your response will not be processed.

Table A26: Iterative orientation Queries
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For the following undirected edge in a Causal Graph made of nodes X and Y, you have to
identify which cause-and-effect relationship is more likely between the nodes of the edge.
This will be used to rearrange the nodes in the edge to create a directed edge which accounts
for causal relation from one node to another in the edge.

A. changing the state of node X causally affects a change in another node Y.

B. changing the state of node Y causally affects a change in another node X.

C. There is no causal relation between the nodes X and Y.

You can also take the other directed edges of nodes X: X_edges and Y: Y_edges of the Causal
graph as context to redirect the edge to account for causal effect.
Make sure to first output a factually grounded reasoning for your answer. First give your
reasoning and after that please make sure to provide your final answer within the tags
⟨Answer⟩A/B/C⟨/Answer⟩.
It is very important that you output your final answer between the tags like
⟨Answer⟩A/B/C⟨/Answer⟩ otherwise your response will not be processed.

Table A27: Iterative One Hop Queries

Identify the causal relationships between the given variables and create a directed acyclic graph
to {context}. Make sure to give a reasoning for your answer and then output the directed graph
in the form of a list of tuples, where each tuple is a directed edge. The desired output should be in
the following form: [(‘A’,‘B’), (‘B’,‘C’)] where first tuple represents a directed edge from Node

‘A’ to Node ‘B’, second tuple represents a directed edge from Node ‘B’ to Node ‘C’and so on.

If a node should not form any causal relationship with other nodes, then you can add it as an
isolated node of the graph by adding it seperately. For example, if ‘C’ should be an isolated node
in a graph with nodes ‘A’, ‘B’, ‘C’, then the final DAG representation should be like [(‘A’,‘B’),
(‘C’)].
Use the description about the node provided with the nodes in brackets to form a better decision
about the causal direction orientation between the nodes.

It is very important that you output the final Causal graph within the tags <An-
swer></Answer>otherwise your answer will not be processed.

Example:
Input: Nodes: [‘A’, ‘B’, ‘C’, ‘D’];
Description of Nodes: [(description of Node A), (description of Node B), (description of Node
C), (description of Node D)]
Output: <Answer>[(‘A’,‘B’),(‘C’,‘D’)]</Answer>
Question:
Input: Nodes: {Triplet Nodes Input}
Description of Nodes: {Description of Each Node from the Triplet}
Output:

Table A28: The triplet query template, which includes a concise context of the graph, the input triplet nodes
and their respective descriptions. As an example, for the Child graph, the context is "to model congenital
heart disease in babies", the three nodes may be (‘HypoxiaInO2’, ‘Grunting’, ‘GruntingReport’); and their
node descriptions are ["hypoxia when breathing oxygen", "grunting in infants", "report of infant grunting"]
respectively.
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Input: (‘HypDistrib’, ‘LowerBodyO2’)

Answer: Low oxygen areas equally distributed around the body can affect the level of oxygen in
the lower body by reducing the amount of oxygen available for circulation. Therefore, the answer is
⟨Answer⟩A⟨/Answer⟩.

Input: (‘Disease’, ‘LungFlow’)

Answer: Infant methemoglobinemia is a condition where the blood is unable to carry enough oxygen,
which can lead to low blood flow in the lungs. Therefore, the answer is ⟨Answer⟩A⟨/Answer⟩.

Input: (‘CardiacMixing’, ‘HypDistrib’)

Answer: Mixing of oxygenated and deoxygenated blood is a common cause of congenital heart disease
in babies. This mixing can occur due to structural defects in the heart, such as a hole between the heart
chambers or abnormal connections between the blood vessels. This mixing can lead to low oxygen areas
equally distributed around the body. Therefore, the answer is ⟨Answer⟩B⟨/Answer⟩.

Table A29: Example LLM (GPT-3.5-turbo) outputs for estimating the causal direction between a given pair of
nodes (with their descriptions) using the CoT Prompt (refer Table A20 in Appendix for the prompt). Given a
pair (X,Y), Option A refers to X causing Y, option B refers to Y causing X, and option C refers to no causal
relationship between the variables. The pairs shown are from the Child graph from BNLearn repository (Scutari
& Denis, 2014), that is used for modeling Congenital Heart Disease in infants.

Input: (‘Right C7’,‘Discoligment injury C6-C7’)

Answer: Discoligment injury C6-C7 can cause compression of the nerve roots that exit the
spinal cord at the C7 level, which can lead to symptoms such as pain, numbness, and weakness
in the right C7 dermatome. Therefore, the answer is ⟨Answer⟩B⟨/Answer⟩.

Input: (‘Right C7’, ‘Left C7’)

Answer: Right C7 and left C7 are both parts of the cervical spine and are not known to directly
influence each other. Therefore, the answer is ⟨Answer⟩C⟨/Answer⟩.

Input: (‘Right elbow trouble’, ‘Left shoulder trouble’)

Answer: There is no direct causal relationship between right elbow trouble and left shoulder
trouble. They may both be symptoms of a larger underlying condition, but they do not directly
cause or affect each other. Therefore the answer is ⟨Answer⟩C⟨/Answer⟩.

Table A30: Example LLM (GPT-3.5-turbo) reasoning outputs for estimating causal directionality
between different pairs of nodes using CoT queries (refer Table A20 for the query) for Neuropathic
subgraph (used for pain diagnosis).
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